diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2016-09-18 12:42:15 +0200 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2016-11-02 15:12:04 +0100 |
commit | 44861dcbfeee041223c4aac1ee075e92fa4daa01 (patch) | |
tree | 6dfdfd9637846a7aedd71ace97d7d2ad366496d7 /eigen/Eigen/src/Geometry | |
parent | f3fe458b9e0a29a99a39d47d9a76dc18964b6fec (diff) |
update
Diffstat (limited to 'eigen/Eigen/src/Geometry')
-rw-r--r-- | eigen/Eigen/src/Geometry/AlignedBox.h | 392 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/AngleAxis.h | 240 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/CMakeLists.txt | 8 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/EulerAngles.h | 104 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/Homogeneous.h | 307 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/Hyperplane.h | 280 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/OrthoMethods.h | 218 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/ParametrizedLine.h | 195 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/Quaternion.h | 776 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/Rotation2D.h | 160 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/RotationBase.h | 206 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/Scaling.h | 166 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/Transform.h | 1474 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/Translation.h | 206 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/Umeyama.h | 177 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/arch/CMakeLists.txt | 6 | ||||
-rw-r--r-- | eigen/Eigen/src/Geometry/arch/Geometry_SSE.h | 115 |
17 files changed, 5030 insertions, 0 deletions
diff --git a/eigen/Eigen/src/Geometry/AlignedBox.h b/eigen/Eigen/src/Geometry/AlignedBox.h new file mode 100644 index 0000000..7e1cd9e --- /dev/null +++ b/eigen/Eigen/src/Geometry/AlignedBox.h @@ -0,0 +1,392 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ALIGNEDBOX_H +#define EIGEN_ALIGNEDBOX_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * + * \class AlignedBox + * + * \brief An axis aligned box + * + * \tparam _Scalar the type of the scalar coefficients + * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. + * + * This class represents an axis aligned box as a pair of the minimal and maximal corners. + * \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using isEmpty(). + * \sa alignedboxtypedefs + */ +template <typename _Scalar, int _AmbientDim> +class AlignedBox +{ +public: +EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) + enum { AmbientDimAtCompileTime = _AmbientDim }; + typedef _Scalar Scalar; + typedef NumTraits<Scalar> ScalarTraits; + typedef DenseIndex Index; + typedef typename ScalarTraits::Real RealScalar; + typedef typename ScalarTraits::NonInteger NonInteger; + typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; + + /** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */ + enum CornerType + { + /** 1D names @{ */ + Min=0, Max=1, + /** @} */ + + /** Identifier for 2D corner @{ */ + BottomLeft=0, BottomRight=1, + TopLeft=2, TopRight=3, + /** @} */ + + /** Identifier for 3D corner @{ */ + BottomLeftFloor=0, BottomRightFloor=1, + TopLeftFloor=2, TopRightFloor=3, + BottomLeftCeil=4, BottomRightCeil=5, + TopLeftCeil=6, TopRightCeil=7 + /** @} */ + }; + + + /** Default constructor initializing a null box. */ + inline AlignedBox() + { if (AmbientDimAtCompileTime!=Dynamic) setEmpty(); } + + /** Constructs a null box with \a _dim the dimension of the ambient space. */ + inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim) + { setEmpty(); } + + /** Constructs a box with extremities \a _min and \a _max. + * \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty. */ + template<typename OtherVectorType1, typename OtherVectorType2> + inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {} + + /** Constructs a box containing a single point \a p. */ + template<typename Derived> + inline explicit AlignedBox(const MatrixBase<Derived>& p) : m_min(p), m_max(m_min) + { } + + ~AlignedBox() {} + + /** \returns the dimension in which the box holds */ + inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); } + + /** \deprecated use isEmpty() */ + inline bool isNull() const { return isEmpty(); } + + /** \deprecated use setEmpty() */ + inline void setNull() { setEmpty(); } + + /** \returns true if the box is empty. + * \sa setEmpty */ + inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); } + + /** Makes \c *this an empty box. + * \sa isEmpty */ + inline void setEmpty() + { + m_min.setConstant( ScalarTraits::highest() ); + m_max.setConstant( ScalarTraits::lowest() ); + } + + /** \returns the minimal corner */ + inline const VectorType& (min)() const { return m_min; } + /** \returns a non const reference to the minimal corner */ + inline VectorType& (min)() { return m_min; } + /** \returns the maximal corner */ + inline const VectorType& (max)() const { return m_max; } + /** \returns a non const reference to the maximal corner */ + inline VectorType& (max)() { return m_max; } + + /** \returns the center of the box */ + inline const CwiseUnaryOp<internal::scalar_quotient1_op<Scalar>, + const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const VectorType, const VectorType> > + center() const + { return (m_min+m_max)/2; } + + /** \returns the lengths of the sides of the bounding box. + * Note that this function does not get the same + * result for integral or floating scalar types: see + */ + inline const CwiseBinaryOp< internal::scalar_difference_op<Scalar>, const VectorType, const VectorType> sizes() const + { return m_max - m_min; } + + /** \returns the volume of the bounding box */ + inline Scalar volume() const + { return sizes().prod(); } + + /** \returns an expression for the bounding box diagonal vector + * if the length of the diagonal is needed: diagonal().norm() + * will provide it. + */ + inline CwiseBinaryOp< internal::scalar_difference_op<Scalar>, const VectorType, const VectorType> diagonal() const + { return sizes(); } + + /** \returns the vertex of the bounding box at the corner defined by + * the corner-id corner. It works only for a 1D, 2D or 3D bounding box. + * For 1D bounding boxes corners are named by 2 enum constants: + * BottomLeft and BottomRight. + * For 2D bounding boxes, corners are named by 4 enum constants: + * BottomLeft, BottomRight, TopLeft, TopRight. + * For 3D bounding boxes, the following names are added: + * BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil. + */ + inline VectorType corner(CornerType corner) const + { + EIGEN_STATIC_ASSERT(_AmbientDim <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE); + + VectorType res; + + Index mult = 1; + for(Index d=0; d<dim(); ++d) + { + if( mult & corner ) res[d] = m_max[d]; + else res[d] = m_min[d]; + mult *= 2; + } + return res; + } + + /** \returns a random point inside the bounding box sampled with + * a uniform distribution */ + inline VectorType sample() const + { + VectorType r(dim()); + for(Index d=0; d<dim(); ++d) + { + if(!ScalarTraits::IsInteger) + { + r[d] = m_min[d] + (m_max[d]-m_min[d]) + * internal::random<Scalar>(Scalar(0), Scalar(1)); + } + else + r[d] = internal::random(m_min[d], m_max[d]); + } + return r; + } + + /** \returns true if the point \a p is inside the box \c *this. */ + template<typename Derived> + inline bool contains(const MatrixBase<Derived>& p) const + { + typename internal::nested<Derived,2>::type p_n(p.derived()); + return (m_min.array()<=p_n.array()).all() && (p_n.array()<=m_max.array()).all(); + } + + /** \returns true if the box \a b is entirely inside the box \c *this. */ + inline bool contains(const AlignedBox& b) const + { return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); } + + /** \returns true if the box \a b is intersecting the box \c *this. + * \sa intersection, clamp */ + inline bool intersects(const AlignedBox& b) const + { return (m_min.array()<=(b.max)().array()).all() && ((b.min)().array()<=m_max.array()).all(); } + + /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. + * \sa extend(const AlignedBox&) */ + template<typename Derived> + inline AlignedBox& extend(const MatrixBase<Derived>& p) + { + typename internal::nested<Derived,2>::type p_n(p.derived()); + m_min = m_min.cwiseMin(p_n); + m_max = m_max.cwiseMax(p_n); + return *this; + } + + /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. + * \sa merged, extend(const MatrixBase&) */ + inline AlignedBox& extend(const AlignedBox& b) + { + m_min = m_min.cwiseMin(b.m_min); + m_max = m_max.cwiseMax(b.m_max); + return *this; + } + + /** Clamps \c *this by the box \a b and returns a reference to \c *this. + * \note If the boxes don't intersect, the resulting box is empty. + * \sa intersection(), intersects() */ + inline AlignedBox& clamp(const AlignedBox& b) + { + m_min = m_min.cwiseMax(b.m_min); + m_max = m_max.cwiseMin(b.m_max); + return *this; + } + + /** Returns an AlignedBox that is the intersection of \a b and \c *this + * \note If the boxes don't intersect, the resulting box is empty. + * \sa intersects(), clamp, contains() */ + inline AlignedBox intersection(const AlignedBox& b) const + {return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); } + + /** Returns an AlignedBox that is the union of \a b and \c *this. + * \note Merging with an empty box may result in a box bigger than \c *this. + * \sa extend(const AlignedBox&) */ + inline AlignedBox merged(const AlignedBox& b) const + { return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); } + + /** Translate \c *this by the vector \a t and returns a reference to \c *this. */ + template<typename Derived> + inline AlignedBox& translate(const MatrixBase<Derived>& a_t) + { + const typename internal::nested<Derived,2>::type t(a_t.derived()); + m_min += t; + m_max += t; + return *this; + } + + /** \returns the squared distance between the point \a p and the box \c *this, + * and zero if \a p is inside the box. + * \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&) + */ + template<typename Derived> + inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& p) const; + + /** \returns the squared distance between the boxes \a b and \c *this, + * and zero if the boxes intersect. + * \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&) + */ + inline Scalar squaredExteriorDistance(const AlignedBox& b) const; + + /** \returns the distance between the point \a p and the box \c *this, + * and