summaryrefslogtreecommitdiffhomepage
path: root/src/path-search-dijkstra.cpp
blob: ff1088291c69413fca6049c5acce0bad9faac504 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#include "path-search.hpp"
#include "object.hpp"
#include "point.hpp"
#include <Magnum/Math/Vector2.h>
#include <Magnum/Math/Functions.h>

namespace floormat {

template<typename T> using bbox = path_search::bbox<T>;
using visited = astar::visited;

namespace {

constexpr auto div_size = path_search::div_size;

template<typename T>
requires std::is_arithmetic_v<T>
constexpr bbox<T> bbox_union(bbox<T> bb, Vector2i coord, Vector2b offset, Vector2ui size)
{
    auto center = coord * iTILE_SIZE2 + Vector2i(offset);
    auto min = center - Vector2i(size / 2);
    auto max = center + Vector2i(size);
    using Vec = VectorTypeFor<2, T>;
    return {
        .min = Math::min(Vec(bb.min), Vec(min)),
        .max = Math::max(Vec(bb.max), Vec(max)),
    };
}

template<typename T>
requires std::is_arithmetic_v<T>
constexpr bbox<T> bbox_union(bbox<T> bb1, bbox<T> bb2)
{
    return { Math::min(bb1.min, bb2.min), Math::max(bb1.max, bb2.max) };
}

constexpr auto directions = []() constexpr
{
    struct pair { Vector2i dir; uint32_t len; };
    constexpr auto len1 = div_size;
    constexpr auto len2 = (uint32_t)(len1.length() + 0.5f); // NOLINT
    std::array<pair, 8> array = {{
        { { -1, -1 }, len2 },
        { {  1,  1 }, len2 },
        { { -1,  1 }, len2 },
        { {  1, -1 }, len2 },
        { { -1,  0 }, len1.x() },
        { {  0, -1 }, len1.y() },
        { {  1,  0 }, len1.x() },
        { {  0,  1 }, len1.y() },
    }};
    for (auto& [vec, len] : array)
        vec *= div_size;
#if 0
    for (auto i = 0uz; i < array.size(); i++)
        for (auto j = 0uz; j < i; j++)
            fm_assert(array[i].dir != array[j].dir);
#endif
    return array;
}();

template<typename T>
requires std::is_arithmetic_v<T>
constexpr auto bbox_from_pos(Math::Vector2<T> pos, Vector2b offset, Vector2ui size)
{
    const auto vec = Vector2i(pos) * iTILE_SIZE2 + Vector2i(offset);
    const auto min = vec - Vector2i(size / 2);
    const auto max = vec + Vector2i(size);
    const auto bb = bbox<float>{Vector2(min), Vector2(max)};
    return bb;
}

struct heap_comparator
{
    const std::vector<visited>& nodes; // NOLINT
    inline heap_comparator(const std::vector<visited>& nodes) : nodes{nodes} {}
    inline bool operator()(uint32_t a, uint32_t b) const { return nodes[b].dist < nodes[a].dist; }
};

uint32_t distance(point a, point b)
{
    Vector2i dist;
    dist += Math::abs(a.coord() - b.coord())*iTILE_SIZE2;
    dist += Vector2i(a.offset() - b.offset());
    return (uint32_t)Math::sqrt(dist.dot());
}

inline size_t hash_point(const point& pt)
{
    static_assert(sizeof(global_coords) == 8);
#ifdef FLOORMAT_64
    static_assert(sizeof nullptr > 4);
    return fnvhash_64(&pt, sizeof pt);
#else
    static_assert(sizeof nullptr == 4);
    return fnvhash_32(&pt, sizeof pt);
#endif
}

} // namespace

astar::astar()
{
    indexes.max_load_factor(.4f);
    reserve(initial_capacity);
}

void astar::reserve(size_t capacity)
{
    nodes.reserve(capacity);
    indexes.reserve(capacity);
#if !FM_ASTAR_NO_EDGE_CACHE
    edges.reserve(capacity*4);
#endif
    Q.reserve(capacity);
}

void astar::clear()
{
    nodes.clear();
    indexes.clear();
#if !FM_ASTAR_NO_EDGE_CACHE
    edges.clear();
#endif
    Q.clear();
}

void astar::add_to_heap(uint32_t id)
{
    Q.push_back(id);
    std::push_heap(Q.begin(), Q.end(), heap_comparator(nodes));
}

uint32_t astar::pop_from_heap()
{
    std::pop_heap(Q.begin(), Q.end(), heap_comparator(nodes));
    const auto id = Q.back();
    Q.pop_back();
    return id;
}

#if !FM_ASTAR_NO_EDGE_CACHE
auto astar::make_edge(const point& a, const point& b) -> edge
{
    if (a < b)
        return { a.coord(), b.coord(), a.offset(), b.offset() };
    else
        return { b.coord(), a.coord(), b.offset(), a.offset() };
}

size_t astar::edge_hash::operator()(const edge& e) const
{
    static_assert(sizeof e == 8 + 8 + 2 + 2);
#ifdef FLOORMAT_64
    static_assert(sizeof nullptr > 4);
    return fnvhash_64(&e, sizeof e);
#else
    static_assert(sizeof nullptr == 4);
    return fnvhash_32(&e, sizeof e);
#endif
}

bool astar::edge::operator==(const floormat::astar::edge& other) const = default;
#endif

size_t astar::point_hash::operator()(const point& pt) const
{
    return hash_point(pt);
}

path_search_result astar::Dijkstra(world& w, point from_, point to_, object_id own_id, uint32_t max_dist,
                                   Vector2ub own_size_, int debug, const pred& p)
{
#ifdef FM_NO_DEBUG
    (void)debug;
#endif

    clear();

    constexpr auto min_size_ = Vector2ui{Vector2(div_size) * 1.5f + Vector2{.5f}};
    const auto own_size = Math::max(Vector2ui{Vector2{own_size_}*1.5f + Vector2{.5f}}, min_size_);
    const auto goal_distance = (uint32_t)(own_size * 2).length();

    const auto [from, from_offset] = from_;
    const auto [to, to_offset] = to_;

    if (from.z() != to.z()) [[unlikely]]
        return {};

