1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
#pragma once
#include "compat/assert.hpp"
#include "RTree.h"
RTREE_TEMPLATE
template<typename F>
int RTREE_QUAL::Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], F&& callback) const
{
#ifndef FM_NO_DEBUG
for(int index=0; index<NUMDIMS; ++index)
{
fm_assert(a_min[index] <= a_max[index]);
}
#endif
Rect rect;
for(int axis=0; axis<NUMDIMS; ++axis)
{
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
// NOTE: May want to return search result another way, perhaps returning the number of found elements here.
int foundCount = 0;
Search(m_root, &rect, foundCount, callback);
return foundCount;
}
// Search in an index tree or subtree for all data retangles that overlap the argument rectangle.
RTREE_TEMPLATE
template<typename F>
bool RTREE_QUAL::Search(Node* a_node, Rect* a_rect, int& a_foundCount, F&& callback) const
{
fm_assert(a_node);
fm_assert(a_node->m_level >= 0);
fm_assert(a_rect);
if(a_node->IsInternalNode())
{
// This is an internal node in the tree
for(int index=0; index < a_node->m_count; ++index)
{
if(Overlap(a_rect, &a_node->m_branch[index].m_rect))
{
if(!Search(a_node->m_branch[index].m_child, a_rect, a_foundCount, callback))
{
// The callback indicated to stop searching
return false;
}
}
}
}
else
{
// This is a leaf node
for(int index=0; index < a_node->m_count; ++index)
{
if(Overlap(a_rect, &a_node->m_branch[index].m_rect))
{
++a_foundCount;
const Rect& r = a_node->m_branch[index].m_rect;
if(!callback(a_node->m_branch[index].m_data, r))
return false; // Don't continue searching
}
}
}
return true; // Continue searching
}
|