1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/* Copyright (c) 2012 Patrick Ruoff
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*/
#include "point_tracker.h"
#include <vector>
#include <algorithm>
#include <cmath>
#include <QDebug>
const float PI = 3.14159265358979323846f;
static void get_row(const cv::Matx33d& m, int i, cv::Vec3d& v)
{
v[0] = m(i,0);
v[1] = m(i,1);
v[2] = m(i,2);
}
static void set_row(cv::Matx33d& m, int i, const cv::Vec3d& v)
{
m(i,0) = v[0];
m(i,1) = v[1];
m(i,2) = v[2];
}
static bool d_vals_sort(const std::pair<double,int> a, const std::pair<double,int> b)
{
return a.first < b.first;
}
void PointModel::get_d_order(const std::vector<cv::Vec2d>& points, int* d_order, const cv::Vec2d& d) const
{
// fit line to orthographically projected points
std::vector<std::pair<double,int>> d_vals;
// get sort indices with respect to d scalar product
for (unsigned i = 0; i < N_POINTS; ++i)
d_vals.push_back(std::pair<double, int>(d.dot(points[i]), i));
std::sort(d_vals.begin(),
d_vals.end(),
d_vals_sort
);
for (unsigned i = 0; i<points.size(); ++i)
d_order[i] = d_vals[i].second;
}
PointTracker::PointTracker() : init_phase(true)
{
}
PointTracker::PointOrder PointTracker::find_correspondences_previous(const std::vector<cv::Vec2f>& points, const PointModel& model, float f)
{
PointTracker::PointOrder p;
p.points[0] = project(cv::Vec3f(0,0,0), f);
p.points[1] = project(model.M01, f);
p.points[2] = project(model.M02, f);
// set correspondences by minimum distance to projected model point
bool point_taken[PointModel::N_POINTS];
for (int i=0; i<PointModel::N_POINTS; ++i)
point_taken[i] = false;
for (int i=0; i<PointModel::N_POINTS; ++i)
{
double min_sdist = 0;
unsigned min_idx = 0;
// find closest point to projected model point i
for (int j=0; j<PointModel::N_POINTS; ++j)
{
cv::Vec2d d = p.points[i]-points[j];
double sdist = d.dot(d);
if (sdist < min_sdist || j==0)
{
min_idx = j;
min_sdist = sdist;
}
}
// if one point is closest to more than one model point, fallback
if (point_taken[min_idx])
{
init_phase = true;
return find_correspondences(points, model);
}
point_taken[min_idx] = true;
p.points[i] = points[min_idx];
}
return p;
}
void PointTracker::track(const std::vector<cv::Vec2f>& points, const PointModel& model, float f, bool dynamic_pose, int init_phase_timeout)
{
PointOrder order;
if (t.elapsed_ms() > init_phase_timeout)
{
t.start();
init_phase = true;
}
if (!dynamic_pose || init_phase)
order = find_correspondences(points, model);
else
order = find_correspondences_previous(points, model, f);
POSIT(model, order, f);
init_phase = false;
t.start();
}
PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<cv::Vec2d>& points, const PointModel& model)
{
// We do a simple freetrack-like sorting in the init phase...
