summaryrefslogtreecommitdiffhomepage
path: root/filter-kalman/kalman.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'filter-kalman/kalman.cpp')
-rw-r--r--filter-kalman/kalman.cpp338
1 files changed, 252 insertions, 86 deletions
diff --git a/filter-kalman/kalman.cpp b/filter-kalman/kalman.cpp
index 1f23ed90..6ed5ca91 100644
--- a/filter-kalman/kalman.cpp
+++ b/filter-kalman/kalman.cpp
@@ -1,81 +1,220 @@
-/* Copyright (c) 2013 Stanislaw Halik <sthalik@misaki.pl>
+/* Copyright (c) 2016 Michael Welter <mw.pub@welter-4d.de>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*/
-#include "ftnoir_filter_kalman.h"
-#include "opentrack/plugin-api.hpp"
+#include "kalman.h"
#include <QDebug>
#include <cmath>
-constexpr double settings::mult_noise_stddev;
+constexpr double settings::adaptivity_window_length;
+constexpr double settings::deadzone_scale;
+constexpr double settings::deadzone_exponent;
+constexpr double settings::process_sigma_pos;
+constexpr double settings::process_simga_rot;
+
+void KalmanFilter::init()
+{
+ // allocate and initialize matrices
+ measurement_noise_cov = MeasureMatrix::Zero();
+ process_noise_cov = StateMatrix::Zero();
+ state_cov = StateMatrix::Zero();
+ state_cov_prior = StateMatrix::Zero();
+ transition_matrix = StateMatrix::Zero();
+ measurement_matrix = StateToMeasureMatrix::Zero();
+ kalman_gain = MeasureToStateMatrix::Zero();
+ // initialize state variables
+ state = StateVector::Zero();
+ state_prior = StateVector::Zero();
+ innovation = PoseVector::Zero();
+}
+
+
+void KalmanFilter::time_update()
+{
+ state_prior = transition_matrix * state;
+ state_cov_prior = transition_matrix * state_cov * transition_matrix.transpose() + process_noise_cov;
+}
+
+
+void KalmanFilter::measurement_update(const PoseVector &measurement)
+{
+ MeasureMatrix tmp = measurement_matrix * state_cov_prior * measurement_matrix.transpose() + measurement_noise_cov;
+ MeasureMatrix tmp_inv = tmp.inverse();
+ kalman_gain = state_cov_prior * measurement_matrix.transpose() * tmp_inv;
+ innovation = measurement - measurement_matrix * state_prior;
+ state = state_prior + kalman_gain * innovation;
+ state_cov = state_cov_prior - kalman_gain * measurement_matrix * state_cov_prior;
+}
+
+
+
+void KalmanProcessNoiseScaler::init()
+{
+ base_cov = StateMatrix::Zero(NUM_STATE_DOF, NUM_STATE_DOF);
+ innovation_cov_estimate = MeasureMatrix::Zero(NUM_MEASUREMENT_DOF, NUM_MEASUREMENT_DOF);
+}
+
+
+/* Uses
+ innovation, measurement_matrix, measurement_noise_cov, and state_cov_prior
+ found in KalmanFilter. It sets
+ process_noise_cov
+*/
+void KalmanProcessNoiseScaler::update(KalmanFilter &kf, double dt)
+{
+ MeasureMatrix ddT = kf.innovation * kf.innovation.transpose();
+ double f = dt / (dt + settings::adaptivity_window_length);
+ innovation_cov_estimate =
+ f * ddT + (1. - f) * innovation_cov_estimate;
+
+ double T1 = (innovation_cov_estimate - kf.measurement_noise_cov).trace();
+ double T2 = (kf.measurement_matrix * kf.state_cov_prior * kf.measurement_matrix.transpose()).trace();
+ double alpha = 0.001;
+ if (T2 > 0. && T1 > 0.)
+ {
+ alpha = T1 / T2;
+ alpha = std::sqrt(alpha);
+ alpha = std::min(1000., std::max(0.001, alpha));
+ }
+ kf.process_noise_cov = alpha * base_cov;
+ //qDebug() << "alpha = " << alpha;
+}
+
+
+PoseVector DeadzoneFilter::filter(const PoseVector &input)
+{
+ PoseVector out;
+ for (int i = 0; i < input.rows(); ++i)
+ {
+ const double dz = dz_size[i];
+ if (dz > 0.)
