diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/unsupported/test/cxx11_tensor_reverse_sycl.cpp | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_reverse_sycl.cpp')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_reverse_sycl.cpp | 221 |
1 files changed, 221 insertions, 0 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_reverse_sycl.cpp b/eigen/unsupported/test/cxx11_tensor_reverse_sycl.cpp new file mode 100644 index 0000000..2f54844 --- /dev/null +++ b/eigen/unsupported/test/cxx11_tensor_reverse_sycl.cpp @@ -0,0 +1,221 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 +// Mehdi Goli Codeplay Software Ltd. +// Ralph Potter Codeplay Software Ltd. +// Luke Iwanski Codeplay Software Ltd. +// Contact: <eigen@codeplay.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#define EIGEN_TEST_NO_LONGDOUBLE +#define EIGEN_TEST_NO_COMPLEX +#define EIGEN_TEST_FUNC cxx11_tensor_reverse_sycl +#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t +#define EIGEN_USE_SYCL + +#include "main.h" +#include <unsupported/Eigen/CXX11/Tensor> + + +template <typename DataType, int DataLayout, typename IndexType> +static void test_simple_reverse(const Eigen::SyclDevice& sycl_device) { + + IndexType dim1 = 2; + IndexType dim2 = 3; + IndexType dim3 = 5; + IndexType dim4 = 7; + + array<IndexType, 4> tensorRange = {{dim1, dim2, dim3, dim4}}; + Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange); + Tensor<DataType, 4, DataLayout, IndexType> reversed_tensor(tensorRange); + tensor.setRandom(); + + array<bool, 4> dim_rev; + dim_rev[0] = false; + dim_rev[1] = true; + dim_rev[2] = true; + dim_rev[3] = false; + + DataType* gpu_in_data = static_cast<DataType*>(sycl_device.allocate(tensor.dimensions().TotalSize()*sizeof(DataType))); + DataType* gpu_out_data =static_cast<DataType*>(sycl_device.allocate(reversed_tensor.dimensions().TotalSize()*sizeof(DataType))); + + TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > in_gpu(gpu_in_data, tensorRange); + TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > out_gpu(gpu_out_data, tensorRange); + + sycl_device.memcpyHostToDevice(gpu_in_data, tensor.data(),(tensor.dimensions().TotalSize())*sizeof(DataType)); + out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev); + sycl_device.memcpyDeviceToHost(reversed_tensor.data(), gpu_out_data, reversed_tensor.dimensions().TotalSize()*sizeof(DataType)); + // Check that the CPU and GPU reductions return the same result. + for (IndexType i = 0; i < 2; ++i) { + for (IndexType j = 0; j < 3; ++j) { + for (IndexType k = 0; k < 5; ++k) { + for (IndexType l = 0; l < 7; ++l) { + VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(i,2-j,4-k,l)); + } + } + } + } + dim_rev[0] = true; + dim_rev[1] = false; + dim_rev[2] = false; + dim_rev[3] = false; + + out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev); + sycl_device.memcpyDeviceToHost(reversed_tensor.data(), gpu_out_data, reversed_tensor.dimensions().TotalSize()*sizeof(DataType)); + + for (IndexType i = 0; i < 2; ++i) { + for (IndexType j = 0; j < 3; ++j) { + for (IndexType k = 0; k < 5; ++k) { + for (IndexType l = 0; l < 7; ++l) { + VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,l)); + } + } + } + } + + dim_rev[0] = true; + dim_rev[1] = false; + dim_rev[2] = false; + dim_rev[3] = true; + out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev); + sycl_device.memcpyDeviceToHost(reversed_tensor.data(), gpu_out_data, reversed_tensor.dimensions().TotalSize()*sizeof(DataType)); + + for (IndexType i = 0; i < 2; ++i) { + for (IndexType j = 0; j < 3; ++j) { + for (IndexType k = 0; k < 5; ++k) { + for (IndexType l = 0; l < 7; ++l) { + VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,6-l)); + } + } + } + } + + sycl_device.deallocate(gpu_in_data); + sycl_device.deallocate(gpu_out_data); +} + + + +template <typename DataType, int DataLayout, typename IndexType> +static void test_expr_reverse(const Eigen::SyclDevice& sycl_device, bool LValue) +{ + IndexType dim1 = 2; + IndexType dim2 = 3; + IndexType dim3 = 5; + IndexType dim4 = 7; + + array<IndexType, 4> tensorRange = {{dim1, dim2, dim3, dim4}}; + Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange); + Tensor<DataType, 4, DataLayout, IndexType> expected(tensorRange); + Tensor<DataType, 4, DataLayout, IndexType> result(tensorRange); + tensor.setRandom(); + + array<bool, 