summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/test/matrix_function.cpp
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2019-03-03 21:09:10 +0100
committerStanislaw Halik <sthalik@misaki.pl>2019-03-03 21:10:13 +0100
commitf0238cfb6997c4acfc2bd200de7295f3fa36968f (patch)
treeb215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/unsupported/test/matrix_function.cpp
parent543edd372a5193d04b3de9f23c176ab439e51b31 (diff)
don't index Eigen
Diffstat (limited to 'eigen/unsupported/test/matrix_function.cpp')
-rw-r--r--eigen/unsupported/test/matrix_function.cpp189
1 files changed, 0 insertions, 189 deletions
diff --git a/eigen/unsupported/test/matrix_function.cpp b/eigen/unsupported/test/matrix_function.cpp
deleted file mode 100644
index 6a2b219..0000000
--- a/eigen/unsupported/test/matrix_function.cpp
+++ /dev/null
@@ -1,189 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#include "main.h"
-#include <unsupported/Eigen/MatrixFunctions>
-
-// Variant of VERIFY_IS_APPROX which uses absolute error instead of
-// relative error.
-#define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b))
-
-template<typename Type1, typename Type2>
-inline bool test_isApprox_abs(const Type1& a, const Type2& b)
-{
- return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all();
-}
-
-
-// Returns a matrix with eigenvalues clustered around 0, 1 and 2.
-template<typename MatrixType>
-MatrixType randomMatrixWithRealEivals(const typename MatrixType::Index size)
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- MatrixType diag = MatrixType::Zero(size, size);
- for (Index i = 0; i < size; ++i) {
- diag(i, i) = Scalar(RealScalar(internal::random<int>(0,2)))
- + internal::random<Scalar>() * Scalar(RealScalar(0.01));
- }
- MatrixType A = MatrixType::Random(size, size);
- HouseholderQR<MatrixType> QRofA(A);
- return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
-}
-
-template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
-struct randomMatrixWithImagEivals
-{
- // Returns a matrix with eigenvalues clustered around 0 and +/- i.
- static MatrixType run(const typename MatrixType::Index size);
-};
-
-// Partial specialization for real matrices
-template<typename MatrixType>
-struct randomMatrixWithImagEivals<MatrixType, 0>
-{
- static MatrixType run(const typename MatrixType::Index size)
- {
- typedef typename MatrixType::Scalar Scalar;
- MatrixType diag = MatrixType::Zero(size, size);
- Index i = 0;
- while (i < size) {
- Index randomInt = internal::random<Index>(-1, 1);
- if (randomInt == 0 || i == size-1) {
- diag(i, i) = internal::random<Scalar>() * Scalar(0.01);
- ++i;
- } else {
- Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01);
- diag(i, i+1) = alpha;
- diag(i+1, i) = -alpha;
- i += 2;
- }
- }
- MatrixType A = MatrixType::Random(size, size);
- HouseholderQR<MatrixType> QRofA(A);
- return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
- }
-};
-
-// Partial specialization for complex matrices
-template<typename MatrixType>
-struct randomMatrixWithImagEivals<MatrixType, 1>
-{
- static MatrixType run(const typename MatrixType::Index size)
- {
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- const Scalar imagUnit(0, 1);
- MatrixType diag = MatrixType::Zero(size, size);
- for (Index i = 0; i < size; ++i) {
- diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit
- + internal::random<Scalar>() * Scalar(RealScalar(0.01));
- }
- MatrixType A = MatrixType::Random(size, size);
- HouseholderQR<MatrixType> QRofA(A);
- return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
- }
-};
-
-
-template<typename MatrixType>
-void testMatrixExponential(const MatrixType& A)
-{
- typedef typename internal::traits<MatrixType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef std::complex<RealScalar> ComplexScalar;
-
- VERIFY_IS_APPROX(A.exp(), A.matrixFunction(internal::stem_function_exp<ComplexScalar>));
-}
-
-template<typename MatrixType>
-void testMatrixLogarithm(const MatrixType& A)
-{
- typedef typename internal::traits<MatrixType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- MatrixType scaledA;
- RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff();
- if (maxImagPartOfSpectrum >= RealScalar(0.9L * EIGEN_PI))
- scaledA = A * RealScalar(0.9L * EIGEN_PI) / maxImagPartOfSpectrum;
- else
- scaledA = A;
-
- // identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X
- MatrixType expA = scaledA.exp();
- MatrixType logExpA = expA.log();
- VERIFY_IS_APPROX(logExpA, scaledA);
-}
-
-template<typename MatrixType>
-void testHyperbolicFunctions(const MatrixType& A)
-{
- // Need to use absolute error because of possible cancellation when
- // adding/subtracting expA and expmA.
- VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2);
- VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2);
-}
-
-template<typename MatrixType>
-void testGonioFunctions(const MatrixType& A)
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef std::complex<RealScalar> ComplexScalar;
- typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime,
- MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix;
-
- ComplexScalar imagUnit(0,1);
- ComplexScalar two(2,0);
-
- ComplexMatrix Ac = A.template cast<ComplexScalar>();
-
- ComplexMatrix exp_iA = (imagUnit * Ac).exp();
- ComplexMatrix exp_miA = (-imagUnit * Ac).exp();
-
- ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>();
- VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit));
-
- ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>();
- VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2);
-}
-
-template<typename MatrixType>
-void testMatrix(const MatrixType& A)
-{
- testMatrixExponential(A);
- testMatrixLogarithm(A);
- testHyperbolicFunctions(A);
- testGonioFunctions(A);
-}
-
-template<typename MatrixType>
-void testMatrixType(const MatrixType& m)
-{
- // Matrices with clustered eigenvalue lead to different code paths
- // in MatrixFunction.h and are thus useful for testing.
-
- const Index size = m.rows();
- for (int i = 0; i < g_repeat; i++) {
- testMatrix(MatrixType::Random(size, size).eval());
- testMatrix(randomMatrixWithRealEivals<MatrixType>(size));
- testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size));
- }
-}
-
-void test_matrix_function()
-{
- CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>()));
- CALL_SUBTEST_2(testMatrixType(Matrix3cf()));
- CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8)));
- CALL_SUBTEST_4(testMatrixType(Matrix2d()));
- CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>()));
- CALL_SUBTEST_6(testMatrixType(Matrix4cd()));
- CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13)));
-}