summaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--compat/simple-mat.hpp284
1 files changed, 144 insertions, 140 deletions
diff --git a/compat/simple-mat.hpp b/compat/simple-mat.hpp
index 906c0969..1146984a 100644
--- a/compat/simple-mat.hpp
+++ b/compat/simple-mat.hpp
@@ -8,127 +8,117 @@
#pragma once
+#include <cmath>
#include "export.hpp"
+#include <compat/util.hpp>
#include <initializer_list>
#include <type_traits>
#include <utility>
-namespace {
- // last param to fool SFINAE into overloading
- template<int i, int j, int>
- struct equals
- {
- enum { value = i == j };
- };
- template<int i, int j, int min>
- struct maybe_add_swizzle
- {
- enum { value = (i == 1 || j == 1) && (i >= min || j >= min) };
- };
- template<int i1, int j1, int i2, int j2>
- struct is_vector_pair
- {
- enum { value = (i1 == i2 && j1 == 1 && j2 == 1) || (j1 == j2 && i1 == 1 && i2 == 1) };
- };
- template<int i, int j>
- struct vector_len
- {
- enum { value = i > j ? i : j };
- };
- template<int a, int b, int c, int d>
- struct is_dim3
- {
- enum { value = (a == 1 && c == 1 && b == 3 && d == 3) || (a == 3 && c == 3 && b == 1 && d == 1) };
- enum { P = a == 1 ? 1 : 3 };
- enum { Q = a == 1 ? 3 : 1 };
- };
+namespace mat_detail {
- template<typename num, int h, int w, typename...ts>
- struct is_arglist_correct
- {
- enum { value = h * w == sizeof...(ts) };
- };
-}
+// `zz' param to fool into SFINAE member overload
-template<typename num, int h_, int w_>
-class Mat
-{
- static_assert(h_ > 0 && w_ > 0, "must have positive mat dimensions");
- num data[h_][w_];
+template<int i, int j, int k, int zz>
+constexpr bool equals = ((void)zz, i == k && j != k);
-public:
- template<int Q = w_> typename std::enable_if<equals<Q, 1, 0>::value, num>::type
- inline operator()(int i) const { return data[i][0]; }
+template<int i, int j, int min>
+constexpr bool maybe_swizzle =
+ (i == 1 || j == 1) && (i >= min || j >= min);
- template<int P = h_> typename std::enable_if<equals<P, 1, 1>::value, num>::type
- inline operator()(int i) const { return data[0][i]; }
+template<int i1, int j1, int i2, int j2>
+constexpr bool is_vector_pair =
+ (i1 == i2 && j1 == 1 && j2 == 1) || (j1 == j2 && i1 == 1 && i2 == 1);
- template<int Q = w_> typename std::enable_if<equals<Q, 1, 2>::value, num&>::type
- inline operator()(int i) { return data[i][0]; }
+template<int i, int j>
+constexpr unsigned vector_len = i > j ? i : j;
- template<int P = h_> typename std::enable_if<equals<P, 1, 3>::value, num&>::type
- inline operator()(int i) { return data[0][i]; }
+template<int a, int b, int c, int d>
+constexpr bool dim3 =
+ (a == 3 || b == 3) && (c == 3 || d == 3) &&
+ (a == 1 || b == 1) && (c == 1 || d == 1);
- template<int Q = w_> typename std::enable_if<equals<Q, 1, 0>::value, num>::type
- inline operator()(unsigned i) const { return data[i][0]; }
+template<int h, int w, typename... ts>
+constexpr bool arglist_correct = h * w == sizeof...(ts);
- template<int P = h_> typename std::enable_if<equals<P, 1, 1>::value, num>::type
- inline operator()(unsigned i) const { return data[0][i]; }
+template<bool x, typename t>
+using sfinae = typename std::enable_if<x, t>::type;
- template<int Q = w_> typename std::enable_if<equals<Q, 1, 2>::value, num&>::type
- inline operator()(unsigned i) { return data[i][0]; }
+template<typename num, int h_, int w_>
+class Mat
+{
+ static_assert(h_ > 0 && w_ > 0, "must have positive mat dimensions");