zero if \a p is inside the box. + * \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&) + */ + template<typename Derived> + inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const + { using std::sqrt; return sqrt(NonInteger(squaredExteriorDistance(p))); } + + /** \returns the distance between the boxes \a b and \c *this, + * and zero if the boxes intersect. + * \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&) + */ + inline NonInteger exteriorDistance(const AlignedBox& b) const + { using std::sqrt; return sqrt(NonInteger(squaredExteriorDistance(b))); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template<typename NewScalarType> + inline typename internal::cast_return_type<AlignedBox, + AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const + { + return typename internal::cast_return_type<AlignedBox, + AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this); + } + + /** Copy constructor with scalar type conversion */ + template<typename OtherScalarType> + inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other) + { + m_min = (other.min)().template cast<Scalar>(); + m_max = (other.max)().template cast<Scalar>(); + } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + bool isApprox(const AlignedBox& other, const RealScalar& prec = ScalarTraits::dummy_precision()) const + { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); } + +protected: + + VectorType m_min, m_max; +}; + + + +template<typename Scalar,int AmbientDim> +template<typename Derived> +inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const MatrixBase<Derived>& a_p) const +{ + typename internal::nested<Derived,2*AmbientDim>::type p(a_p.derived()); + Scalar dist2(0); + Scalar aux; + for (Index k=0; k<dim(); ++k) + { + if( m_min[k] > p[k] ) + { + aux = m_min[k] - p[k]; + dist2 += aux*aux; + } + else if( p[k] > m_max[k] ) + { + aux = p[k] - m_max[k]; + dist2 += aux*aux; + } + } + return dist2; +} + +template<typename Scalar,int AmbientDim> +inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const +{ + Scalar dist2(0); + Scalar aux; + for (Index k=0; k<dim(); ++k) + { + if( m_min[k] > b.m_max[k] ) + { + aux = m_min[k] - b.m_max[k]; + dist2 += aux*aux; + } + else if( b.m_min[k] > m_max[k] ) + { + aux = b.m_min[k] - m_max[k]; + dist2 += aux*aux; + } + } + return dist2; +} + +/** \defgroup alignedboxtypedefs Global aligned box typedefs + * + * \ingroup Geometry_Module + * + * Eigen defines several typedef shortcuts for most common aligned box types. + * + * The general patterns are the following: + * + * \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size, + * and where \c Type can be \c i for integer, \c f for float, \c d for double. + * + * For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size aligned box of floats. + * + * \sa class AlignedBox + */ + +#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ +/** \ingroup alignedboxtypedefs */ \ +typedef AlignedBox<Type, Size> AlignedBox##SizeSuffix##TypeSuffix; + +#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) + +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) + +#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES +#undef EIGEN_MAKE_TYPEDEFS + +} // end namespace Eigen + +#endif // EIGEN_ALIGNEDBOX_H diff --git a/eigen/Eigen/src/Geometry/AngleAxis.h b/eigen/Eigen/src/Geometry/AngleAxis.h new file mode 100644 index 0000000..a8d3cdc --- /dev/null +++ b/eigen/Eigen/src/Geometry/AngleAxis.h @@ -0,0 +1,240 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ANGLEAXIS_H +#define EIGEN_ANGLEAXIS_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class AngleAxis + * + * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis + * + * \param _Scalar the scalar type, i.e., the type of the coefficients. + * + * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. + * + * The following two typedefs are provided for convenience: + * \li \c AngleAxisf for \c float + * \li \c AngleAxisd for \c double + * + * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily + * mimic Euler-angles. Here is an example: + * \include AngleAxis_mimic_euler.cpp + * Output: \verbinclude AngleAxis_mimic_euler.out + * + * \note This class is not aimed to be used to store a rotation transformation, + * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) + * and transformation objects. + * + * \sa class Quaternion, class Transform, MatrixBase::UnitX() + */ + +namespace internal { +template<typename _Scalar> struct traits<AngleAxis<_Scalar> > +{ + typedef _Scalar Scalar; +}; +} + +template<typename _Scalar> +class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3> +{ + typedef RotationBase<AngleAxis<_Scalar>,3> Base; + +public: + + using Base::operator*; + + enum { Dim = 3 }; + /** the scalar type of the coefficients */ + typedef _Scalar Scalar; + typedef Matrix<Scalar,3,3> Matrix3; + typedef Matrix<Scalar,3,1> Vector3; + typedef Quaternion<Scalar> QuaternionType; + +protected: + + Vector3 m_axis; + Scalar m_angle; + +public: + + /** Default constructor without initialization. */ + AngleAxis() {} + /** Constructs and initialize the angle-axis rotation from an \a angle in radian + * and an \a axis which \b must \b be \b normalized. + * + * \warning If the \a axis vector is not normalized, then the angle-axis object + * represents an invalid rotation. */ + template<typename Derived> + inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {} + /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */ + template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; } + /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ + template<typename Derived> + inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } + + /** \returns the value of the rotation angle in radian */ + Scalar angle() const { return m_angle; } + /** \returns a read-write reference to the stored angle in radian */ + Scalar& angle() { return m_angle; } + + /** \returns the rotation axis */ + const Vector3& axis() const { return m_axis; } + /** \returns a read-write reference to the stored rotation axis. + * + * \warning The rotation axis must remain a \b unit vector. + */ + Vector3& axis() { return m_axis; } + + /** Concatenates two rotations */ + inline QuaternionType operator* (const AngleAxis& other) const + { return QuaternionType(*this) * QuaternionType(other); } + + /** Concatenates two rotations */ + inline QuaternionType operator* (const QuaternionType& other) const + { return QuaternionType(*this) * other; } + + /** Concatenates two rotations */ + friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) + { return a * QuaternionType(b); } + + /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ + AngleAxis inverse() const + { return AngleAxis(-m_angle, m_axis); } + + template<class QuatDerived> + AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); + template<typename Derived> + AngleAxis& operator=(const MatrixBase<Derived>& m); + + template<typename Derived> + AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); + Matrix3 toRotationMatrix(void) const; + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template<typename NewScalarType> + inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const + { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template<typename OtherScalarType> + inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) + { + m_axis = other.axis().template cast<Scalar>(); + m_angle = Scalar(other.angle()); + } + + static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const + { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); } +}; + +/** \ingroup Geometry_Module + * single precision angle-axis type */ +typedef AngleAxis<float> AngleAxisf; +/** \ingroup Geometry_Module + * double precision angle-axis type */ +typedef AngleAxis<double> AngleAxisd; + +/** Set \c *this from a \b unit quaternion. + * The axis is normalized. + * + * \warning As any other method dealing with quaternion, if the input quaternion + * is not normalized then the result is undefined. + */ +template<typename Scalar> +template<typename QuatDerived> +AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) +{ + using std::acos; + using std::min; + using std::max; + using std::sqrt; + Scalar n2 = q.vec().squaredNorm(); + if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision()) + { + m_angle = Scalar(0); + m_axis << Scalar(1), Scalar(0), Scalar(0); + } + else + { + m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1))); + m_axis = q.vec() / sqrt(n2); + } + return *this; +} + +/** Set \c *this from a 3x3 rotation matrix \a mat. + */ +template<typename Scalar> +template<typename Derived> +AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) +{ + // Since a direct conversion would not be really faster, + // let's use the robust Quaternion implementation: + return *this = QuaternionType(mat); +} + +/** +* \brief Sets \c *this from a 3x3 rotation matrix. +**/ +template<typename Scalar> +template<typename Derived> +AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) +{ + return *this = QuaternionType(mat); +} + +/** Constructs and \returns an equivalent 3x3 rotation matrix. + */ +template<typename Scalar> +typename AngleAxis<Scalar>::Matrix3 +AngleAxis<Scalar>::toRotationMatrix(void) const +{ + using std::sin; + using std::cos; + Matrix3 res; + Vector3 sin_axis = sin(m_angle) * m_axis; + Scalar c = cos(m_angle); + Vector3 cos1_axis = (Scalar(1)-c) * m_axis; + + Scalar tmp; + tmp = cos1_axis.x() * m_axis.y(); + res.coeffRef(0,1) = tmp - sin_axis.z(); + res.coeffRef(1,0) = tmp + sin_axis.z(); + + tmp = cos1_axis.x() * m_axis.z(); + res.coeffRef(0,2) = tmp + sin_axis.y(); + res.coeffRef(2,0) = tmp - sin_axis.y(); + + tmp = cos1_axis.y() * m_axis.z(); + res.coeffRef(1,2) = tmp - sin_axis.x(); + res.coeffRef(2,1) = tmp + sin_axis.x(); + + res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; + + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_ANGLEAXIS_H diff --git a/eigen/Eigen/src/Geometry/CMakeLists.txt b/eigen/Eigen/src/Geometry/CMakeLists.txt new file mode 100644 index 0000000..f8f728b --- /dev/null +++ b/eigen/Eigen/src/Geometry/CMakeLists.txt @@ -0,0 +1,8 @@ +FILE(GLOB Eigen_Geometry_SRCS "*.h") + +INSTALL(FILES + ${Eigen_Geometry_SRCS} + DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Geometry COMPONENT Devel + ) + +ADD_SUBDIRECTORY(arch) diff --git a/eigen/Eigen/src/Geometry/EulerAngles.h b/eigen/Eigen/src/Geometry/EulerAngles.h new file mode 100644 index 0000000..82802fb --- /dev/null +++ b/eigen/Eigen/src/Geometry/EulerAngles.h @@ -0,0 +1,104 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_EULERANGLES_H +#define EIGEN_EULERANGLES_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * + * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) + * + * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. + * For instance, in: + * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode + * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that + * we have the following equality: + * \code + * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) + * * AngleAxisf(ea[1], Vector3f::UnitX()) + * * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode + * This corresponds to the right-multiply conventions (with right hand side frames). + * + * The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi]. + * + * \sa class AngleAxis + */ +template<typename Derived> +inline Matrix<typename MatrixBase<Derived>::Scalar,3,1> +MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const +{ + using std::atan2; + using std::sin; + using std::cos; + /* Implemented from Graphics Gems IV */ + EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3) + + Matrix<Scalar,3,1> res; + typedef Matrix<typename Derived::Scalar,2,1> Vector2; + + const Index odd = ((a0+1)%3 == a1) ? 