summaryrefslogtreecommitdiffhomepage
path: root/filter-kalman/kalman.h
blob: 431041dcffaf9c2fdea6a488b92bb5eb604f3e39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#pragma once
/* Copyright (c) 2016 Michael Welter <mw.pub@welter-4d.de>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 */

#include "ui_ftnoir_kalman_filtercontrols.h"
#include "api/plugin-api.hpp"
#include "options/options.hpp"
using namespace options;
#include "compat/timer.hpp"

#include <Eigen/Core>
#include <Eigen/LU>

#include <QString>
#include <QWidget>

#include <atomic>

static constexpr inline int NUM_STATE_DOF = 12;
static constexpr inline int NUM_MEASUREMENT_DOF = 6;
// These vectors are compile time fixed size, stack allocated
using StateToMeasureMatrix = Eigen::Matrix<double, NUM_MEASUREMENT_DOF, NUM_STATE_DOF>;
using StateMatrix = Eigen::Matrix<double, NUM_STATE_DOF, NUM_STATE_DOF>;
using MeasureToStateMatrix = Eigen::Matrix<double, NUM_STATE_DOF, NUM_MEASUREMENT_DOF>;
using MeasureMatrix = Eigen::Matrix<double, NUM_MEASUREMENT_DOF, NUM_MEASUREMENT_DOF>;
using StateVector = Eigen::Matrix<double, NUM_STATE_DOF, 1>;
using PoseVector = Eigen::Matrix<double, NUM_MEASUREMENT_DOF, 1>;

struct KalmanFilter
{
    MeasureMatrix
        measurement_noise_cov;
    StateMatrix
        process_noise_cov,
        state_cov,
        state_cov_prior,
        transition_matrix;
    MeasureToStateMatrix
        kalman_gain;
    StateToMeasureMatrix
        measurement_matrix;
    StateVector
        state,
        state_prior;
    PoseVector
        innovation;
    void init();
    void time_update();
    void measurement_update(const PoseVector &measurement);

    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};

struct KalmanProcessNoiseScaler
{
    MeasureMatrix
        innovation_cov_estimate;
    StateMatrix
        base_cov; // baseline (unscaled) process noise covariance matrix
    void init();
    void update(KalmanFilter &kf, double dt);

    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};


struct DeadzoneFilter
{
    PoseVector
        last_output,
        dz_size;
    DeadzoneFilter() :
        last_output(PoseVector::Zero()),
        dz_size(PoseVector::Zero())
    {}
    void reset() {
        last_output = PoseVector::Zero();
    }
    PoseVector filter(const PoseVector &input);

    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};


struct settings : opts {
    value<slider_value> noise_rot_slider_value;
    value<slider_value> noise_pos_slider_value;

    static constexpr inline double adaptivity_window_length = 0.25; // seconds
    static constexpr inline double deadzone_scale = 8;
    static constexpr inline double deadzone_exponent = 2.0;
    static constexpr inline double process_sigma_pos = 0.5;
    static constexpr inline double process_sigma_rot = 0.5;

    static double map_slider_value(const slider_value &v_)
    {
        const double v = v_;
#if 0
        //return std::pow(10., v * 4. - 3.);
#else
        constexpr int min_log10 = -3;
        constexpr int max_log10 = 1;
        constexpr int num_divisions = max_log10 - min_log10;
        /* ascii art representation of slider
          // ----- //  ------//  ------// ------- //   4 divisions
         -3    -   2         -1        0           1    power of 10
                   |      |
                   |      f + left_side_log10
                   |
                   left_side_log10
        */
        const int k = v * num_divisions; // in which division are we?!
        const double f = v * num_divisions - k; // where in the division are we?!
        const double ff = f * 9. + 1.;
        const double multiplier = int(ff * 10.) / 10.;
        const int left_side_log10 = min_log10 + k;
        const double val = std::pow(10., left_side_log10) * multiplier;
        return val;
#endif
    }

    settings() :
        opts("kalman-filter"),
        noise_rot_slider_value(b, "noise-rotation-slider", slider_value(0.5, 0., 1.)),
        noise_pos_slider_value(b, "noise-position-slider", slider_value(0.5, 0., 1.))
    {}

};

class kalman : public IFilter
{
    PoseVector do_kalman_filter(const PoseVector &input, double dt, bool new_input);
    void fill_transition_matrix(double dt);
    void fill_process_noise_cov_matrix(StateMatrix &target, double dt) const;
public:
    kalman();
    void reset();
    void filter(const double *input, double *output) override;
    void center() override { reset(); }
    module_status initialize() { return status_ok(); }
    PoseVector last_input;
    Timer timer;
    bool first_run;
    double dt_since_last_input;
    settings s;
    KalmanFilter kf;
    KalmanProcessNoiseScaler kf_adaptive_process_noise_cov;
    DeadzoneFilter dz_filter;
    slider_value prev_slider_pos[2];

    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};

class kalmanDll : public Metadata
{
public:
    QString name() { return otr_tr("Kalman"); }
    QIcon icon() { return QIcon(":/images/filter-16.png"); }
};

class dialog_kalman: public IFilterDialog
{
    Q_OBJECT
public:
    dialog_kalman();
    Ui::KalmanUICdialog_kalman ui;
    void register_filter(IFilter*) override {}
    void unregister_filter() override {}
    settings s;
    kalman *filter;
public slots:
    void doOK();
    void doCancel();
    void updateLabels(const slider_value&);
};