diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/unsupported/test/cxx11_tensor_scan.cpp | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_scan.cpp')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_scan.cpp | 110 |
1 files changed, 110 insertions, 0 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_scan.cpp b/eigen/unsupported/test/cxx11_tensor_scan.cpp new file mode 100644 index 0000000..af59aa3 --- /dev/null +++ b/eigen/unsupported/test/cxx11_tensor_scan.cpp @@ -0,0 +1,110 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Igor Babuschkin <igor@babuschk.in> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" +#include <limits> +#include <numeric> +#include <Eigen/CXX11/Tensor> + +using Eigen::Tensor; + +template <int DataLayout, typename Type=float, bool Exclusive = false> +static void test_1d_scan() +{ + int size = 50; + Tensor<Type, 1, DataLayout> tensor(size); + tensor.setRandom(); + Tensor<Type, 1, DataLayout> result = tensor.cumsum(0, Exclusive); + + VERIFY_IS_EQUAL(tensor.dimension(0), result.dimension(0)); + + float accum = 0; + for (int i = 0; i < size; i++) { + if (Exclusive) { + VERIFY_IS_EQUAL(result(i), accum); + accum += tensor(i); + } else { + accum += tensor(i); + VERIFY_IS_EQUAL(result(i), accum); + } + } + + accum = 1; + result = tensor.cumprod(0, Exclusive); + for (int i = 0; i < size; i++) { + if (Exclusive) { + VERIFY_IS_EQUAL(result(i), accum); + accum *= tensor(i); + } else { + accum *= tensor(i); + VERIFY_IS_EQUAL(result(i), accum); + } + } +} + +template <int DataLayout, typename Type=float> +static void test_4d_scan() +{ + int size = 5; + Tensor<Type, 4, DataLayout> tensor(size, size, size, size); + tensor.setRandom(); + + Tensor<Type, 4, DataLayout> result(size, size, size, size); + + result = tensor.cumsum(0); + float accum = 0; + for (int i = 0; i < size; i++) { + accum += tensor(i, 1, 2, 3); + VERIFY_IS_EQUAL(result(i, 1, 2, 3), accum); + } + result = tensor.cumsum(1); + accum = 0; + for (int i = 0; i < size; i++) { + accum += tensor(1, i, 2, 3); + VERIFY_IS_EQUAL(result(1, i, 2, 3), accum); + } + result = tensor.cumsum(2); + accum = 0; + for (int i = 0; i < size; i++) { + accum += tensor(1, 2, i, 3); + VERIFY_IS_EQUAL(result(1, 2, i, 3), accum); + } + result = tensor.cumsum(3); + accum = 0; + for (int i = 0; i < size; i++) { + accum += tensor(1, 2, 3, i); + VERIFY_IS_EQUAL(result(1, 2, 3, i), accum); + } +} + +template <int DataLayout> +static void test_tensor_maps() { + int inputs[20]; + TensorMap<Tensor<int, 1, DataLayout> > tensor_map(inputs, 20); + tensor_map.setRandom(); + + Tensor<int, 1, DataLayout> result = tensor_map.cumsum(0); + + int accum = 0; + for (int i = 0; i < 20; ++i) { + accum += tensor_map(i); + VERIFY_IS_EQUAL(result(i), accum); + } +} + +void test_cxx11_tensor_scan() { + CALL_SUBTEST((test_1d_scan<ColMajor, float, true>())); + CALL_SUBTEST((test_1d_scan<ColMajor, float, false>())); + CALL_SUBTEST((test_1d_scan<RowMajor, float, true>())); + CALL_SUBTEST((test_1d_scan<RowMajor, float, false>())); + CALL_SUBTEST(test_4d_scan<ColMajor>()); + CALL_SUBTEST(test_4d_scan<RowMajor>()); + CALL_SUBTEST(test_tensor_maps<ColMajor>()); + CALL_SUBTEST(test_tensor_maps<RowMajor>()); +} |