0 : 1; + const Index i = a0; + const Index j = (a0 + 1 + odd)%3; + const Index k = (a0 + 2 - odd)%3; + + if (a0==a2) + { + res[0] = atan2(coeff(j,i), coeff(k,i)); + if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) + { + res[0] = (res[0] > Scalar(0)) ? res[0] - Scalar(M_PI) : res[0] + Scalar(M_PI); + Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); + res[1] = -atan2(s2, coeff(i,i)); + } + else + { + Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); + res[1] = atan2(s2, coeff(i,i)); + } + + // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, + // we can compute their respective rotation, and apply its inverse to M. Since the result must + // be a rotation around x, we have: + // + // c2 s1.s2 c1.s2 1 0 0 + // 0 c1 -s1 * M = 0 c3 s3 + // -s2 s1.c2 c1.c2 0 -s3 c3 + // + // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3 + + Scalar s1 = sin(res[0]); + Scalar c1 = cos(res[0]); + res[2] = atan2(c1*coeff(j,k)-s1*coeff(k,k), c1*coeff(j,j) - s1 * coeff(k,j)); + } + else + { + res[0] = atan2(coeff(j,k), coeff(k,k)); + Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm(); + if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) { + res[0] = (res[0] > Scalar(0)) ? res[0] - Scalar(M_PI) : res[0] + Scalar(M_PI); + res[1] = atan2(-coeff(i,k), -c2); + } + else + res[1] = atan2(-coeff(i,k), c2); + Scalar s1 = sin(res[0]); + Scalar c1 = cos(res[0]); + res[2] = atan2(s1*coeff(k,i)-c1*coeff(j,i), c1*coeff(j,j) - s1 * coeff(k,j)); + } + if (!odd) + res = -res; + + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_EULERANGLES_H diff --git a/eigen/Eigen/src/Geometry/Homogeneous.h b/eigen/Eigen/src/Geometry/Homogeneous.h new file mode 100644 index 0000000..820ac96 --- /dev/null +++ b/eigen/Eigen/src/Geometry/Homogeneous.h @@ -0,0 +1,307 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HOMOGENEOUS_H +#define EIGEN_HOMOGENEOUS_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Homogeneous + * + * \brief Expression of one (or a set of) homogeneous vector(s) + * + * \param MatrixType the type of the object in which we are making homogeneous + * + * This class represents an expression of one (or a set of) homogeneous vector(s). + * It is the return type of MatrixBase::homogeneous() and most of the time + * this is the only way it is used. + * + * \sa MatrixBase::homogeneous() + */ + +namespace internal { + +template<typename MatrixType,int Direction> +struct traits<Homogeneous<MatrixType,Direction> > + : traits<MatrixType> +{ + typedef typename traits<MatrixType>::StorageKind StorageKind; + typedef typename nested<MatrixType>::type MatrixTypeNested; + typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested; + enum { + RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? + int(MatrixType::RowsAtCompileTime) + 1 : Dynamic, + ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? + int(MatrixType::ColsAtCompileTime) + 1 : Dynamic, + RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime, + ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime, + MaxRowsAtCompileTime = RowsAtCompileTime, + MaxColsAtCompileTime = ColsAtCompileTime, + TmpFlags = _MatrixTypeNested::Flags & HereditaryBits, + Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit) + : RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit) + : TmpFlags, + CoeffReadCost = _MatrixTypeNested::CoeffReadCost + }; +}; + +template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl; +template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl; + +} // end namespace internal + +template<typename MatrixType,int _Direction> class Homogeneous + : internal::no_assignment_operator, public MatrixBase<Homogeneous<MatrixType,_Direction> > +{ + public: + + enum { Direction = _Direction }; + + typedef MatrixBase<Homogeneous> Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous) + + inline Homogeneous(const MatrixType& matrix) + : m_matrix(matrix) + {} + + inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); } + inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); } + + inline Scalar coeff(Index row, Index col=0) const + { + if( (int(Direction)==Vertical && row==m_matrix.rows()) + || (int(Direction)==Horizontal && col==m_matrix.cols())) + return Scalar(1); + return m_matrix.coeff(row, col); + } + + template<typename Rhs> + inline const internal::homogeneous_right_product_impl<Homogeneous,Rhs> + operator* (const MatrixBase<Rhs>& rhs) const + { + eigen_assert(int(Direction)==Horizontal); + return internal::homogeneous_right_product_impl<Homogeneous,Rhs>(m_matrix,rhs.derived()); + } + + template<typename Lhs> friend + inline const internal::homogeneous_left_product_impl<Homogeneous,Lhs> + operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs) + { + eigen_assert(int(Direction)==Vertical); + return internal::homogeneous_left_product_impl<Homogeneous,Lhs>(lhs.derived(),rhs.m_matrix); + } + + template<typename Scalar, int Dim, int Mode, int Options> friend + inline const internal::homogeneous_left_product_impl<Homogeneous,Transform<Scalar,Dim,Mode,Options> > + operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs) + { + eigen_assert(int(Direction)==Vertical); + return internal::homogeneous_left_product_impl<Homogeneous,Transform<Scalar,Dim,Mode,Options> >(lhs,rhs.m_matrix); + } + + protected: + typename MatrixType::Nested m_matrix; +}; + +/** \geometry_module + * + * \return an expression of the equivalent homogeneous vector + * + * \only_for_vectors + * + * Example: \include MatrixBase_homogeneous.cpp + * Output: \verbinclude MatrixBase_homogeneous.out + * + * \sa class Homogeneous + */ +template<typename Derived> +inline typename MatrixBase<Derived>::HomogeneousReturnType +MatrixBase<Derived>::homogeneous() const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + return derived(); +} + +/** \geometry_module + * + * \returns a matrix expression of homogeneous column (or row) vectors + * + * Example: \include VectorwiseOp_homogeneous.cpp + * Output: \verbinclude VectorwiseOp_homogeneous.out + * + * \sa MatrixBase::homogeneous() */ +template<typename ExpressionType, int Direction> +inline Homogeneous<ExpressionType,Direction> +VectorwiseOp<ExpressionType,Direction>::homogeneous() const +{ + return _expression(); +} + +/** \geometry_module + * + * \returns an expression of the homogeneous normalized vector of \c *this + * + * Example: \include MatrixBase_hnormalized.cpp + * Output: \verbinclude MatrixBase_hnormalized.out + * + * \sa VectorwiseOp::hnormalized() */ +template<typename Derived> +inline const typename MatrixBase<Derived>::HNormalizedReturnType +MatrixBase<Derived>::hnormalized() const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + return ConstStartMinusOne(derived(),0,0, + ColsAtCompileTime==1?size()-1:1, + ColsAtCompileTime==1?1:size()-1) / coeff(size()-1); +} + +/** \geometry_module + * + * \returns an expression of the homogeneous normalized vector of \c *this + * + * Example: \include DirectionWise_hnormalized.cpp + * Output: \verbinclude DirectionWise_hnormalized.out + * + * \sa MatrixBase::hnormalized() */ +template<typename ExpressionType, int Direction> +inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType +VectorwiseOp<ExpressionType,Direction>::hnormalized() const +{ + return HNormalized_Block(_expression(),0,0, + Direction==Vertical ? _expression().rows()-1 : _expression().rows(), + Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient( + Replicate<HNormalized_Factors, + Direction==Vertical ? HNormalized_SizeMinusOne : 1, + Direction==Horizontal ? HNormalized_SizeMinusOne : 1> + (HNormalized_Factors(_expression(), + Direction==Vertical ? _expression().rows()-1:0, + Direction==Horizontal ? _expression().cols()-1:0, + Direction==Vertical ? 1 : _expression().rows(), + Direction==Horizontal ? 