diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/Eigen/src/Geometry/OrthoMethods.h | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/Eigen/src/Geometry/OrthoMethods.h')
-rw-r--r-- | eigen/Eigen/src/Geometry/OrthoMethods.h | 58 |
1 files changed, 37 insertions, 21 deletions
diff --git a/eigen/Eigen/src/Geometry/OrthoMethods.h b/eigen/Eigen/src/Geometry/OrthoMethods.h index 556bc81..a035e63 100644 --- a/eigen/Eigen/src/Geometry/OrthoMethods.h +++ b/eigen/Eigen/src/Geometry/OrthoMethods.h @@ -13,16 +13,24 @@ namespace Eigen { -/** \geometry_module +/** \geometry_module \ingroup Geometry_Module * * \returns the cross product of \c *this and \a other * * Here is a very good explanation of cross-product: http://xkcd.com/199/ + * + * With complex numbers, the cross product is implemented as + * \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} - \mathbf{b} \times \mathbf{c})\f$ + * * \sa MatrixBase::cross3() */ template<typename Derived> template<typename OtherDerived> -inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type +#ifndef EIGEN_PARSED_BY_DOXYGEN +EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type +#else +inline typename MatrixBase<Derived>::PlainObject +#endif MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) @@ -30,8 +38,8 @@ MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const // Note that there is no need for an expression here since the compiler // optimize such a small temporary very well (even within a complex expression) - typename internal::nested<Derived,2>::type lhs(derived()); - typename internal::nested<OtherDerived,2>::type rhs(other.derived()); + typename internal::nested_eval<Derived,2>::type lhs(derived()); + typename internal::nested_eval<OtherDerived,2>::type rhs(other.derived()); return typename cross_product_return_type<OtherDerived>::type( numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), @@ -45,7 +53,7 @@ template< int Arch,typename VectorLhs,typename VectorRhs, typename Scalar = typename VectorLhs::Scalar, bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)> struct cross3_impl { - static inline typename internal::plain_matrix_type<VectorLhs>::type + EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type<VectorLhs>::type run(const VectorLhs& lhs, const VectorRhs& rhs) { return typename internal::plain_matrix_type<VectorLhs>::type( @@ -59,7 +67,7 @@ struct cross3_impl { } -/** \geometry_module +/** \geometry_module \ingroup Geometry_Module * * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients * @@ -70,14 +78,14 @@ struct cross3_impl { */ template<typename Derived> template<typename OtherDerived> -inline typename MatrixBase<Derived>::PlainObject +EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4) EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4) - typedef typename internal::nested<Derived,2>::type DerivedNested; - typedef typename internal::nested<OtherDerived,2>::type OtherDerivedNested; + typedef typename internal::nested_eval<Derived,2>::type DerivedNested; + typedef typename internal::nested_eval<OtherDerived,2>::type OtherDerivedNested; DerivedNested lhs(derived()); OtherDerivedNested rhs(other.derived()); @@ -86,38 +94,42 @@ MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs); } -/** \returns a matrix expression of the cross product of each column or row +/** \geometry_module \ingroup Geometry_Module + * + * \returns a matrix expression of the cross product of each column or row * of the referenced expression with the \a other vector. * * The referenced matrix must have one dimension equal to 3. * The result matrix has the same dimensions than the referenced one. * - * \geometry_module - * * \sa MatrixBase::cross() */ template<typename ExpressionType, int Direction> template<typename OtherDerived> +EIGEN_DEVICE_FUNC const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + + typename internal::nested_eval<ExpressionType,2>::type mat(_expression()); + typename internal::nested_eval<OtherDerived,2>::type vec(other.derived()); CrossReturnType res(_expression().rows(),_expression().cols()); if(Direction==Vertical) { eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows"); - res.row(0) = (_expression().row(1) * other.coeff(2) - _expression().row(2) * other.coeff(1)).conjugate(); - res.row(1) = (_expression().row(2) * other.coeff(0) - _expression().row(0) * other.coeff(2)).conjugate(); - res.row(2) = (_expression().row(0) * other.coeff(1) - _expression().row(1) * other.coeff(0)).conjugate(); + res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate(); + res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate(); + res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate(); } else { eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns"); - res.col(0) = (_expression().col(1) * other.coeff(2) - _expression().col(2) * other.coeff(1)).conjugate(); - res.col(1) = (_expression().col(2) * other.coeff(0) - _expression().col(0) * other.coeff(2)).conjugate(); - res.col(2) = (_expression().col(0) * other.coeff(1) - _expression().col(1) * other.coeff(0)).conjugate(); + res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate(); + res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate(); + res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate(); } return res; } @@ -130,8 +142,8 @@ struct unitOrthogonal_selector typedef typename plain_matrix_type<Derived>::type VectorType; typedef typename traits<Derived>::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; - typedef typename Derived::Index Index; typedef Matrix<Scalar,2,1> Vector2; + EIGEN_DEVICE_FUNC static inline VectorType run(const Derived& src) { VectorType perp = VectorType::Zero(src.size()); @@ -154,6 +166,7 @@ struct unitOrthogonal_selector<Derived,3> typedef typename plain_matrix_type<Derived>::type VectorType; typedef typename traits<Derived>::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC static inline VectorType run(const Derived& src) { VectorType perp; @@ -192,13 +205,16 @@ template<typename Derived> struct unitOrthogonal_selector<Derived,2> { typedef typename plain_matrix_type<Derived>::type VectorType; + EIGEN_DEVICE_FUNC static inline VectorType run(const Derived& src) { return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); } }; } // end namespace internal -/** \returns a unit vector which is orthogonal to \c *this +/** \geometry_module \ingroup Geometry_Module + * + * \returns a unit vector which is orthogonal to \c *this * * The size of \c *this must be at least 2. If the size is exactly 2, * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). @@ -206,7 +222,7 @@ struct unitOrthogonal_selector<Derived,2> * \sa cross() */ template<typename Derived> -typename MatrixBase<Derived>::PlainObject +EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::unitOrthogonal() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) |