+ {
+ const double delta = input[i] - last_output[i];
+ const double f = std::pow(std::fabs(delta) / dz, settings::deadzone_exponent);
+ const double response = f / (f + 1.) * delta;
+ out[i] = last_output[i] + response;
+ }
+ else
+ out[i] = input[i];
+ last_output[i] = out[i];
+ }
+ return out;
+}
+
+
+void FTNoIR_Filter::fill_transition_matrix(double dt)
+{
+ for (int i = 0; i < 6; ++i)
+ {
+ kf.transition_matrix(i, i + 6) = dt;
+ }
+}
+
+void FTNoIR_Filter::fill_process_noise_cov_matrix(StateMatrix &target, double dt) const
+{
+ // This model is like movement at fixed velocity plus superimposed
+ // brownian motion. Unlike standard models for tracking of objects
+ // with a very well predictable trajectory (e.g.
+ // https://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical)
+ double sigma_pos = s.process_sigma_pos;
+ double sigma_angle = s.process_simga_rot;
+ double a_pos = sigma_pos * sigma_pos * dt;
+ double a_ang = sigma_angle * sigma_angle * dt;
+ static constexpr double b = 20;
+ static constexpr double c = 1.;
+ for (int i = 0; i < 3; ++i)
+ {
+ target(i, i) = a_pos;
+ target(i, i + 6) = a_pos * c;
+ target(i + 6, i) = a_pos * c;
+ target(i + 6, i + 6) = a_pos * b;
+ }
+ for (int i = 3; i < 6; ++i)
+ {
+ target(i, i) = a_ang;
+ target(i, i + 6) = a_ang * c;
+ target(i + 6, i) = a_ang * c;
+ target(i + 6, i + 6) = a_ang * b;
+ }
+}
+
+
+PoseVector FTNoIR_Filter::do_kalman_filter(const PoseVector &input, double dt, bool new_input)
+{
+ if (new_input)
+ {
+ dt = dt_since_last_input;
+ fill_transition_matrix(dt);
+ fill_process_noise_cov_matrix(kf_adaptive_process_noise_cov.base_cov, dt);
+ kf_adaptive_process_noise_cov.update(kf, dt);
+ kf.time_update();
+ kf.measurement_update(input);
+ }
+ return kf.state.head(6);
+}
+
+
FTNoIR_Filter::FTNoIR_Filter() {
reset();
- prev_slider_pos = s.noise_stddev_slider;
}
-// the following was written by Donovan Baarda <abo@minkirri.apana.org.au>
+// The original code was written by Donovan Baarda <abo@minkirri.apana.org.au>
// https://sourceforge.net/p/facetracknoir/discussion/1150909/thread/418615e1/?limit=25#af75/084b
-void FTNoIR_Filter::reset() {
- // Setup kalman with state (x) is the 6 tracker outputs then
- // their 6 corresponding velocities, and the measurement (z) is
- // the 6 tracker outputs.
- kalman.init(12, 6, 0, CV_64F);
- // Initialize the transitionMatrix and processNoiseCov for
- // dt=0.1. This needs to be updated each frame for the real dt
- // value, but this hows you what they should look like. See
- // http://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical
- double dt = 0.1;
- kalman.transitionMatrix = (cv::Mat_<double>(12, 12) <<
- 1, 0, 0, 0, 0, 0, dt, 0, 0, 0, 0, 0,
- 0, 1, 0, 0, 0, 0, 0, dt, 0, 0, 0, 0,
- 0, 0, 1, 0, 0, 0, 0, 0, dt, 0, 0, 0,
- 0, 0, 0, 1, 0, 0, 0, 0, 0, dt, 0, 0,
- 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, dt, 0,
- 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, dt,
- 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1);
- double accel_variance = accel_stddev * accel_stddev;
- double a = dt * dt * accel_variance; // dt^2 * accel_variance.
- double b = 0.5 * a * dt; // (dt^3)/2 * accel_variance.
- double c = 0.5 * b * dt; // (dt^4)/4 * accel_variance.
