summaryrefslogtreecommitdiffhomepage
path: root/filter-kalman/kalman.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'filter-kalman/kalman.cpp')
-rw-r--r--filter-kalman/kalman.cpp297
1 files changed, 0 insertions, 297 deletions
diff --git a/filter-kalman/kalman.cpp b/filter-kalman/kalman.cpp
deleted file mode 100644
index 3a0da608..00000000
--- a/filter-kalman/kalman.cpp
+++ /dev/null
@@ -1,297 +0,0 @@
-/* Copyright (c) 2016 Michael Welter <mw.pub@welter-4d.de>
- *
- * Permission to use, copy, modify, and/or distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- */
-#include "kalman.h"
-#include <QDebug>
-#include <cmath>
-
-void KalmanFilter::init()
-{
- // allocate and initialize matrices
- measurement_noise_cov = MeasureMatrix::Zero();
- process_noise_cov = StateMatrix::Zero();
- state_cov = StateMatrix::Zero();
- state_cov_prior = StateMatrix::Zero();
- transition_matrix = StateMatrix::Zero();
- measurement_matrix = StateToMeasureMatrix::Zero();
- kalman_gain = MeasureToStateMatrix::Zero();
- // initialize state variables
- state = StateVector::Zero();
- state_prior = StateVector::Zero();
- innovation = PoseVector::Zero();
-}
-
-
-void KalmanFilter::time_update()
-{
- state_prior = transition_matrix * state;
- state_cov_prior = transition_matrix * state_cov * transition_matrix.transpose() + process_noise_cov;
-}
-
-
-void KalmanFilter::measurement_update(const PoseVector &measurement)
-{
- MeasureMatrix tmp = measurement_matrix * state_cov_prior * measurement_matrix.transpose() + measurement_noise_cov;
- MeasureMatrix tmp_inv = tmp.inverse();
- kalman_gain = state_cov_prior * measurement_matrix.transpose() * tmp_inv;
- innovation = measurement - measurement_matrix * state_prior;
- state = state_prior + kalman_gain * innovation;
- state_cov = state_cov_prior - kalman_gain * measurement_matrix * state_cov_prior;
-}
-
-
-
-void KalmanProcessNoiseScaler::init()
-{
- base_cov = StateMatrix::Zero(NUM_STATE_DOF, NUM_STATE_DOF);
- innovation_cov_estimate = MeasureMatrix::Zero(NUM_MEASUREMENT_DOF, NUM_MEASUREMENT_DOF);
-}
-
-
-/* Uses
- innovation, measurement_matrix, measurement_noise_cov, and state_cov_prior
- found in KalmanFilter. It sets
- process_noise_cov
-*/
-void KalmanProcessNoiseScaler::update(KalmanFilter &kf, double dt)
-{
- MeasureMatrix ddT = kf.innovation * kf.innovation.transpose();
- double f = dt / (dt + settings::adaptivity_window_length);
- innovation_cov_estimate =
- f * ddT + (1. - f) * innovation_cov_estimate;
-
- double T1 = (innovation_cov_estimate - kf.measurement_noise_cov).trace();
- double T2 = (kf.measurement_matrix * kf.state_cov_prior * kf.measurement_matrix.transpose()).trace();
- double alpha = 0.001;
- if (T2 > 0. && T1 > 0.)
- {
- alpha = T1 / T2;
- alpha = std::sqrt(alpha);
- alpha = std::fmin(1000., std::fmax(0.001, alpha));
- }
- kf.process_noise_cov = alpha * base_cov;
- //qDebug() << "alpha = " << alpha;
-}
-
-
-PoseVector DeadzoneFilter::filter(const PoseVector &input)
-{
- PoseVector out;
- for (int i = 0; i < input.rows(); ++i)
- {
- const double dz = dz_size[i];
- if (dz > 0.)
- {
- const double delta = input[i] - last_output[i];
- const double f = std::pow(std::fabs(delta) / dz, settings::deadzone_exponent);
- const double response = f / (f + 1.) * delta;
- out[i] = last_output[i] + response;
- }
- else
- out[i] = input[i];
- last_output[i] = out[i];
- }
- return out;
-}
-
-
-void kalman::fill_transition_matrix(double dt)
-{
- for (int i = 0; i < 6; ++i)
- {
- kf.transition_matrix(i, i + 6) = dt;
- }
-}
-
-void kalman::fill_process_noise_cov_matrix(StateMatrix &target, double dt) const
-{
- // This model is like movement at fixed velocity plus superimposed
- // brownian motion. Unlike standard models for tracking of objects
- // with a very well predictable trajectory (e.g.
- // https://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical)
- double sigma_pos = s.process_sigma_pos;
- double sigma_angle = s.process_sigma_rot;
- double a_pos = sigma_pos * sigma_pos * dt;
- double a_ang = sigma_angle * sigma_angle * dt;
- constexpr double b = 20;
- constexpr double c = 1.;
- for (int i = 0; i < 3; ++i)
- {
- target(i, i) = a_pos;
- target(i, i + 6) = a_pos * c;
- target(i + 6, i) = a_pos * c;
- target(i + 6, i + 6) = a_pos * b;
- }
- for (int i = 3; i < 6; ++i)
- {
- target(i, i) = a_ang;
- target(i, i + 6) = a_ang * c;
- target(i + 6, i) = a_ang * c;
- target(i + 6, i + 6) = a_ang * b;
- }
-}
-
-
-PoseVector kalman::do_kalman_filter(const PoseVector &input, double dt, bool new_input)
-{
- if (new_input)
- {
- dt = dt_since_last_input;
- fill_transition_matrix(dt);
- fill_process_noise_cov_matrix(kf_adaptive_process_noise_cov.base_cov, dt);
- kf_adaptive_process_noise_cov.update(kf, dt);
- kf.time_update();
- kf.measurement_update(input);
- }
- return kf.state.head(6);
-}
-
-
-
-kalman::kalman() {
- reset();
-}
-
-// The original code was written by Donovan Baarda <abo@minkirri.apana.org.au>
-// https://sourceforge.net/p/facetracknoir/discussion/1150909/thread/418615e1/?limit=25#af75/084b
-void kalman::reset()
-{
- kf.init();
- kf_adaptive_process_noise_cov.init();
- for (int i = 0; i < 6; ++i)
- {
- // initialize part of the transition matrix that do not change.