4> dim_rev; + dim_rev[0] = false; + dim_rev[1] = true; + dim_rev[2] = false; + dim_rev[3] = true; + + DataType* gpu_in_data = static_cast<DataType*>(sycl_device.allocate(tensor.dimensions().TotalSize()*sizeof(DataType))); + DataType* gpu_out_data_expected =static_cast<DataType*>(sycl_device.allocate(expected.dimensions().TotalSize()*sizeof(DataType))); + DataType* gpu_out_data_result =static_cast<DataType*>(sycl_device.allocate(result.dimensions().TotalSize()*sizeof(DataType))); + + TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > in_gpu(gpu_in_data, tensorRange); + TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > out_gpu_expected(gpu_out_data_expected, tensorRange); + TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > out_gpu_result(gpu_out_data_result, tensorRange); + + + sycl_device.memcpyHostToDevice(gpu_in_data, tensor.data(),(tensor.dimensions().TotalSize())*sizeof(DataType)); + + if (LValue) { + out_gpu_expected.reverse(dim_rev).device(sycl_device) = in_gpu; + } else { + out_gpu_expected.device(sycl_device) = in_gpu.reverse(dim_rev); + } + sycl_device.memcpyDeviceToHost(expected.data(), gpu_out_data_expected, expected.dimensions().TotalSize()*sizeof(DataType)); + + + array<IndexType, 4> src_slice_dim; + src_slice_dim[0] = 2; + src_slice_dim[1] = 3; + src_slice_dim[2] = 1; + src_slice_dim[3] = 7; + array<IndexType, 4> src_slice_start; + src_slice_start[0] = 0; + src_slice_start[1] = 0; + src_slice_start[2] = 0; + src_slice_start[3] = 0; + array<IndexType, 4> dst_slice_dim = src_slice_dim; + array<IndexType, 4> dst_slice_start = src_slice_start; + + for (IndexType i = 0; i < 5; ++i) { + if (LValue) { + out_gpu_result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev).device(sycl_device) = + in_gpu.slice(src_slice_start, src_slice_dim); + } else { + out_gpu_result.slice(dst_slice_start, dst_slice_dim).device(sycl_device) = + in_gpu.slice(src_slice_start, src_slice_dim).reverse(dim_rev); + } + src_slice_start[2] += 1; + dst_slice_start[2] += 1; + } + sycl_device.memcpyDeviceToHost(result.data(), gpu_out_data_result, result.dimensions().TotalSize()*sizeof(DataType)); + + for (IndexType i = 0; i < expected.dimension(0); ++i) { + for (IndexType j = 0; j < expected.dimension(1); ++j) { + for (IndexType k = 0; k < expected.dimension(2); ++k) { + for (IndexType l = 0; l < expected.dimension(3); ++l) { + VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); + } + } + } + } + + dst_slice_start[2] = 0; + result.setRandom(); + sycl_device.memcpyHostToDevice(gpu_out_data_result, result.data(),(result.dimensions().TotalSize())*sizeof(DataType)); + for (IndexType i = 0; i < 5; ++i) { + if (LValue) { + out_gpu_result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev).device(sycl_device) = + in_gpu.slice(dst_slice_start, dst_slice_dim); + } else { + out_gpu_result.slice(dst_slice_start, dst_slice_dim).device(sycl_device) = + in_gpu.reverse(dim_rev).slice(dst_slice_start, dst_slice_dim); + } + dst_slice_start[2] += 1; + } + sycl_device.memcpyDeviceToHost(result.data(), gpu_out_data_result, result.dimensions().TotalSize()*sizeof(DataType)); + + for (IndexType i = 0; i < expected.dimension(0); ++i) { + for (IndexType j = 0; j < expected.dimension(1); ++j) { + for (IndexType k = 0; k < expected.dimension(2); ++k) { + for (IndexType l = 0; l < expected.dimension(3); ++l) { + VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); + } + } + } + } +} + + + +template<typename DataType> void sycl_reverse_test_per_device(const cl::sycl::device& d){ + std::cout << "Running on " << d.template get_info<cl::sycl::info::device::name>() << std::endl; + QueueInterface queueInterface(d); + auto sycl_device = Eigen::SyclDevice(&queueInterface); + test_simple_reverse<DataType, RowMajor, int64_t>(sycl_device); + test_simple_reverse<DataType, ColMajor, int64_t>(sycl_device); + test_expr_reverse<DataType, RowMajor, int64_t>(sycl_device, false); + test_expr_reverse<DataType, ColMajor, int64_t>(sycl_device, false); + test_expr_reverse<DataType, RowMajor, int64_t>(sycl_device, true); + test_expr_reverse<DataType, ColMajor, int64_t>(sycl_device, true); +} +void test_cxx11_tensor_reverse_sycl() { + for (const auto& device :Eigen::get_sycl_supported_devices()) { + CALL_SUBTEST(sycl_reverse_test_per_device<float>(device)); + } +} |