- kalman.processNoiseCov = (cv::Mat_<double>(12, 12) <<
- c, 0, 0, 0, 0, 0, b, 0, 0, 0, 0, 0,
- 0, c, 0, 0, 0, 0, 0, b, 0, 0, 0, 0,
- 0, 0, c, 0, 0, 0, 0, 0, b, 0, 0, 0,
- 0, 0, 0, c, 0, 0, 0, 0, 0, b, 0, 0,
- 0, 0, 0, 0, c, 0, 0, 0, 0, 0, b, 0,
- 0, 0, 0, 0, 0, c, 0, 0, 0, 0, 0, b,
- b, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0,
- 0, b, 0, 0, 0, 0, 0, a, 0, 0, 0, 0,
- 0, 0, b, 0, 0, 0, 0, 0, a, 0, 0, 0,
- 0, 0, 0, b, 0, 0, 0, 0, 0, a, 0, 0,
- 0, 0, 0, 0, b, 0, 0, 0, 0, 0, a, 0,
- 0, 0, 0, 0, 0, b, 0, 0, 0, 0, 0, a);
- cv::setIdentity(kalman.measurementMatrix);
- const double noise_stddev = (1+s.noise_stddev_slider) * s.mult_noise_stddev;
- const double noise_variance = noise_stddev * noise_stddev;
- cv::setIdentity(kalman.measurementNoiseCov, cv::Scalar::all(noise_variance));
- cv::setIdentity(kalman.errorCovPost, cv::Scalar::all(accel_variance * 1e4));
+void FTNoIR_Filter::reset()
+{
+ kf.init();
+ kf_adaptive_process_noise_cov.init();
+ for (int i = 0; i < 6; ++i)
+ {
+ // initialize part of the transition matrix that do not change.
+ kf.transition_matrix(i, i) = 1.;
+ kf.transition_matrix(i + 6, i + 6) = 1.;
+ // "extract" positions, i.e. the first 6 state dof.
+ kf.measurement_matrix(i, i) = 1.;
+ }
+
+ double noise_variance_position = settings::map_slider_value(s.noise_pos_slider_value);
+ double noise_variance_angle = settings::map_slider_value(s.noise_rot_slider_value);
+ for (int i = 0; i < 3; ++i)
+ {
+ kf.measurement_noise_cov(i , i ) = noise_variance_position;
+ kf.measurement_noise_cov(i + 3, i + 3) = noise_variance_angle;
+ }
+
+ fill_transition_matrix(0.03);
+ fill_process_noise_cov_matrix(kf_adaptive_process_noise_cov.base_cov, 0.03);
+
+ kf.process_noise_cov = kf_adaptive_process_noise_cov.base_cov;
+ kf.state_cov = kf.process_noise_cov;
+
for (int i = 0; i < 6; i++) {
last_input[i] = 0;
}
first_run = true;
+ dt_since_last_input = 0;
+
+ prev_slider_pos[0] = static_cast<slider_value>(s.noise_pos_slider_value);
+ prev_slider_pos[1] = static_cast<slider_value>(s.noise_rot_slider_value);
+
+ dz_filter.reset();
}
-void FTNoIR_Filter::filter(const double* input, double *output)
+
+void FTNoIR_Filter::filter(const double* input_, double *output_)
{
- if (prev_slider_pos != s.noise_stddev_slider)
+ // almost non-existent cost, so might as well ...
+ Eigen::Map<const PoseVector> input(input_, PoseVector::RowsAtCompileTime, 1);
+ Eigen::Map<PoseVector> output(output_, PoseVector::RowsAtCompileTime, 1);
+
+ if (!(prev_slider_pos[0] == s.noise_pos_slider_value &&
+ prev_slider_pos[1] == s.noise_rot_slider_value))
{
reset();
- prev_slider_pos = s.noise_stddev_slider;
}
+
// Start the timer on first filter evaluation.
if (first_run)
{
@@ -84,54 +223,81 @@ void FTNoIR_Filter::filter(const double* input, double *output)
return;
}
+ // Note this is a terrible way to detect when there is a new
+ // frame of tracker input, but it is the best we have.
+ bool new_input = input.cwiseNotEqual(last_input).any();
+
// Get the time in seconds since last run and restart the timer.
const double dt = timer.elapsed_seconds();
+ dt_since_last_input += dt;
timer.start();
- // Note this is a terrible way to detect when there is a new
- // frame of tracker input, but it is the best we have.