- kf.transition_matrix(i, i) = 1.;
- kf.transition_matrix(i + 6, i + 6) = 1.;
- // "extract" positions, i.e. the first 6 state dof.
- kf.measurement_matrix(i, i) = 1.;
- }
-
- double noise_variance_position = settings::map_slider_value(s.noise_pos_slider_value);
- double noise_variance_angle = settings::map_slider_value(s.noise_rot_slider_value);
- for (int i = 0; i < 3; ++i)
- {
- kf.measurement_noise_cov(i , i ) = noise_variance_position;
- kf.measurement_noise_cov(i + 3, i + 3) = noise_variance_angle;
- }
-
- fill_transition_matrix(0.03);
- fill_process_noise_cov_matrix(kf_adaptive_process_noise_cov.base_cov, 0.03);
-
- kf.process_noise_cov = kf_adaptive_process_noise_cov.base_cov;
- kf.state_cov = kf.process_noise_cov;
-
- for (int i = 0; i < 6; i++) {
- last_input[i] = 0;
- }
- first_run = true;
- dt_since_last_input = 0;
-
- prev_slider_pos[0] = static_cast<slider_value>(s.noise_pos_slider_value);
- prev_slider_pos[1] = static_cast<slider_value>(s.noise_rot_slider_value);
-
- dz_filter.reset();
-}
-
-
-void kalman::filter(const double* input_, double *output_)
-{
- // almost non-existent cost, so might as well ...
- Eigen::Map<const PoseVector> input(input_, PoseVector::RowsAtCompileTime, 1);
- Eigen::Map<PoseVector> output(output_, PoseVector::RowsAtCompileTime, 1);
-
- if (!(prev_slider_pos[0] == s.noise_pos_slider_value &&
- prev_slider_pos[1] == s.noise_rot_slider_value))
- {
- reset();
- }
-
- // Start the timer on first filter evaluation.
- if (first_run)
- {
- timer.start();
- first_run = false;
- return;
- }
-
- // Note this is a terrible way to detect when there is a new
- // frame of tracker input, but it is the best we have.
- bool new_input = input.cwiseNotEqual(last_input).any();
-
- // Get the time in seconds since last run and restart the timer.
- const double dt = timer.elapsed_seconds();
- dt_since_last_input += dt;
- timer.start();
-
- output = do_kalman_filter(input, dt, new_input);
-
- {
- // Compute deadzone size base on estimated state variance.
- // Given a constant input plus measurement noise, KF should converge to the true input.
- // This works well. That is the output pose becomes very still afte some time.
- // The QScaling adaptive filter makes the state cov vary depending on the estimated noise
- // and the measured noise of the innovation sequence. After a sudden movement it peaks
- // and then decays asymptotically to some constant value taken in stationary state.
- // We can use this to calculate the size of the deadzone, so that in the stationary state the
- // deadzone size is small. Thus the tracking error due to the dz-filter becomes also small.
- PoseVector variance = kf.state_cov.diagonal().head(6);
- dz_filter.dz_size = variance.cwiseSqrt() * s.deadzone_scale;
- }
- output = dz_filter.filter(output);
-
- if (new_input)
- {
- dt_since_last_input = 0;
- last_input = input;
- }
-}
-
-
-
-dialog_kalman::dialog_kalman()
- : filter(nullptr)
-{
- ui.setupUi(this);
- connect(ui.buttonBox, SIGNAL(accepted()), this, SLOT(doOK()));
- connect(ui.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel()));
-
- tie_setting(s.noise_rot_slider_value, ui.noiseRotSlider);
- tie_setting(s.noise_pos_slider_value, ui.noisePosSlider);
-
- connect(&s.noise_rot_slider_value, SIGNAL(valueChanged(const slider_value&)), this, SLOT(updateLabels(const slider_value&)));
- connect(&s.noise_pos_slider_value, SIGNAL(valueChanged(const slider_value&)), this, SLOT(updateLabels(const slider_value&)));
-
- updateLabels(slider_value());
-}
-
-
-void dialog_kalman::updateLabels(const slider_value&)
-{
- // M$ hates unicode! (M$ autoconverts source code of one kind of utf-8 format,
- // the one without BOM, to another kind that QT does not like)
- // Previous attempt to use c++11 utf8 strings like u8" °" now failed for unknown
- // reasons where it worked before. Hence fallback to QChar(0x00b0).
- this->ui.noiseRotLabel->setText(
- QString::number(settings::map_slider_value(s.noise_rot_slider_value), 'f', 3) + " " + QChar(0x00b0));
-
- this->ui.noisePosLabel->setText(
- QString::number(settings::map_slider_value(s.noise_pos_slider_value), 'f', 3) + " cm");
-}
-
-
-void dialog_kalman::doOK() {
- s.b->save();
- close();
-}
-
-
-void dialog_kalman::doCancel()
-{
- close();
-}
-
-
-OPENTRACK_DECLARE_FILTER(kalman, dialog_kalman, kalmanDll)