+ num data[h_][w_];
- template<int P = h_> typename std::enable_if<equals<P, 1, 3>::value, num&>::type
- inline operator()(unsigned i) { return data[0][i]; }
+#define OTR_ASSERT_SWIZZLE static_assert(P == h_ && Q == w_, "")
-#define OPENTRACK_ASSERT_SWIZZLE static_assert(P == h_ && Q == w_, "")
+ Mat(std::initializer_list<num>&& init)
+ {
+ auto iter = init.begin();
+ for (int j = 0; j < h_; j++)
+ for (int i = 0; i < w_; i++)
+ data[j][i] = *iter++;
+ }
+
+public:
+ // start sfinae-R-us block
- template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 1>::value, num>::type
- x() const { OPENTRACK_ASSERT_SWIZZLE; return operator()(0); }
+ // rebinding w_ and h_ since SFINAE requires dependent variables
- template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 2>::value, num>::type
- y() const { OPENTRACK_ASSERT_SWIZZLE; return operator()(1); }
+ template<int P = h_, int Q = w_> sfinae<equals<Q, P, 1, 0>, num>
+ OTR_FLATTEN operator()(int i) const { OTR_ASSERT_SWIZZLE; return data[i][0]; }
+ template<int P = h_, int Q = w_> sfinae<equals<Q, 0, 1, 0>, num&>
+ OTR_FLATTEN operator()(int i) { OTR_ASSERT_SWIZZLE; return data[i][0]; }
- template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 3>::value, num>::type
- z() const { OPENTRACK_ASSERT_SWIZZLE; return operator()(2); }
+ template<int P = h_, int Q = w_> sfinae<equals<P, Q, 1, 1>, num>
+ OTR_FLATTEN operator()(int i) const { OTR_ASSERT_SWIZZLE; return data[0][i]; }
+ template<int P = h_, int Q = w_> sfinae<equals<P, Q, 1, 1>, num&>
+ OTR_FLATTEN operator()(int i) { OTR_ASSERT_SWIZZLE; return data[0][i]; }
- template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 4>::value, num>::type
- w() const { OPENTRACK_ASSERT_SWIZZLE; return operator()(3); }
+ template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 1>, num>
+ OTR_FLATTEN x() const { OTR_ASSERT_SWIZZLE; return operator()(0); }
+ template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 1>, num&>
+ OTR_FLATTEN x() { OTR_ASSERT_SWIZZLE; return operator()(0); }
- template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 1>::value, num&>::type
- x() { OPENTRACK_ASSERT_SWIZZLE; return operator()(0); }
+ template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 2>, num>
+ OTR_FLATTEN y() const { OTR_ASSERT_SWIZZLE; return operator()(1); }
+ template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 2>, num&>
+ OTR_FLATTEN y() { OTR_ASSERT_SWIZZLE; return operator()(1); }
- template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 2>::value, num&>::type
- y() { OPENTRACK_ASSERT_SWIZZLE; return operator()(1); }
+ template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 3>, num>
+ OTR_FLATTEN z() const { OTR_ASSERT_SWIZZLE; return operator()(2); }
+ template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 3>, num&>
+ OTR_FLATTEN z() { OTR_ASSERT_SWIZZLE; return operator()(2); }
- template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 3>::value, num&>::type
- z() { OPENTRACK_ASSERT_SWIZZLE; return operator()(2); }
+ template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 4>, num>
+ OTR_FLATTEN w() const { OTR_ASSERT_SWIZZLE; return operator()(3); }
+ template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 4>, num&>
+ OTR_FLATTEN w() { OTR_ASSERT_SWIZZLE; return operator()(3); }
+
+ // end sfinae-R-us block