- bool new_input = false;
- for (int i = 0; i < 6 && !new_input; i++)
- new_input = (input[i] != last_input[i]);
-
- // Update the transitionMatrix and processNoiseCov for dt.
- double accel_variance = accel_stddev * accel_stddev;
- double a = dt * dt * accel_variance; // dt^2 * accel_variance.
- double b = 0.5 * a * dt; // (dt^3)/2 * accel_variance.
- double c = 0.5 * b * dt; // (dt^4)/4 * accel_variance.
- for (int i = 0; i < 6; i++) {
- kalman.transitionMatrix.at<double>(i,i+6) = dt;
- kalman.processNoiseCov.at<double>(i,i) = c;
- kalman.processNoiseCov.at<double>(i+6,i+6) = a;
- kalman.processNoiseCov.at<double>(i,i+6) = b;
- kalman.processNoiseCov.at<double>(i+6,i) = b;
- }
- // Get the updated predicted position.
- cv::Mat next_output = kalman.predict();
- // If we have new tracker input, get the corrected position.
- if (new_input) {
- cv::Mat measurement(6, 1, CV_64F);
- for (int i = 0; i < 6; i++) {
- measurement.at<double>(i) = input[i];
- // Save last_input for detecting new tracker input.
- last_input[i] = input[i];
- }
- next_output = kalman.correct(measurement);
+ output = do_kalman_filter(input, dt, new_input);
+
+ {
+ // Compute deadzone size base on estimated state variance.
+ // Given a constant input plus measurement noise, KF should converge to the true input.
+ // This works well. That is the output pose becomes very still afte some time.
+ // The QScaling adaptive filter makes the state cov vary depending on the estimated noise
+ // and the measured noise of the innovation sequence. After a sudden movement it peaks
+ // and then decays asymptotically to some constant value taken in stationary state.
+ // We can use this to calculate the size of the deadzone, so that in the stationary state the
+ // deadzone size is small. Thus the tracking error due to the dz-filter becomes also small.
+ PoseVector variance = kf.state_cov.diagonal().head(6);
+ dz_filter.dz_size = variance.cwiseSqrt() * s.deadzone_scale;
}
- // Set output to the next_output.
- for (int i = 0; i < 6; i++) {
- output[i] = next_output.at<double>(i);
+ output = dz_filter.filter(output);
+
+ if (new_input)
+ {
+ dt_since_last_input = 0;
+ last_input = input;
}
}
+
+
+FilterControls::FilterControls()
+ : filter(nullptr)
+{
+ ui.setupUi(this);
+ connect(ui.buttonBox, SIGNAL(accepted()), this, SLOT(doOK()));
+ connect(ui.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel()));
+
+ tie_setting(s.noise_rot_slider_value, ui.noiseRotSlider);
+ tie_setting(s.noise_pos_slider_value, ui.noisePosSlider);
+
+ connect(&s.noise_rot_slider_value, SIGNAL(valueChanged(const slider_value&)), this, SLOT(updateLabels(const slider_value&)));
+ connect(&s.noise_pos_slider_value, SIGNAL(valueChanged(const slider_value&)), this, SLOT(updateLabels(const slider_value&)));
+
+ updateLabels(slider_value());
+}
+
+
+void FilterControls::updateLabels(const slider_value&)
+{
+ // M$ hates unicode! (M$ autoconverts source code of one kind of utf-8 format,
+ // the one without BOM, to another kind that QT does not like)
+ // Previous attempt to use c++11 utf8 strings like u8" °" now failed for unkown
+ // reasons where it worked before. Hence fallback to QChar(0x00b0).
+ this->ui.noiseRotLabel->setText(
+ QString::number(settings::map_slider_value(s.noise_rot_slider_value), 'f', 3) + " " + QChar(0x00b0));
+
+ this->ui.noisePosLabel->setText(
+ QString::number(settings::map_slider_value(s.noise_pos_slider_value), 'f', 3) + " cm");
+}
+
+
void FilterControls::doOK() {
s.b->save();
close();
}
+
void FilterControls::doCancel()
{
close();
}
+
OPENTRACK_DECLARE_FILTER(FTNoIR_Filter, FilterControls, FTNoIR_FilterDll)