1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
#include "character.hpp"
#include "src/anim-atlas.hpp"
#include "loader/loader.hpp"
#include "src/world.hpp"
#include "src/entity.hpp"
#include "src/RTree-search.hpp"
#include <cmath>
#include <utility>
#include <algorithm>
namespace floormat {
namespace {
template <typename T> constexpr T sgn(T val) { return T(T(0) < val) - T(val < T(0)); }
constexpr int tile_size_1 = iTILE_SIZE2.sum()/2,
framerate = 96, move_speed = tile_size_1 * 2;
constexpr float frame_time = 1.f/framerate;
constexpr auto arrows_to_dir(bool left, bool right, bool up, bool down)
{
if (left == right)
left = right = false;
if (up == down)
up = down = false;
const auto bits = unsigned(left << 3 | right << 2 | up << 1 | down << 0);
constexpr unsigned L = 1 << 3, R = 1 << 2, U = 1 << 1, D = 1 << 0;
switch (bits)
{
using enum rotation;
case 0: return rotation{rotation_COUNT};
case L | U: return W;
case L | D: return S;
case R | U: return N;
case R | D: return E;
case L: return SW;
case D: return SE;
case R: return NE;
case U: return NW;
}
std::unreachable();
}
constexpr Vector2i rotation_to_vec(rotation r)
{
CORRADE_ASSUME(r < rotation_COUNT);
switch (r)
{
using enum rotation;
case N: return { 0, -1 };
case NE: return { 1, -1 };
case E: return { 1, 0 };
case SE: return { 1, 1 };
case S: return { 0, 1 };
case SW: return { -1, 1 };
case W: return { -1, 0 };
case NW: return { -1, -1 };
}
std::unreachable();
}
constexpr std::array<rotation, 3> rotation_to_similar(rotation r)
{
CORRADE_ASSUME(r < rotation_COUNT);
switch (r)
{
using enum rotation;
case N: return { N, NW, NE };
case NE: return { NE, N, E };
case E: return { E, NE, SE };
case SE: return { SE, E, S };
case S: return { S, SE, SW };
case SW: return { SW, S, W };
case W: return { W, SW, NW };
case NW: return { NW, W, N };
}
std::unreachable();
}
} // namespace
character_proto::character_proto(const character_proto&) = default;
character_proto::~character_proto() noexcept = default;
character_proto& character_proto::operator=(const character_proto&) = default;
character_proto::character_proto()
{
type = entity_type::character;
}
bool character_proto::operator==(const entity_proto& e0) const
{
if (type != e0.type)
return false;
if (!entity_proto::operator==(e0))
return false;
const auto& s0 = static_cast<const character_proto&>(e0);
return name == s0.name && playable == s0.playable;
}
int character::allocate_frame_time(float dt)
{
int d = int(delta) + int(65535u * dt);
constexpr int framerate_ = 65535/framerate;
static_assert(framerate_ > 0);
auto ret = d / framerate_;
delta = (uint16_t)std::clamp(d - ret*65535LL, 0LL, 65535LL);
return ret;
}
Vector2 character::move_vec(Vector2i vec)
{
const int left_right = vec[0], top_bottom = vec[1];
constexpr auto c = move_speed * frame_time;
return c * Vector2((float)sgn(left_right), (float)sgn(top_bottom)).normalized();
}
void character::set_keys(bool L, bool R, bool U, bool D)
{
b_L = L;
b_R = R;
b_U = U;
b_D = D;
}
Vector2 character::depth_offset() const { return {}; }
Vector2 character::ordinal_offset(Vector2b offset) const
{
(void)offset;
return {};
}
bool character::update(size_t i, float dt)
{
const auto new_r = arrows_to_dir(b_L, b_R, b_U, b_D);
if (new_r == rotation{rotation_COUNT})
{
delta = 0;
return false;
}
int nframes = allocate_frame_time(dt);
if (nframes == 0)
return false;
auto [_0, _1, _2] = rotation_to_similar(r);
const Vector2 move_vecs[] = {
move_vec(rotation_to_vec(_0)),
move_vec(rotation_to_vec(_1)),
move_vec(rotation_to_vec(_2)),
};
bool ret = false;
if (r != new_r)
if (is_dynamic())
rotate(i, new_r);
c->ensure_passability();
for (int k = 0; k < nframes; k++)
{
for (auto j = 0uz; j < 3; j++)
{
auto vec = move_vecs[j];
constexpr auto frac = Vector2(32767);
constexpr auto inv_frac = 1.f / frac;
auto offset_ = vec + Vector2(offset_frac) * inv_frac;
offset_frac = Vector2s(Vector2(std::fmod(offset_[0], 1.f), std::fmod(offset_[1], 1.f)) * frac);
auto off_i = Vector2i(offset_);
if (can_move_to(off_i))
{
ret |= move_to(i, off_i, new_r);
++frame %= atlas->info().nframes;
goto done;
}
}
delta = 0;
break;
done:
(void)0;
}
return ret;
}
entity_type character::type() const noexcept { return entity_type::character; }
character::operator character_proto() const
{
character_proto ret;
static_cast<entity_proto&>(ret) = entity::operator entity_proto();
ret.name = name;
ret.playable = playable;
return ret;
}
character::character(object_id id, struct chunk& c, const character_proto& proto) :
entity{id, c, proto},
name{proto.name},
playable{proto.playable}
{
if (!name)
name = "(Unnamed)"_s;
if (!atlas)
atlas = loader.anim_atlas("npc-walk", loader.ANIM_PATH);
fm_soft_assert(atlas->check_rotation(r));
entity::set_bbox_(offset, bbox_offset, Vector2ub(iTILE_SIZE2/2), pass);
}
} // namespace floormat
|