- template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 4>::value, num&>::type
- w() { OPENTRACK_ASSERT_SWIZZLE; return operator()(3); }
// parameters w_ and h_ are rebound so that SFINAE occurs
// removing them causes a compile-time error -sh 20150811
template<int R, int S, int P = h_, int Q = w_>
- typename std::enable_if<is_vector_pair<R, S, P, Q>::value, num>::type
+ sfinae<is_vector_pair<R, S, P, Q>, num>
dot(const Mat<num, R, S>& p2) const
{
- static_assert(P == h_ && Q == w_, "");
+ OTR_ASSERT_SWIZZLE;
num ret = 0;
- constexpr int len = vector_len<R, S>::value;
- for (int i = 0; i < len; i++)
+ static constexpr unsigned len = vector_len<R, S>;
+ for (unsigned i = 0; i < len; i++)
ret += operator()(i) * p2(i);
return ret;
}
- template<int R, int S, int P = h_, int Q = w_>
- typename std::enable_if<is_dim3<P, Q, R, S>::value, Mat<num, is_dim3<P, Q, R, S>::P, is_dim3<P, Q, R, S>::Q>>::type
+ template<int R, int S, int P = h_, int Q = w_> sfinae<dim3<P, Q, R, S>, Mat<num, 3, 1>>
cross(const Mat<num, R, S>& p2) const
{
- static_assert(P == h_ && Q == w_, "");
- decltype(*this)& p1 = *this;
+ OTR_ASSERT_SWIZZLE;
+ decltype(*this)& OTR_RESTRICT p1 = *this;
return Mat<num, R, S>(p1.y() * p2.z() - p2.y() * p1.z(),
p2.x() * p1.z() - p1.x() * p2.z(),
@@ -153,24 +143,6 @@ public:
return ret;
}
- Mat<num, h_, w_> operator+(const num& other) const
- {
- Mat<num, h_, w_> ret;
- for (int j = 0; j < h_; j++)
- for (int i = 0; i < w_; i++)
- ret(j, i) = data[j][i] + other;
- return ret;
- }
-
- Mat<num, h_, w_> operator-(const num& other) const
- {
- Mat<num, h_, w_> ret;
- for (int j = 0; j < h_; j++)
- for (int i = 0; i < w_; i++)
- ret(j, i) = data[j][i] - other;
- return ret;
- }
-
template<int p>
Mat<num, h_, p> operator*(const Mat<num, w_, p>& other) const
{
@@ -191,11 +163,12 @@ public:
inline num operator()(unsigned j, unsigned i) const { return data[j][i]; }
inline num& operator()(unsigned j, unsigned i) { return data[j][i]; }
- template<typename... ts, int h__ = h_, int w__ = w_,
- typename = typename std::enable_if<is_arglist_correct<num, h__, w__, ts...>::value>::type>
+ template<typename... ts, int P = h_, int Q = w_,
+ typename = sfinae<arglist_correct<P, Q, ts...>, void>>
Mat(const ts... xs)
{
- static_assert(h__ == h_ && w__ == w_, "");
+ OTR_ASSERT_SWIZZLE;
+ static_assert(arglist_correct<P, Q, ts...>, "");
std::initializer_list<num> init = { static_cast<num>(xs)... };
@@ -209,38 +182,31 @@ public:
data[j][i] = num(0);
}
- Mat(const num* mem)
+ Mat(const num* OTR_RESTRICT mem)
{
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
data[j][i] = mem[i*h_+j];
}
- Mat(std::initializer_list<num>&& init)
- {
- auto iter = init.begin();
- for (int j = 0; j < h_; j++)
- for (int i = 0; i < w_; i++)
- data[j][i] = *iter++;
- }
-
- operator num*() { return reinterpret_cast<num*>(data); }
- operator const num*() const { return reinterpret_cast<const num*>(data); }
+ OTR_ALWAYS_INLINE operator num*() { return reinterpret_cast<num*>(data); }
+ OTR_ALWAYS_INLINE operator const num*() const { return reinterpret_cast<const num*>(data); }
// XXX add more operators as needed, third-party dependencies mostly
// not needed merely for matrix algebra -sh 20141030
- template<int h__ = h_>
- static typename std::enable_if<h_ == w_, Mat<num, h__, h__>>::type eye()
+ template<int P = h_>
+ static typename std::enable_if<P == w_, Mat<num, P, P>>::type eye()
{
- static_assert(h_ == h__, "");