1 : _expression().cols()), + Direction==Vertical ? _expression().rows()-1 : 1, + Direction==Horizontal ? _expression().cols()-1 : 1)); +} + +namespace internal { + +template<typename MatrixOrTransformType> +struct take_matrix_for_product +{ + typedef MatrixOrTransformType type; + static const type& run(const type &x) { return x; } +}; + +template<typename Scalar, int Dim, int Mode,int Options> +struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> > +{ + typedef Transform<Scalar, Dim, Mode, Options> TransformType; + typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type; + static type run (const TransformType& x) { return x.affine(); } +}; + +template<typename Scalar, int Dim, int Options> +struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> > +{ + typedef Transform<Scalar, Dim, Projective, Options> TransformType; + typedef typename TransformType::MatrixType type; + static const type& run (const TransformType& x) { return x.matrix(); } +}; + +template<typename MatrixType,typename Lhs> +struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> > +{ + typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType; + typedef typename remove_all<MatrixType>::type MatrixTypeCleaned; + typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned; + typedef typename make_proper_matrix_type< + typename traits<MatrixTypeCleaned>::Scalar, + LhsMatrixTypeCleaned::RowsAtCompileTime, + MatrixTypeCleaned::ColsAtCompileTime, + MatrixTypeCleaned::PlainObject::Options, + LhsMatrixTypeCleaned::MaxRowsAtCompileTime, + MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType; +}; + +template<typename MatrixType,typename Lhs> +struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> + : public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> > +{ + typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType; + typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned; + typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested; + typedef typename MatrixType::Index Index; + homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs) + : m_lhs(take_matrix_for_product<Lhs>::run(lhs)), + m_rhs(rhs) + {} + + inline Index rows() const { return m_lhs.rows(); } + inline Index cols() const { return m_rhs.cols(); } + + template<typename Dest> void evalTo(Dest& dst) const + { + // FIXME investigate how to allow lazy evaluation of this product when possible + dst = Block<const LhsMatrixTypeNested, + LhsMatrixTypeNested::RowsAtCompileTime, + LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1> + (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs; + dst += m_lhs.col(m_lhs.cols()-1).rowwise() + .template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols()); + } + + typename LhsMatrixTypeCleaned::Nested m_lhs; + typename MatrixType::Nested m_rhs; +}; + +template<typename MatrixType,typename Rhs> +struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> > +{ + typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar, + MatrixType::RowsAtCompileTime, + Rhs::ColsAtCompileTime, + MatrixType::PlainObject::Options, + MatrixType::MaxRowsAtCompileTime, + Rhs::MaxColsAtCompileTime>::type ReturnType; +}; + +template<typename MatrixType,typename Rhs> +struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> + : public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> > +{ + typedef typename remove_all<typename Rhs::Nested>::type RhsNested; + typedef typename MatrixType::Index Index; + homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) + : m_lhs(lhs), m_rhs(rhs) + {} + + inline Index rows() const { return m_lhs.rows(); } + inline Index cols() const { return m_rhs.cols(); } + + template<typename Dest> void evalTo(Dest& dst) const + { + // FIXME investigate how to allow lazy evaluation of this product when possible + dst = m_lhs * Block<const RhsNested, + RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1, + RhsNested::ColsAtCompileTime> + (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols()); + dst += m_rhs.row(m_rhs.rows()-1).colwise() + .template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows()); + } + + typename MatrixType::Nested m_lhs; + typename Rhs::Nested m_rhs; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_HOMOGENEOUS_H diff --git a/eigen/Eigen/src/Geometry/Hyperplane.h b/eigen/Eigen/src/Geometry/Hyperplane.h new file mode 100644 index 0000000..00b7c43 --- /dev/null +++ b/eigen/Eigen/src/Geometry/Hyperplane.h @@ -0,0 +1,280 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HYPERPLANE_H +#define EIGEN_HYPERPLANE_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Hyperplane + * + * \brief A hyperplane + * + * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. + * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane. + * + * \param _Scalar the scalar type, i.e., the type of the coefficients + * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. + * Notice that the dimension of the hyperplane is _AmbientDim-1. + * + * This class represents an hyperplane as the zero set of the implicit equation + * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part) + * and \f$ d \f$ is the distance (offset) to the origin. + */ +template <typename _Scalar, int _AmbientDim, int _Options> +class Hyperplane +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1) + enum { + AmbientDimAtCompileTime = _AmbientDim, + Options = _Options + }; + typedef _Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef DenseIndex Index; + typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; + typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic + ? Dynamic + : Index(AmbientDimAtCompileTime)+1,1,Options> Coefficients; + typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType; + typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType; + + /** Default constructor without initialization */ + inline Hyperplane() {} + + template<int OtherOptions> + Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other) + : m_coeffs(other.coeffs()) + {} + + /** Constructs a dynamic-size hyperplane with \a _dim the dimension + * of the ambient space */ + inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {} + + /** Construct a plane from its normal \a n and a point \a e onto the plane. + * \warning the vector normal is assumed to be normalized. + */ + inline Hyperplane(const VectorType& n, const VectorType& e) + : m_coeffs(n.size()+1) + { + normal() = n; + offset() = -n.dot(e); + } + + /** Constructs a plane from its normal \a n and distance to the origin \a d + * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$. + * \warning the vector normal is assumed to be normalized. + */ + inline Hyperplane(const VectorType& n, const Scalar& d) + : m_coeffs(n.size()+1) + { + normal() = n; + offset() = d; + } + + /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space + * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made. + */ + static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) + { + Hyperplane result(p0.size()); + result.normal() = (p1 - p0).unitOrthogonal(); + result.offset() = -p0.dot(result.normal()); + return result; + } + + /** Constructs a hyperplane passing through the three points. The dimension of the ambient space + * is required to be exactly 3. + */ + static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3) + Hyperplane result(p0.size()); + VectorType v0(p2 - p0), v1(p1 - p0); + result.normal() = v0.cross(v1); + RealScalar norm = result.normal().norm(); + if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon()) + { + Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); + JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); + result.normal() = svd.matrixV().col(2); + } + else + result.normal() /= norm; + result.offset() = -p0.dot(result.normal()); + return result; + } + + /** Constructs a hyperplane passing through the parametrized line \a parametrized. + * If the dimension of the ambient space is greater than 2, then there isn't uniqueness, + * so an arbitrary choice is made. + */ + // FIXME to be consitent with the rest this could be implemented as a static Through function ?? + explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized) + { + normal() = parametrized.direction().unitOrthogonal(); + offset() = -parametrized.origin().dot(normal()); + } + + ~Hyperplane() {} + + /** \returns the dimension in which the plane holds */ + inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); } + + /** normalizes \c *this */ + void normalize(void) + { + m_coeffs /= normal().norm(); + } + + /** \returns the signed distance between the plane \c *this and a point \a p. + * \sa absDistance() + */ + inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); } + + /** \returns the absolute distance between the plane \c *this and a point \a p. + * \sa signedDistance() + */ + inline Scalar absDistance(const VectorType& p) const { using std::abs; return abs(signedDistance(p)); } + + /** \returns the projection of a point \a p onto the plane \c *this. + */ + inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); } + + /** \returns a constant reference to the unit normal vector of the plane, which corresponds + * to the linear part of the implicit equation. + */ + inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); } + + /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds + * to the linear part of the implicit equation. + */ + inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); } + + /** \returns the distance to the origin, which is also the "constant term" of the implicit equation + * \warning the vector normal is assumed to be normalized. + */ + inline const Scalar& offset() const { return m_coeffs.coeff(dim()); } + + /** \returns a non-constant reference to the distance to the origin, which is also the constant part + * of the implicit equation */ + inline Scalar& offset() { return m_coeffs(dim()); } + + /** \returns a constant reference to the coefficients c_i of the plane equation: + * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ + */ + inline const Coefficients& coeffs() const { return m_coeffs; } + + /** \returns a non-constant reference to the coefficients c_i of the plane equation: + * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ + */ + inline Coefficients& coeffs() { return m_coeffs; } + + /** \returns the intersection of *this with \a other. + * + * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines. + * + * \note If \a other is approximately parallel to *this, this method will return any point on *this. + */ + VectorType intersection(const Hyperplane& other) const + { + using std::abs; + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) + Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0); + // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests + // whether the two lines are approximately parallel. + if(internal::isMuchSmallerThan(det, Scalar(1))) + { // special case where the two lines are approximately parallel. Pick any point on the first line. + if(abs(coeffs().coeff(1))>abs(coeffs().coeff(0))) + return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0)); + else + return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0)); + } + else + { // general case + Scalar invdet = Scalar(1) / det; + return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)), + invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2))); + } + } + + /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. + * + * \param mat the Dim x Dim transformation matrix + * \param traits specifies whether the matrix \a mat represents an #Isometry + * or a more generic #Affine transformation. The default is #Affine. + */ + template<typename XprType> + inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine) + { + if (traits==Affine) + normal() = mat.inverse().transpose() * normal(); + else if (traits==Isometry) + normal() = mat * normal(); + else + { + eigen_assert(0 && "invalid traits value in Hyperplane::transform()"); + } + return *this; + } + + /** Applies the transformation \a t to \c *this and returns a reference to \c *this. + * + * \param t the transformation of dimension Dim + * \param traits specifies whether the transformation \a t represents an #Isometry + * or a more generic #Affine transformation. The default is #Affine. + * Other kind of transformations are not supported. + */ + template<int TrOptions> + inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t, + TransformTraits traits = Affine) + { + transform(t.linear(), traits); + offset() -= normal().dot(t.translation()); + return *this; + } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template<typename NewScalarType> + inline typename internal::cast_return_type<Hyperplane, + Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const + { + return typename internal::cast_return_type<Hyperplane, + Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this); + } + + /** Copy constructor with scalar type conversion */ + template<typename OtherScalarType,int OtherOptions> + inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other) + { m_coeffs = other.coeffs().template cast<Scalar>(); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + template<int OtherOptions> + bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const + { return m_coeffs.isApprox(other.m_coeffs, prec); } + +protected: + + Coefficients m_coeffs; +}; + +} // end namespace Eigen + +#endif // EIGEN_HYPERPLANE_H diff --git a/eigen/Eigen/src/Geometry/OrthoMethods.h b/eigen/Eigen/src/Geometry/OrthoMethods.h new file mode 100644 index 0000000..556bc81 --- /dev/null +++ b/eigen/Eigen/src/Geometry/OrthoMethods.h @@ -0,0 +1,218 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ORTHOMETHODS_H +#define EIGEN_ORTHOMETHODS_H + +namespace Eigen { + +/** \geometry_module + * + * \returns the cross product of \c *this and \a other + * + * Here is a very good explanation of cross-product: http://xkcd.com/199/ + * \sa MatrixBase::cross3() + */ +template<typename Derived> +template<typename OtherDerived> +inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type +MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) + + // Note that there is no need for an expression here since the compiler + // optimize such a small temporary very well (even within a complex expression) + typename internal::nested<Derived,2>::type lhs(derived()); + typename internal::nested<OtherDerived,2>::type rhs(other.derived()); + return typename cross_product_return_type<OtherDerived>::type( + numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), + numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), + numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)) + ); +} + +namespace internal { + +template< int Arch,typename VectorLhs,typename VectorRhs, + typename Scalar = typename VectorLhs::Scalar, + bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)> +struct cross3_impl { + static inline typename internal::plain_matrix_type<VectorLhs>::type + run(const VectorLhs& lhs, const VectorRhs& rhs) + { + return typename internal::plain_matrix_type<VectorLhs>::type( + numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), + numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), + numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)), + 0 + ); + } +}; + +} + +/** \geometry_module + * + * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients + * + * The size of \c *this and \a other must be four. This function is especially useful + * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization. + * + * \sa MatrixBase::cross() + */ +template<typename Derived> +template<typename OtherDerived> +inline typename MatrixBase<Derived>::PlainObject +MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4) + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4) + + typedef typename internal::nested<Derived,2>::type DerivedNested; + typedef typename internal::nested<OtherDerived,2>::type OtherDerivedNested; + DerivedNested lhs(derived()); + OtherDerivedNested rhs(other.derived()); + + return internal::cross3_impl<Architecture::Target, + typename internal::remove_all<DerivedNested>::type, + typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs); +} + +/** \returns a matrix expression of the cross product of each column or row + * of the referenced expression with the \a other vector. + * + * The referenced matrix must have one dimension equal to 3. + * The result matrix has the same dimensions than the referenced one. + * + * \geometry_module + * + * \sa MatrixBase::cross() */ +template<typename ExpressionType, int Direction> +template<typename OtherDerived> +const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType +VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + + CrossReturnType res(_expression().rows(),_expression().cols()); + if(Direction==Vertical) + { + eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows"); + res.row(0) = (_expression().row(1) * other.coeff(2) - _expression().row(2) * other.coeff(1)).conjugate(); + res.row(1) = (_expression().row(2) * other.coeff(0) - _expression().row(0) * other.coeff(2)).conjugate(); + res.row(2) = (_expression().row(0) * other.coeff(1) - _expression().row(1) * other.coeff(0)).conjugate(); + } + else + { + eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns"); + res.col(0) = (_expression().col(1) * other.coeff(2) - _expression().col(2) * other.coeff(1)).conjugate(); + res.col(1) = (_expression().col(2) * other.coeff(0) - _expression().col(0) * other.coeff(2)).conjugate(); + res.col(2) = (_expression().col(0) * other.coeff(1) - _expression().col(1) * other.coeff(0)).conjugate(); + } + return res; +} + +namespace internal { + +template<typename Derived, int Size = Derived::SizeAtCompileTime> +struct unitOrthogonal_selector +{ + typedef typename plain_matrix_type<Derived>::type VectorType; + typedef typename traits<Derived>::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef typename Derived::Index Index; + typedef Matrix<Scalar,2,1> Vector2; + static inline VectorType run(const Derived& src) + { + VectorType perp = VectorType::Zero(src.size()); + Index maxi = 0; + Index sndi = 0; + src.cwiseAbs().maxCoeff(&maxi); + if (maxi==0) + sndi = 1; + RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm(); + perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm; + perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm; + + return perp; + } +}; + +template<typename Derived> +struct unitOrthogonal_selector<Derived,3> +{ + typedef typename plain_matrix_type<Derived>::type VectorType; + typedef typename traits<Derived>::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + static inline VectorType run(const Derived& src) + { + VectorType perp; + /* Let us compute the crossed product of *this with a vector + * that is not too close to being colinear to *this. + */ + + /* unless the x and y coords are both close to zero, we can + * simply take ( -y, x, 0 ) and normalize it. + */ + if((!isMuchSmallerThan(src.x(), src.z())) + || (!isMuchSmallerThan(src.y(), src.z()))) + { + RealScalar invnm = RealScalar(1)/src.template head<2>().norm(); + perp.coeffRef(0) = -numext::conj(src.y())*invnm; + perp.coeffRef(1) = numext::conj(src.x())*invnm; + perp.coeffRef(2) = 0; + } + /* if both x and y are close to zero, then the vector is close + * to the z-axis, so it's far from colinear to the x-axis for instance. + * So we take the crossed product with (1,0,0) and normalize it. + */ + else + { + RealScalar invnm = RealScalar(1)/src.template tail<2>().norm(); + perp.coeffRef(0) = 0; + perp.coeffRef(1) = -numext::conj(src.z())*invnm; + perp.coeffRef(2) = numext::conj(src.y())*invnm; + } + + return perp; + } +}; + +template<typename Derived> +struct unitOrthogonal_selector<Derived,2> +{ + typedef typename plain_matrix_type<Derived>::type VectorType; + static inline VectorType run(const Derived& src) + { return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); } +}; + +} // end namespace internal + +/** \returns a unit vector which is orthogonal to \c *this + * + * The size of \c *this must be at least 2. If the size is exactly 2, + * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). + * + * \sa cross() + */ +template<typename Derived> +typename MatrixBase<Derived>::PlainObject +MatrixBase<Derived>::unitOrthogonal() const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return internal::unitOrthogonal_selector<Derived>::run(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_ORTHOMETHODS_H diff --git a/eigen/Eigen/src/Geometry/ParametrizedLine.h b/eigen/Eigen/src/Geometry/ParametrizedLine.h new file mode 100644 index 0000000..cf3252d --- /dev/null +++ b/eigen/Eigen/src/Geometry/ParametrizedLine.h @@ -0,0 +1,195 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PARAMETRIZEDLINE_H +#define EIGEN_PARAMETRIZEDLINE_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class ParametrizedLine + * + * \brief A parametrized line + * + * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit + * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to + * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ t \in \mathbf{R} \f$. + * + * \param _Scalar the scalar type, i.e., the type of the coefficients + * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. + */ +template <typename _Scalar, int _AmbientDim, int _Options> +class ParametrizedLine +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) + enum { + AmbientDimAtCompileTime = _AmbientDim, + Options = _Options + }; + typedef _Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef DenseIndex Index; + typedef Matrix<Scalar,AmbientDimAtCompileTime,1,Options> VectorType; + + /** Default constructor without initialization */ + inline ParametrizedLine() {} + + template<int OtherOptions> + ParametrizedLine(const ParametrizedLine<Scalar,AmbientDimAtCompileTime,OtherOptions>& other) + : m_origin(other.origin()), m_direction(other.direction()) + {} + + /** Constructs a dynamic-size line with \a _dim the dimension + * of the ambient space */ + inline explicit ParametrizedLine(Index _dim) : m_origin(_dim), m_direction(_dim) {} + + /** Initializes a parametrized line of direction \a direction and origin \a origin. + * \warning the vector direction is assumed to be normalized. + */ + ParametrizedLine(const VectorType& origin, const VectorType& direction) + : m_origin(origin), m_direction(direction) {} + + template <int OtherOptions> + explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane); + + /** Constructs a parametrized line going from \a p0 to \a p1. */ + static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1) + { return ParametrizedLine(p0, (p1-p0).normalized()); } + + ~ParametrizedLine() {} + + /** \returns the dimension in which the line holds */ + inline Index dim() const { return m_direction.size(); } + + const VectorType& origin() const { return m_origin; } + VectorType& origin() { return m_origin; } + + const VectorType& direction() const { return m_direction; } + VectorType& direction() { return m_direction; } + + /** \returns the squared distance of a point \a p to its projection onto the line \c *this. + * \sa distance() + */ + RealScalar squaredDistance(const VectorType& p) const + { + VectorType diff = p - origin(); + return (diff - direction().dot(diff) * direction()).squaredNorm(); + } + /** \returns the distance of a point \a p to its projection onto the line \c *this. + * \sa squaredDistance() + */ + RealScalar distance(const VectorType& p) const { using std::sqrt; return sqrt(squaredDistance(p)); } + + /** \returns the projection of a point \a p onto the line \c *this. */ + VectorType projection(const VectorType& p) const + { return origin() + direction().dot(p-origin()) * direction(); } + + VectorType pointAt(const Scalar& t) const; + + template <int OtherOptions> + Scalar intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const; + + template <int OtherOptions> + Scalar intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const; + + template <int OtherOptions> + VectorType intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const; + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template<typename NewScalarType> + inline typename internal::cast_return_type<ParametrizedLine, + ParametrizedLine<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const + { + return typename internal::cast_return_type<ParametrizedLine, + ParametrizedLine<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this); + } + + /** Copy constructor with scalar type conversion */ + template<typename OtherScalarType,int OtherOptions> + inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other) + { + m_origin = other.origin().template cast<Scalar>(); + m_direction = other.direction().template cast<Scalar>(); + } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + bool isApprox(const ParametrizedLine& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const + { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); } + +protected: + + VectorType m_origin, m_direction; +}; + +/** Constructs a parametrized line from a 2D hyperplane + * + * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line + */ +template <typename _Scalar, int _AmbientDim, int _Options> +template <int OtherOptions> +inline ParametrizedLine<_Scalar, _AmbientDim,_Options>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim,OtherOptions>& hyperplane) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) + direction() = hyperplane.normal().unitOrthogonal(); + origin() = -hyperplane.normal()*hyperplane.offset(); +} + +/** \returns the point at \a t along this line + */ +template <typename _Scalar, int _AmbientDim, int _Options> +inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType +ParametrizedLine<_Scalar, _AmbientDim,_Options>::pointAt(const _Scalar& t) const +{ + return origin() + (direction()*t); +} + +/** \returns the parameter value of the intersection between \c *this and the given \a hyperplane + */ +template <typename _Scalar, int _AmbientDim, int _Options> +template <int OtherOptions> +inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const +{ + return -(hyperplane.offset()+hyperplane.normal().dot(origin())) + / hyperplane.normal().dot(direction()); +} + + +/** \deprecated use intersectionParameter() + * \returns the parameter value of the intersection between \c *this and the given \a hyperplane + */ +template <typename _Scalar, int _AmbientDim, int _Options> +template <int OtherOptions> +inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const +{ + return intersectionParameter(hyperplane); +} + +/** \returns the point of the intersection between \c *this and the given hyperplane + */ +template <typename _Scalar, int _AmbientDim, int _Options> +template <int OtherOptions> +inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType +ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const +{ + return pointAt(intersectionParameter(hyperplane)); +} + +} // end namespace Eigen + +#endif // EIGEN_PARAMETRIZEDLINE_H diff --git a/eigen/Eigen/src/Geometry/Quaternion.h b/eigen/Eigen/src/Geometry/Quaternion.h new file mode 100644 index 0000000..e89ba80 --- /dev/null +++ b/eigen/Eigen/src/Geometry/Quaternion.h @@ -0,0 +1,776 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_QUATERNION_H +#define EIGEN_QUATERNION_H +namespace Eigen { + + +/*************************************************************************** +* Definition of QuaternionBase<Derived> +* The implementation is at the end of the file +***************************************************************************/ + +namespace internal { +template<typename Other, + int OtherRows=Other::RowsAtCompileTime, + int OtherCols=Other::ColsAtCompileTime> +struct quaternionbase_assign_impl; +} + +/** \geometry_module \ingroup Geometry_Module + * \class QuaternionBase + * \brief Base class for quaternion expressions + * \tparam Derived derived type (CRTP) + * \sa class Quaternion + */ +template<class Derived> +class QuaternionBase : public RotationBase<Derived, 3> +{ + typedef RotationBase<Derived, 3> Base; +public: + using Base::operator*; + using Base::derived; + + typedef typename internal::traits<Derived>::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef typename internal::traits<Derived>::Coefficients Coefficients; + enum { + Flags = Eigen::internal::traits<Derived>::Flags + }; + + // typedef typename Matrix<Scalar,4,1> Coefficients; + /** the type of a 3D vector */ + typedef Matrix<Scalar,3,1> Vector3; + /** the equivalent rotation matrix type */ + typedef Matrix<Scalar,3,3> Matrix3; + /** the equivalent angle-axis type */ + typedef AngleAxis<Scalar> AngleAxisType; + + + + /** \returns the \c x coefficient */ + inline Scalar x() const { return this->derived().coeffs().coeff(0); } + /** \returns the \c y coefficient */ + inline Scalar y() const { return this->derived().coeffs().coeff(1); } + /** \returns the \c z coefficient */ + inline Scalar z() const { return this->derived().coeffs().coeff(2); } + /** \returns the \c w coefficient */ + inline Scalar w() const { return this->derived().coeffs().coeff(3); } + + /** \returns a reference to the \c x coefficient */ + inline Scalar& x() { return this->derived().coeffs().coeffRef(0); } + /** \returns a reference to the \c y coefficient */ + inline Scalar& y() { return this->derived().coeffs().coeffRef(1); } + /** \returns a reference to the \c z coefficient */ + inline Scalar& z() { return this->derived().coeffs().coeffRef(2); } + /** \returns a reference to the \c w coefficient */ + inline Scalar& w() { return this->derived().coeffs().coeffRef(3); } + + /** \returns a read-only vector expression of the imaginary part (x,y,z) */ + inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); } + + /** \returns a vector expression of the imaginary part (x,y,z) */ + inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); } + + /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ + inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); } + + /** \returns a vector expression of the coefficients (x,y,z,w) */ + inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); } + + EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other); + template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other); + +// disabled this copy operator as it is giving very strange compilation errors when compiling +// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's +// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase +// we didn't have to add, in addition to templated operator=, such a non-templated copy operator. +// Derived& operator=(const QuaternionBase& other) +// { return operator=<Derived>(other); } + + Derived& operator=(const AngleAxisType& aa); + template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m); + + /** \returns a quaternion representing an identity rotation + * \sa MatrixBase::Identity() + */ + static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); } + + /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() + */ + inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; } + + /** \returns the squared norm of the quaternion's coefficients + * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() + */ + inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } + + /** \returns the norm of the quaternion's coefficients + * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() + */ + inline Scalar norm() const { return coeffs().norm(); } + + /** Normalizes the quaternion \c *this + * \sa normalized(), MatrixBase::normalize() */ + inline void normalize() { coeffs().normalize(); } + /** \returns a normalized copy of \c *this + * \sa normalize(), MatrixBase::normalized() */ + inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); } + + /** \returns the dot product of \c *this and \a other + * Geometrically speaking, the dot product of two unit quaternions + * corresponds to the cosine of half the angle between the two rotations. + * \sa angularDistance() + */ + template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); } + + template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const; + + /** \returns an equivalent 3x3 rotation matrix */ + Matrix3 toRotationMatrix() const; + + /** \returns the quaternion which transform \a a into \a b through a rotation */ + template<typename Derived1, typename Derived2> + Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); + + template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const; + template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q); + + /** \returns the quaternion describing the inverse rotation */ + Quaternion<Scalar> inverse() const; + + /** \returns the conjugated quaternion */ + Quaternion<Scalar> conjugate() const; + + template<class OtherDerived> Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const; + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + template<class OtherDerived> + bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const + { return coeffs().isApprox(other.coeffs(), prec); } + + /** return the result vector of \a v through the rotation*/ + EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const; + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template<typename NewScalarType> + inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const + { + return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived()); + } + +#ifdef EIGEN_QUATERNIONBASE_PLUGIN +# include EIGEN_QUATERNIONBASE_PLUGIN +#endif +}; + +/*************************************************************************** +* Definition/implementation of Quaternion<Scalar> +***************************************************************************/ + +/** \geometry_module \ingroup Geometry_Module + * + * \class Quaternion + * + * \brief The quaternion class used to represent 3D orientations and rotations + * + * \tparam _Scalar the scalar type, i.e., the type of the coefficients + * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign. + * + * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of + * orientations and rotations of objects in three dimensions. Compared to other representations + * like Euler angles or 3x3 matrices, quaternions offer the following advantages: + * \li \b compact storage (4 scalars) + * \li \b efficient to compose (28 flops), + * \li \b stable spherical interpolation + * + * The following two typedefs are provided for convenience: + * \li \c Quaternionf for \c float + * \li \c Quaterniond for \c double + * + * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized. + * + * \sa class AngleAxis, class Transform + */ + +namespace internal { +template<typename _Scalar,int _Options> +struct traits<Quaternion<_Scalar,_Options> > +{ + typedef Quaternion<_Scalar,_Options> PlainObject; + typedef _Scalar Scalar; + typedef Matrix<_Scalar,4,1,_Options> Coefficients; + enum{ + IsAligned = internal::traits<Coefficients>::Flags & AlignedBit, + Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit + }; +}; +} + +template<typename _Scalar, int _Options> +class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> > +{ + typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base; + enum { IsAligned = internal::traits<Quaternion>::IsAligned }; + +public: + typedef _Scalar Scalar; + + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion) + using Base::operator*=; + + typedef typename internal::traits<Quaternion>::Coefficients Coefficients; + typedef typename Base::AngleAxisType AngleAxisType; + + /** Default constructor leaving the quaternion uninitialized. */ + inline Quaternion() {} + + /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from + * its four coefficients \a w, \a x, \a y and \a z. + * + * \warning Note the order of the arguments: the real \a w coefficient first, + * while internally the coefficients are stored in the following order: + * [\c x, \c y, \c z, \c w] + */ + inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){} + + /** Constructs and initialize a quaternion from the array data */ + inline Quaternion(const Scalar* data) : m_coeffs(data) {} + + /** Copy constructor */ + template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); } + + /** Constructs and initializes a quaternion from the angle-axis \a aa */ + explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } + + /** Constructs and initializes a quaternion from either: + * - a rotation matrix expression, + * - a 4D vector expression representing quaternion coefficients. + */ + template<typename Derived> + explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; } + + /** Explicit copy constructor with scalar conversion */ + template<typename OtherScalar, int OtherOptions> + explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other) + { m_coeffs = other.coeffs().template cast<Scalar>(); } + + template<typename Derived1, typename Derived2> + static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); + + inline Coefficients& coeffs() { return m_coeffs;} + inline const Coefficients& coeffs() const { return m_coeffs;} + + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(IsAligned)) + +protected: + Coefficients m_coeffs; + +#ifndef EIGEN_PARSED_BY_DOXYGEN + static EIGEN_STRONG_INLINE void _check_template_params() + { + EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options, + INVALID_MATRIX_TEMPLATE_PARAMETERS) + } +#endif +}; + +/** \ingroup Geometry_Module + * single precision quaternion type */ +typedef Quaternion<float> Quaternionf; +/** \ingroup Geometry_Module + * double precision quaternion type */ +typedef Quaternion<double> Quaterniond; + +/*************************************************************************** +* Specialization of Map<Quaternion<Scalar>> +***************************************************************************/ + +namespace internal { + template<typename _Scalar, int _Options> + struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > + { + typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients; + }; +} + +namespace internal { + template<typename _Scalar, int _Options> + struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > + { + typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients; + typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase; + enum { + Flags = TraitsBase::Flags & ~LvalueBit + }; + }; +} + +/** \ingroup Geometry_Module + * \brief Quaternion expression mapping a constant memory buffer + * + * \tparam _Scalar the type of the Quaternion coefficients + * \tparam _Options see class Map + * + * This is a specialization of class Map for Quaternion. This class allows to view + * a 4 scalar memory buffer as an Eigen's Quaternion object. + * + * \sa class Map, class Quaternion, class QuaternionBase + */ +template<typename _Scalar, int _Options> +class Map<const Quaternion<_Scalar>, _Options > + : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > +{ + typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base; + + public: + typedef _Scalar Scalar; + typedef typename internal::traits<Map>::Coefficients Coefficients; + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) + using Base::operator*=; + + /** Constructs a Mapped Quaternion object from the pointer \a coeffs + * + * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: + * \code *coeffs == {x, y, z, w} \endcode + * + * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ + EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} + + inline const Coefficients& coeffs() const { return m_coeffs;} + + protected: + const Coefficients m_coeffs; +}; + +/** \ingroup Geometry_Module + * \brief Expression of a quaternion from a memory buffer + * + * \tparam _Scalar the type of the Quaternion coefficients + * \tparam _Options see class Map + * + * This is a specialization of class Map for Quaternion. This class allows to view + * a 4 scalar memory buffer as an Eigen's Quaternion object. + * + * \sa class Map, class Quaternion, class QuaternionBase + */ +template<typename _Scalar, int _Options> +class Map<Quaternion<_Scalar>, _Options > + : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> > +{ + typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base; + + public: + typedef _Scalar Scalar; + typedef typename internal::traits<Map>::Coefficients Coefficients; + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) + using Base::operator*=; + + /** Constructs a Mapped Quaternion object from the pointer \a coeffs + * + * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: + * \code *coeffs == {x, y, z, w} \endcode + * + * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ + EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} + + inline Coefficients& coeffs() { return m_coeffs; } + inline const Coefficients& coeffs() const { return m_coeffs; } + + protected: + Coefficients m_coeffs; +}; + +/** \ingroup Geometry_Module + * Map an unaligned array of single precision scalars as a quaternion */ +typedef Map<Quaternion<float>, 0> QuaternionMapf; +/** \ingroup Geometry_Module + * Map an unaligned array of double precision scalars as a quaternion */ +typedef Map<Quaternion<double>, 0> QuaternionMapd; +/** \ingroup Geometry_Module + * Map a 16-byte aligned array of single precision scalars as a quaternion */ +typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf; +/** \ingroup Geometry_Module + * Map a 16-byte aligned array of double precision scalars as a quaternion */ +typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd; + +/*************************************************************************** +* Implementation of QuaternionBase methods +***************************************************************************/ + +// Generic Quaternion * Quaternion product +// This product can be specialized for a given architecture via the Arch template argument. +namespace internal { +template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product +{ + static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){ + return Quaternion<Scalar> + ( + a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), + a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), + a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), + a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() + ); + } +}; +} + +/** \returns the concatenation of two rotations as a quaternion-quaternion product */ +template <class Derived> +template <class OtherDerived> +EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar> +QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const +{ + EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + return internal::quat_product<Architecture::Target, Derived, OtherDerived, + typename internal::traits<Derived>::Scalar, + internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other); +} + +/** \sa operator*(Quaternion) */ +template <class Derived> +template <class OtherDerived> +EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other) +{ + derived() = derived() * other.derived(); + return derived(); +} + +/** Rotation of a vector by a quaternion. + * \remarks If the quaternion is used to rotate several points (>1) + * then it is much more efficient to first convert it to a 3x3 Matrix. + * Comparison of the operation cost for n transformations: + * - Quaternion2: 30n + * - Via a Matrix3: 24 + 15n + */ +template <class