diff options
Diffstat (limited to 'tracker-neuralnet/ftnoir_tracker_neuralnet.cpp')
| -rw-r--r-- | tracker-neuralnet/ftnoir_tracker_neuralnet.cpp | 43 |
1 files changed, 27 insertions, 16 deletions
diff --git a/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp b/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp index a919bb81..c55ddf0c 100644 --- a/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp +++ b/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp @@ -66,13 +66,26 @@ QDir get_default_model_directory() int enum_to_fps(int value) { + int fps = 0; + switch (value) { - case fps_30: return 30; - case fps_60: return 60; - default: [[fallthrough]]; - case fps_default: return 0; + default: eval_once(qDebug() << "neuralnet tracker: invalid fps enum value"); + [[fallthrough]]; + case fps_default: fps = 0; break; + case fps_30: fps = 30; break; + case fps_60: fps = 60; break; + case fps_75: fps = 75; break; + case fps_125: fps = 125; break; + case fps_200: fps = 200; break; + case fps_50: fps = 50; break; + case fps_100: fps = 100; break; + case fps_120: fps = 120; break; + case fps_300: fps = 300; break; + case fps_250: fps = 250; break; } + + return fps; } @@ -414,7 +427,7 @@ QuatPose NeuralNetTracker::transform_to_world_pose(const cv::Quatf &face_rotatio QuatPose NeuralNetTracker::compute_filtered_pose(const PoseEstimator::Face &face) { - if (fps_ > 0.01 && last_pose_ && poseestimator_->has_uncertainty()) + if (fps_ > 0.001 && last_pose_ && poseestimator_->has_uncertainty()) { auto image2world = [this](const cv::Quatf &face_rotation, const cv::Point2f& face_xy, const float face_size) { return this->transform_to_world_pose(face_rotation, face_xy, face_size); }; @@ -667,14 +680,20 @@ void NeuralNetTracker::data(double *data) const auto& my = tmp.R.col(1); const auto& mz = tmp.R.col(2); + // For reference: https://en.wikipedia.org/wiki/Euler_angles. Section "Rotation matrix". The relevant matrix is + // under "Tait-Bryan angles", row with "Y_alpha Z_beta X_gamma = ...". + // Because for the NN tracker x is forward, and y is up. We can see that the x axis is independent of roll. Thus it + // is relatively easy to figure out the yaw and pitch angles (alpha and beta). const float yaw = std::atan2(mx(2), mx(0)); const float pitch = -std::atan2(-mx(1), std::sqrt(mx(2)*mx(2)+mx(0)*mx(0))); - const float roll = std::atan2(-my(2), mz(2)); + // For the roll angle we recognize that the matrix entries in the second row contain cos(pitch)*cos(roll), and + // cos(pitch)*sin(roll). Using atan2 eliminates the common pitch factor and we obtain the roll angle. + const float roll = std::atan2(-mz(1), my(1)); { constexpr double rad2deg = 180/M_PI; data[Yaw] = rad2deg * yaw; data[Pitch] = rad2deg * pitch; - data[Roll] = rad2deg * roll; + data[Roll] = -rad2deg * roll; // convert to cm data[TX] = -tmp.t[2] * 0.1; @@ -707,14 +726,6 @@ QString NeuralNetTracker::get_posenet_filename() const } - - - - - - - - void NeuralNetDialog::make_fps_combobox() { for (int k = 0; k < fps_MAX; k++) @@ -855,7 +866,7 @@ void NeuralNetDialog::status_poll() else { auto [ res, fps, inference_time ] = tracker_->stats(); - status = tr("%1x%2 @ %3 FPS / Inference: %4 ms").arg(res.width).arg(res.height).arg(int(fps)).arg(int(inference_time)); + status = tr("%1x%2 @ %3 FPS / Inference: %4 ms").arg(res.width).arg(res.height).arg(int(fps)).arg(inference_time, 0, 'f', 1); } ui_.resolution_display->setText(status); } |