+ static_assert(P == h_, "");
- Mat<num, h_, h_> ret;
- for (int j = 0; j < h_; j++)
+ Mat<num, P, P> ret;
+
+ for (int j = 0; j < P; j++)
for (int i = 0; i < w_; i++)
ret.data[j][i] = 0;
- for (int i = 0; i < h_; i++)
+ for (int i = 0; i < P; i++)
ret.data[i][i] = 1;
return ret;
@@ -258,22 +224,6 @@ public:
}
};
-template<typename num, int h, int w>
-Mat<num, h, w> operator*(num scalar, const Mat<num, h, w>& mat)
-{
- return mat * scalar;
-}
-
-template<typename num, int h_, int w_>
-Mat<num, h_, w_> operator*(const Mat<num, h_, w_>& self, num other)
-{
- Mat<num, h_, w_> ret;
- for (int j = 0; j < h_; j++)
- for (int i = 0; i < w_; i++)
- ret(j, i) = self(j, i) * other;
- return ret;
-}
-
template<typename num>
class Quat : Mat<num, 4, 1>
{
@@ -287,7 +237,7 @@ class Quat : Mat<num, 4, 1>
}
inline num elt(idx k) const { return operator()(k); }
- inline num& elt(idx k) { return operator()(k); }
+ inline num& elt(idx k) { return Mat<num, 4, 1>::operator()(int(k)); }
public:
Quat(num w, num x, num y, num z) : Mat<num, 4, 1>(w, x, y, z)
{
@@ -320,12 +270,11 @@ public:
{
const quat& OTR_RESTRICT q1 = *this;
return quat(-q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z() + q1.w() * q2.w(),
- q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y() + q1.w() * q2.x(),
+ q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y() + q1.w() * q2.x(),
-q1.x() * q2.z() + q1.y() * q2.w() + q1.z() * q2.x() + q1.w() * q2.y(),
- q1.x() * q2.y() - q1.y() * q2.x() + q1.z() * q2.w() + q1.w() * q2.z());
+ q1.x() * q2.y() - q1.y() * q2.x() + q1.z() * q2.w() + q1.w() * q2.z());
}
-
inline num w() const { return elt(qw); }
inline num x() const { return elt(qx); }
inline num y() const { return elt(qy); }
@@ -336,3 +285,58 @@ public:
inline num& y() { return elt(qy); }
inline num& z() { return elt(qz); }
};
+
+} // ns detail
+
+template<typename num, int h, int w>
+using Mat = mat_detail::Mat<num, h, w>;
+
+template<typename num, int h, int w>
+inline Mat<num, h, w> operator*(num scalar, const Mat<num, h, w>& mat) { return mat * scalar; }
+
+template<typename num, int h, int w>
+inline Mat<num, h, w> operator-(num scalar, const Mat<num, h, w>& mat) { return mat - scalar; }
+
+template<typename num, int h, int w>
+inline Mat<num, h, w> operator+(num scalar, const Mat<num, h, w>& mat) { return mat + scalar; }
+
+template<typename num, int h_, int w_>
+inline Mat<num, h_, w_> operator*(const Mat<num, h_, w_>& OTR_RESTRICT self, num other)
+{
+ Mat<num, h_, w_> ret;
+ for (int j = 0; j < h_; j++)
+ for (int i = 0; i < w_; i++)
+ ret(j, i) = self(j, i) * other;
+ return ret;
+}
+
+template<typename num, int h_, int w_>
+inline Mat<num, h_, w_> operator-(const Mat<num, h_, w_>& OTR_RESTRICT self, num other)
+{
+ Mat<num, h_, w_> ret;
+ for (int j = 0; j < h_; j++)
+ for (int i = 0; i < w_; i++)
+ ret(j, i) = self(j, i) - other;
+ return ret;
+}
+
+template<typename num, int h_, int w_>
+inline Mat<num, h_, w_> operator+(const Mat<num, h_, w_>& OTR_RESTRICT self, num other)
+{
+ Mat<num, h_, w_> ret;
+ for (int j = 0; j < h_; j++)
+ for (int i = 0; i < w_; i++)
+ ret(j, i) = self(j, i) + other;
+ return ret;
+}
+
+template<typename num>
+using Quat_ = mat_detail::Quat<num>;
+
+using Quat = Quat_<double>;
+
+template class mat_detail::Mat<float, 3, 3>;
+template class mat_detail::Mat<float, 6, 1>;
+template class mat_detail::Mat<float, 3, 1>;
+
+// eof