    // todo try removing this eventually
    if (from.z() != 0) [[unlikely]]
        return {};

    if (!path_search::is_passable(w, from, from_offset, own_size, own_id, p))
        return {};

    if (!path_search::is_passable(w, to, to_offset, own_size, own_id, p))
        return {};

    path_search_result result;
    auto& path = result.path(); path.clear();

    indexes[from_] = 0;
    nodes.push_back({.dist = 0, .pt = from_ });
    add_to_heap(0);

    if (!from_offset.isZero())
    {
        const auto from_local = Vector2i(from.local());
        const auto start_bbox = bbox_from_pos(Vector2(from_local), from_offset, own_size);
        const auto from_offset_len = Math::max(1u, (uint32_t)(Vector2(from_offset).length() + 0.5f));
        uint32_t idx = 1;
        constexpr int8_t div_min = (div_factor+1)/-2, div_max = div_factor/2;
        for (int8_t y = div_min; y < div_max; y++)
            for (int8_t x = div_min; x < div_max; x++)
            {
                const auto offset = Vector2b(div_size * Vector2i(x, y));
                if (auto bb = bbox_union(start_bbox, from_local, offset, own_size);
                    path_search::is_passable(w, from.chunk3(), bb, own_id, p))
                {
                    indexes[{from, offset}] = idx;
                    nodes.push_back({.dist = from_offset_len, .prev = 0, .pt = {from, offset}});
                    add_to_heap(idx++);
                }
            }
    }

    auto closest = distance({from, from_offset}, {to, to_offset});
    auto closest_pos = point{from, from_offset};
    uint32_t closest_path_len = 0;

    while (!Q.empty())
    {
        const auto id = pop_from_heap();
        point cur_pt;
        uint32_t cur_dist;
        {   auto& n = nodes[id];
            cur_pt = n.pt;
            cur_dist = n.dist;
#if FM_ASTAR_NO_EDGE_CACHE
            (void)cur_pt;
#endif
        }

        if (auto d = distance(cur_pt, to_); d < closest)
        {
            closest = d;
            closest_pos = cur_pt;
            closest_path_len = cur_dist;
        }

#ifndef FM_NO_DEBUG
        if (debug >= 2) [[unlikely]]
            DBG_nospace << "node"
                        << " px:" << closest << " path:" << closest_path_len
                        << " pos:" << Vector3i(closest_pos.coord())
                        << ";" << closest_pos.offset();
#endif

        const auto bb0 = bbox_from_pos(Vector2(cur_pt.local()), cur_pt.offset(), own_size);
        for (auto [vec, len] : directions)
        {
            auto [new_coord, new_offset] = object::normalize_coords(cur_pt, vec);
            const auto dist = cur_dist + len;
            if (dist >= max_dist)
                continue;

            const auto new_pt = point{new_coord, new_offset};
            const size_t new_pt_hash = hash_point(new_pt);

            auto new_idx = (uint32_t)-1;
            bool fresh = true;

            if (auto it = indexes.find(new_pt, new_pt_hash); it != indexes.end())
            {
                new_idx = it->second;
                fresh = false;

                if (nodes[new_idx].dist <= dist)
                    continue;
            }

#if FM_ASTAR_NO_EDGE_CACHE
            {   auto vec_ = Vector2(vec);
                auto bb1 = bbox<float>{ bb0.min + vec_, bb0.max + vec_ };
                auto bb = bbox_union(bb1, bb0);
                if (!path_search::is_passable(w, new_coord.chunk3(), bb, own_id, p))
                    continue;
            }
#else
            auto e = make_edge(cur_pt, new_pt);
            if (auto [it, fresh] = edges.try_emplace(e, edge_status::unknown); fresh)
            {
                auto& status = it.value();
                auto vec_ = Vector2(vec);
                auto bb1 = bbox<float>{ bb0.min + vec_, bb0.max + vec_ };
                auto bb = bbox_union(bb1, bb0);

                if (path_search::is_passable(w, new_coord.chunk3(), bb, own_id, p))
                    status = edge_status::good;
                else
                {
                    status = edge_status::bad;
                    continue;
                }
            }
#endif

            if (fresh)
            {   const auto sz = nodes.size();
                new_idx = (uint32_t)sz;
                indexes.insert({new_pt, new_idx}, new_pt_hash);
                auto new_node = visited {
                    .dist = dist, .prev = id,
                    .pt = {new_coord, new_offset},
                };
                nodes.push_back(new_node);
            }

#ifndef FM_NO_DEBUG
            if (debug >= 3) [[unlikely]]
                DBG_nospace << (fresh ? "" : " old")
                            << " path:" << dist
                            << " pos:" << Vector3i(new_coord)
                            << ";" << new_offset;
#endif

            add_to_heap(new_idx);
        }
    }

    fm_debug_assert(nodes.size() == indexes.size());
#ifndef FM_NO_DEBUG
    if (debug >= 1)
        DBG_nospace << "dijkstra: closest px:" << closest
                    << " path:" << closest_path_len
                    << " pos:" << Vector3i(closest_pos.coord())
                    << ";" << closest_pos.offset()
                    << " nodes:" << nodes.size()
#if !FM_ASTAR_NO_EDGE_CACHE
                    << " edges:" << edges.size()
#endif
            ;
#endif

    // todo...
    return result;
}

} // namespace floormat