diff options
Diffstat (limited to 'filter-kalman/kalman.cpp')
-rw-r--r-- | filter-kalman/kalman.cpp | 323 |
1 files changed, 0 insertions, 323 deletions
diff --git a/filter-kalman/kalman.cpp b/filter-kalman/kalman.cpp deleted file mode 100644 index 1960e0f6..00000000 --- a/filter-kalman/kalman.cpp +++ /dev/null @@ -1,323 +0,0 @@ -/* Copyright (c) 2016 Michael Welter <mw.pub@welter-4d.de> - * - * Permission to use, copy, modify, and/or distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - */ -#include "kalman.h" -#include <cmath> -#include <QDebug> - -void KalmanFilter::init() -{ - // allocate and initialize matrices - measurement_noise_cov = MeasureMatrix::Zero(); - process_noise_cov = StateMatrix::Zero(); - state_cov = StateMatrix::Zero(); - state_cov_prior = StateMatrix::Zero(); - transition_matrix = StateMatrix::Zero(); - measurement_matrix = StateToMeasureMatrix::Zero(); - kalman_gain = MeasureToStateMatrix::Zero(); - // initialize state variables - state = StateVector::Zero(); - state_prior = StateVector::Zero(); - innovation = PoseVector::Zero(); -} - - -void KalmanFilter::time_update() -{ - state_prior = transition_matrix * state; - state_cov_prior = transition_matrix * state_cov * transition_matrix.transpose() + process_noise_cov; -} - - -void KalmanFilter::measurement_update(const PoseVector &measurement) -{ - MeasureMatrix tmp = measurement_matrix * state_cov_prior * measurement_matrix.transpose() + measurement_noise_cov; - MeasureMatrix tmp_inv = tmp.inverse(); - kalman_gain = state_cov_prior * measurement_matrix.transpose() * tmp_inv; - innovation = measurement - measurement_matrix * state_prior; - state = state_prior + kalman_gain * innovation; - state_cov = state_cov_prior - kalman_gain * measurement_matrix * state_cov_prior; -} - - - -void KalmanProcessNoiseScaler::init() -{ - base_cov = StateMatrix::Zero(NUM_STATE_DOF, NUM_STATE_DOF); - innovation_cov_estimate = MeasureMatrix::Zero(NUM_MEASUREMENT_DOF, NUM_MEASUREMENT_DOF); -} - - -/* Uses - innovation, measurement_matrix, measurement_noise_cov, and state_cov_prior - found in KalmanFilter. It sets - process_noise_cov -*/ -void KalmanProcessNoiseScaler::update(KalmanFilter &kf, double dt) -{ - MeasureMatrix ddT = kf.innovation * kf.innovation.transpose(); - double f = dt / (dt + settings::adaptivity_window_length); - innovation_cov_estimate = - f * ddT + (1. - f) * innovation_cov_estimate; - - double T1 = (innovation_cov_estimate - kf.measurement_noise_cov).trace(); - double T2 = (kf.measurement_matrix * kf.state_cov_prior * kf.measurement_matrix.transpose()).trace(); - double alpha = 0.001; - if (T2 > 0. && T1 > 0.) - { - alpha = T1 / T2; - alpha = std::sqrt(alpha); - alpha = std::fmin(1000., std::fmax(0.001, alpha)); - } - kf.process_noise_cov = alpha * base_cov; - //qDebug() << "alpha = " << alpha; -} - -void DeadzoneFilter::reset() -{ - last_output = PoseVector::Zero(); -} - -PoseVector DeadzoneFilter::filter(const PoseVector &input) -{ - PoseVector out; - for (int i = 0; i < input.rows(); ++i) - { - const double dz = dz_size[i]; - if (dz > 0.) - { - const double delta = input[i] - last_output[i]; - const double f = std::pow(std::fabs(delta) / dz, settings::deadzone_exponent); - const double response = f / (f + 1.) * delta; - out[i] = last_output[i] + response; - } - else - out[i] = input[i]; - last_output[i] = out[i]; - } - return out; -} - - -void kalman::fill_transition_matrix(double dt) -{ - for (int i = 0; i < 6; ++i) - { - kf.transition_matrix(i, i + 6) = dt; - } -} - -void kalman::fill_process_noise_cov_matrix(StateMatrix &target, double dt) const -{ - // This model is like movement at fixed velocity plus superimposed - // brownian motion. Unlike standard models for tracking of objects - // with a very well predictable trajectory (e.g. - // https://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical) - double sigma_pos = settings::process_sigma_pos; - double sigma_angle = settings::process_sigma_rot; - double a_pos = sigma_pos * sigma_pos * dt; - double a_ang = sigma_angle * sigma_angle * dt; - constexpr double b = 20; - constexpr double c = 1.; - for (int i = 0; i < 3; ++i) - { - target(i, i) = a_pos; - target(i, i + 6) = a_pos * c; - target(i + 6, i) = a_pos * c; - target(i + 6, i + 6) = a_pos * b; - } - for (int i = 3; i < 6; ++i) - { - target(i, i) = a_ang; - target(i, i + 6) = a_ang * c; - target(i + 6, i) = a_ang * c; - target(i + 6, i + 6) = a_ang * b; - } -} - - -PoseVector kalman::do_kalman_filter(const PoseVector &input, double dt, bool new_input) -{ - if (new_input) - { - dt = dt_since_last_input; - fill_transition_matrix(dt); - fill_process_noise_cov_matrix(kf_adaptive_process_noise_cov.base_cov, dt); - kf_adaptive_process_noise_cov.update(kf, dt); - kf.time_update(); - kf.measurement_update(input); - } - return kf.state.head(6); -} - - - -kalman::kalman() -{ - reset(); -} - -// The original code was written by Donovan Baarda <abo@minkirri.apana.org.au> -// https://sourceforge.net/p/facetracknoir/discussion/1150909/thread/418615e1/?limit=25#af75/084b -void kalman::reset() -{ - kf.init(); - kf_adaptive_process_noise_cov.init(); - for (int i = 0; i < 6; ++i) - { - // initialize part of the transition matrix that do not change. - kf.transition_matrix(i, i) = 1.; - kf.transition_matrix(i + 6, i + 6) = 1.; - // "extract" positions, i.e. the first 6 state dof. - kf.measurement_matrix(i, i) = 1.; - } - - double noise_variance_position = settings::map_slider_value(s.noise_pos_slider_value); - double noise_variance_angle = settings::map_slider_value(s.noise_rot_slider_value); - for (int i = 0; i < 3; ++i) - { - kf.measurement_noise_cov(i , i ) = noise_variance_position; - kf.measurement_noise_cov(i + 3, i + 3) = noise_variance_angle; - } - - fill_transition_matrix(0.03); - fill_process_noise_cov_matrix(kf_adaptive_process_noise_cov.base_cov, 0.03); - - kf.process_noise_cov = kf_adaptive_process_noise_cov.base_cov; - kf.state_cov = kf.process_noise_cov; - - for (int i = 0; i < 6; i++) { - last_input[i] = 0; - } - dt_since_last_input = 0; - - prev_slider_pos[0] = s.noise_pos_slider_value; - prev_slider_pos[1] = s.noise_rot_slider_value; - - dz_filter.reset(); -} - - -void kalman::filter(const double* input_, double *output_) -{ - // almost non-existent cost, so might as well ... - Eigen::Map<const PoseVector> input(input_, PoseVector::RowsAtCompileTime, 1); - Eigen::Map<PoseVector> output(output_, PoseVector::RowsAtCompileTime, 1); - - if (!(prev_slider_pos[0] == s.noise_pos_slider_value && - prev_slider_pos[1] == s.noise_rot_slider_value)) - { - reset(); - } - - // Start the timer on first filter evaluation. - if (first_run) - { - timer.start(); - first_run = false; - return; - } - - // Note this is a terrible way to detect when there is a new - // frame of tracker input, but it is the best we have. - bool new_input = input.cwiseNotEqual(last_input).any(); - - // Get the time in seconds since last run and restart the timer. - const double dt = timer.elapsed_seconds(); - dt_since_last_input += dt; - timer.start(); - - output = do_kalman_filter(input, dt, new_input); - - { - // Compute deadzone size base on estimated state variance. - // Given a constant input plus measurement noise, KF should converge to the true input. - // This works well. That is the output pose becomes very still afte some time. - // The QScaling adaptive filter makes the state cov vary depending on the estimated noise - // and the measured noise of the innovation sequence. After a sudden movement it peaks - // and then decays asymptotically to some constant value taken in stationary state. - // We can use this to calculate the size of the deadzone, so that in the stationary state the - // deadzone size is small. Thus the tracking error due to the dz-filter becomes also small. - PoseVector variance = kf.state_cov.diagonal().head(6); - dz_filter.dz_size = variance.cwiseSqrt() * settings::deadzone_scale; - } - output = dz_filter.filter(output); - - if (new_input) - { - dt_since_last_input = 0; - last_input = input; - } -} - - - -dialog_kalman::dialog_kalman() - : filter(nullptr) -{ - ui.setupUi(this); - connect(ui.buttonBox, SIGNAL(accepted()), this, SLOT(doOK())); - connect(ui.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel())); - - tie_setting(s.noise_rot_slider_value, ui.noiseRotSlider); - tie_setting(s.noise_pos_slider_value, ui.noisePosSlider); - - connect(&s.noise_rot_slider_value, SIGNAL(valueChanged(const slider_value&)), this, SLOT(updateLabels(const slider_value&))); - connect(&s.noise_pos_slider_value, SIGNAL(valueChanged(const slider_value&)), this, SLOT(updateLabels(const slider_value&))); - - updateLabels(slider_value()); -} - - -void dialog_kalman::updateLabels(const slider_value&) -{ - this->ui.noiseRotLabel->setText( - QString::number(settings::map_slider_value(s.noise_rot_slider_value), 'f', 3) + "°"); - - this->ui.noisePosLabel->setText( - QString::number(settings::map_slider_value(s.noise_pos_slider_value), 'f', 3) + " cm"); -} - - -void dialog_kalman::doOK() { - s.b->save(); - close(); -} - - -void dialog_kalman::doCancel() -{ - close(); -} - -double settings::map_slider_value(const slider_value& v_) -{ - const double v = v_; -#if 0 - //return std::pow(10., v * 4. - 3.); -#else - constexpr int min_log10 = -3; - constexpr int max_log10 = 1; - constexpr int num_divisions = max_log10 - min_log10; - /* ascii art representation of slider - // ----- // ------// ------// ------- // 4 divisions - -3 - 2 -1 0 1 power of 10 - | | - | f + left_side_log10 - | - left_side_log10 - */ - const int k = int(v * num_divisions); // in which division are we?! - const double f = v * num_divisions - k; // where in the division are we?! - const double ff = f * 9. + 1.; - const double multiplier = int(ff * 10.) / 10.; - const int left_side_log10 = min_log10 + k; - const double val = std::pow(10., left_side_log10) * multiplier; - return val; -#endif -} - -OPENTRACK_DECLARE_FILTER(kalman, dialog_kalman, kalmanDll) |