// sort points
int point_d_order[PointModel::N_POINTS];
int model_d_order[PointModel::N_POINTS];
cv::Vec2d d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]);
model.get_d_order(points, point_d_order, d);
// calculate d and d_order for simple freetrack-like point correspondence
model.get_d_order(std::vector<cv::Vec2d> {
cv::Vec2d{0,0},
cv::Vec2d(model.M01[0], model.M01[1]),
cv::Vec2d(model.M02[0], model.M02[1])
},
model_d_order,
d);
// set correspondences
PointOrder p;
for (int i=0; i<PointModel::N_POINTS; ++i)
p.points[model_d_order[i]] = points[point_d_order[i]];
return p;
}
int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float focal_length)
bool PointTracker::POSIT(const PointModel& model, const PointOrder& order_, double focal_length)
{
// POSIT algorithm for coplanar points as presented in
// [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"]
// we use the same notation as in the paper here
// The expected rotation used for resolving the ambiguity in POSIT:
// In every iteration step the rotation closer to R_expected is taken
cv::Matx33d R_expected = cv::Matx33d::eye();
// initial pose = last (predicted) pose
cv::Vec3d k;
get_row(R_expected, 2, k);
double Z0 = 1000;
double old_epsilon_1 = 0;
double old_epsilon_2 = 0;
double epsilon_1 = 1;
double epsilon_2 = 1;
cv::Vec3d I0, J0;
cv::Vec2d I0_coeff, J0_coeff;
cv::Vec3d I_1, J_1, I_2, J_2;
cv::Matx33d R_1, R_2;
cv::Matx33d& R_current = R_1;
const int MAX_ITER = 500;
static constexpr double eps = 1e-6;
const cv::Vec2d* order = order_.points;
int i=1;
for (; i<MAX_ITER; ++i)
{
epsilon_1 = k.dot(model.M01)/Z0;
epsilon_2 = k.dot(model.M02)/Z0;
// vector of scalar products <I0, M0i> and <J0, M0i>
cv::Vec2d I0_M0i(order[1][0]*(1.0 + epsilon_1) - order[0][0],
order[2][0]*(1.0 + epsilon_2) - order[0][0]);
cv::Vec2d J0_M0i(order[1][1]*(1.0 + epsilon_1) - order[0][1],
order[2][1]*(1.0 + epsilon_2) - order[0][1]);
// construct projection of I, J onto M0i plane: I0 and J0
I0_coeff = model.P * I0_M0i;
J0_coeff = model.P * J0_M0i;
I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02;
J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02;
// calculate u component of I, J
double II0 = I0.dot(I0);
double IJ0 = I0.dot(J0);
double JJ0 = J0.dot(J0);
double rho, theta;
if (JJ0 == II0) {
rho = std::sqrt(std::fabs(2*IJ0));
theta = -M_PI/4;
if (IJ0<0) theta *= -1;
}
else {
rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 ));
theta = atan( -2*IJ0 / (JJ0-II0) );
// avoid branch misprediction
theta += (JJ0 - II0 < 0) * M_PI;
theta /= 2;
}
// construct the two solutions
I_1 = I0 + rho*cos(theta)*model.u;
I_2 = I0 - rho*cos(theta)*model.u;
J_1 = J0 + rho*sin(theta)*model.u;
J_2 = J0 - rho*sin(theta)*model.u;
double norm_const = 1/cv::norm(I_1); // all have the same norm
// create rotation matrices
I_1 *= norm_const; J_1 *= norm_const;
I_2 *= norm_const; J_2 *= norm_const;
set_row(R_1, 0, I_1);
set_row(R_1, 1, J_1);
set_row(R_1, 2, I_1.cross(J_1));
set_row(R_2, 0, I_2);
set_row(R_2, 1, J_2);
set_row(R_2, 2, I_2.cross(J_2));
// the single translation solution
Z0 = norm_const * focal_length;
// pick the rotation solution closer to the expected one
// in simple metric d(A,B) = || I - A * B^T ||
double R_1_deviation = cv::norm(cv::Matx33d::eye() - R_expected * R_1.t());
double R_2_deviation = cv::norm(cv::Matx33d::eye() - R_expected * R_2.t());
if (R_1_deviation < R_2_deviation)
R_current = R_1;
else
R_current = R_2;
get_row(R_current, 2, k);
// check for convergence condition
const double delta = fabs(epsilon_1 - old_epsilon_1) + fabs(epsilon_2 - old_epsilon_2);
if (!(delta > eps))
break;
old_epsilon_1 = epsilon_1;
old_epsilon_2 = epsilon_2;
}
QMutexLocker l(&mtx);
// apply results
X_CM.R = R_current;
X_CM.t[0] = order[0][0] * Z0/focal_length;
X_CM.t[1] = order[0][1] * Z0/focal_length;
X_CM.t[2] = Z0;
//qDebug() << "iter:" << i;
return i;
}
cv::Vec2d PointTracker::project(const cv::Vec3d& v_M, double f)
{
cv::Vec3d v_C = X_CM * v_M;
return cv::Vec2d(f*v_C[0]/v_C[2], f*v_C[1]/v_C[2]);
}
|