Derived> +EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3 +QuaternionBase<Derived>::_transformVector(const Vector3& v) const +{ + // Note that this algorithm comes from the optimization by hand + // of the conversion to a Matrix followed by a Matrix/Vector product. + // It appears to be much faster than the common algorithm found + // in the literature (30 versus 39 flops). It also requires two + // Vector3 as temporaries. + Vector3 uv = this->vec().cross(v); + uv += uv; + return v + this->w() * uv + this->vec().cross(uv); +} + +template<class Derived> +EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other) +{ + coeffs() = other.coeffs(); + return derived(); +} + +template<class Derived> +template<class OtherDerived> +EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other) +{ + coeffs() = other.coeffs(); + return derived(); +} + +/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this + */ +template<class Derived> +EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa) +{ + using std::cos; + using std::sin; + Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings + this->w() = cos(ha); + this->vec() = sin(ha) * aa.axis(); + return derived(); +} + +/** Set \c *this from the expression \a xpr: + * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion + * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix + * and \a xpr is converted to a quaternion + */ + +template<class Derived> +template<class MatrixDerived> +inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr) +{ + EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived()); + return derived(); +} + +/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to + * be normalized, otherwise the result is undefined. + */ +template<class Derived> +inline typename QuaternionBase<Derived>::Matrix3 +QuaternionBase<Derived>::toRotationMatrix(void) const +{ + // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) + // if not inlined then the cost of the return by value is huge ~ +35%, + // however, not inlining this function is an order of magnitude slower, so + // it has to be inlined, and so the return by value is not an issue + Matrix3 res; + + const Scalar tx = Scalar(2)*this->x(); + const Scalar ty = Scalar(2)*this->y(); + const Scalar tz = Scalar(2)*this->z(); + const Scalar twx = tx*this->w(); + const Scalar twy = ty*this->w(); + const Scalar twz = tz*this->w(); + const Scalar txx = tx*this->x(); + const Scalar txy = ty*this->x(); + const Scalar txz = tz*this->x(); + const Scalar tyy = ty*this->y(); + const Scalar tyz = tz*this->y(); + const Scalar tzz = tz*this->z(); + + res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); + res.coeffRef(0,1) = txy-twz; + res.coeffRef(0,2) = txz+twy; + res.coeffRef(1,0) = txy+twz; + res.coeffRef(1,1) = Scalar(1)-(txx+tzz); + res.coeffRef(1,2) = tyz-twx; + res.coeffRef(2,0) = txz-twy; + res.coeffRef(2,1) = tyz+twx; + res.coeffRef(2,2) = Scalar(1)-(txx+tyy); + + return res; +} + +/** Sets \c *this to be a quaternion representing a rotation between + * the two arbitrary vectors \a a and \a b. In other words, the built + * rotation represent a rotation sending the line of direction \a a + * to the line of direction \a b, both lines passing through the origin. + * + * \returns a reference to \c *this. + * + * Note that the two input vectors do \b not have to be normalized, and + * do not need to have the same norm. + */ +template<class Derived> +template<typename Derived1, typename Derived2> +inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) +{ + using std::max; + using std::sqrt; + Vector3 v0 = a.normalized(); + Vector3 v1 = b.normalized(); + Scalar c = v1.dot(v0); + + // if dot == -1, vectors are nearly opposites + // => accurately compute the rotation axis by computing the + // intersection of the two planes. This is done by solving: + // x^T v0 = 0 + // x^T v1 = 0 + // under the constraint: + // ||x|| = 1 + // which yields a singular value problem + if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision()) + { + c = (max)(c,Scalar(-1)); + Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); + JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); + Vector3 axis = svd.matrixV().col(2); + + Scalar w2 = (Scalar(1)+c)*Scalar(0.5); + this->w() = sqrt(w2); + this->vec() = axis * sqrt(Scalar(1) - w2); + return derived(); + } + Vector3 axis = v0.cross(v1); + Scalar s = sqrt((Scalar(1)+c)*Scalar(2)); + Scalar invs = Scalar(1)/s; + this->vec() = axis * invs; + this->w() = s * Scalar(0.5); + + return derived(); +} + + +/** Returns a quaternion representing a rotation between + * the two arbitrary vectors \a a and \a b. In other words, the built + * rotation represent a rotation sending the line of direction \a a + * to the line of direction \a b, both lines passing through the origin. + * + * \returns resulting quaternion + * + * Note that the two input vectors do \b not have to be normalized, and + * do not need to have the same norm. + */ +template<typename Scalar, int Options> +template<typename Derived1, typename Derived2> +Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) +{ + Quaternion quat; + quat.setFromTwoVectors(a, b); + return quat; +} + + +/** \returns the multiplicative inverse of \c *this + * Note that in most cases, i.e., if you simply want the opposite rotation, + * and/or the quaternion is normalized, then it is enough to use the conjugate. + * + * \sa QuaternionBase::conjugate() + */ +template <class Derived> +inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const +{ + // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? + Scalar n2 = this->squaredNorm(); + if (n2 > Scalar(0)) + return Quaternion<Scalar>(conjugate().coeffs() / n2); + else + { + // return an invalid result to flag the error + return Quaternion<Scalar>(Coefficients::Zero()); + } +} + +/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse + * if the quaternion is normalized. + * The conjugate of a quaternion represents the opposite rotation. + * + * \sa Quaternion2::inverse() + */ +template <class Derived> +inline Quaternion<typename internal::traits<Derived>::Scalar> +QuaternionBase<Derived>::conjugate() const +{ + return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z()); +} + +/** \returns the angle (in radian) between two rotations + * \sa dot() + */ +template <class Derived> +template <class OtherDerived> +inline typename internal::traits<Derived>::Scalar +QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const +{ + using std::atan2; + using std::abs; + Quaternion<Scalar> d = (*this) * other.conjugate(); + return Scalar(2) * atan2( d.vec().norm(), abs(d.w()) ); +} + + + +/** \returns the spherical linear interpolation between the two quaternions + * \c *this and \a other at the parameter \a t in [0;1]. + * + * This represents an interpolation for a constant motion between \c *this and \a other, + * see also http://en.wikipedia.org/wiki/Slerp. + */ +template <class Derived> +template <class OtherDerived> +Quaternion<typename internal::traits<Derived>::Scalar> +QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const +{ + using std::acos; + using std::sin; + using std::abs; + static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon(); + Scalar d = this->dot(other); + Scalar absD = abs(d); + + Scalar scale0; + Scalar scale1; + + if(absD>=one) + { + scale0 = Scalar(1) - t; + scale1 = t; + } + else + { + // theta is the angle between the 2 quaternions + Scalar theta = acos(absD); + Scalar sinTheta = sin(theta); + + scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta; + scale1 = sin( ( t * theta) ) / sinTheta; + } + if(d<Scalar(0)) scale1 = -scale1; + + return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); +} + +namespace internal { + +// set from a rotation matrix +template<typename Other> +struct quaternionbase_assign_impl<Other,3,3> +{ + typedef typename Other::Scalar Scalar; + typedef DenseIndex Index; + template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat) + { + using std::sqrt; + // This algorithm comes from "Quaternion Calculus and Fast Animation", + // Ken Shoemake, 1987 SIGGRAPH course notes + Scalar t = mat.trace(); + if (t > Scalar(0)) + { + t = sqrt(t + Scalar(1.0)); + q.w() = Scalar(0.5)*t; + t = Scalar(0.5)/t; + q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; + q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; + q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; + } + else + { + DenseIndex i = 0; + if (mat.coeff(1,1) > mat.coeff(0,0)) + i = 1; + if (mat.coeff(2,2) > mat.coeff(i,i)) + i = 2; + DenseIndex j = (i+1)%3; + DenseIndex k = (j+1)%3; + + t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); + q.coeffs().coeffRef(i) = Scalar(0.5) * t; + t = Scalar(0.5)/t; + q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; + q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; + q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; + } + } +}; + +// set from a vector of coefficients assumed to be a quaternion +template<typename Other> +struct quaternionbase_assign_impl<Other,4,1> +{ + typedef typename Other::Scalar Scalar; + template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec) + { + q.coeffs() = vec; + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_QUATERNION_H diff --git a/eigen/Eigen/src/Geometry/Rotation2D.h b/eigen/Eigen/src/Geometry/Rotation2D.h new file mode 100644 index 0000000..a2d59fc --- /dev/null +++ b/eigen/Eigen/src/Geometry/Rotation2D.h @@ -0,0 +1,160 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ROTATION2D_H +#define EIGEN_ROTATION2D_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Rotation2D + * + * \brief Represents a rotation/orientation in a 2 dimensional space. + * + * \param _Scalar the scalar type, i.e., the type of the coefficients + * + * This class is equivalent to a single scalar representing a counter clock wise rotation + * as a single angle in radian. It provides some additional features such as the automatic + * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar + * interface to Quaternion in order to facilitate the writing of generic algorithms + * dealing with rotations. + * + * \sa class Quaternion, class Transform + */ + +namespace internal { + +template<typename _Scalar> struct traits<Rotation2D<_Scalar> > +{ + typedef _Scalar Scalar; +}; +} // end namespace internal + +template<typename _Scalar> +class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2> +{ + typedef RotationBase<Rotation2D<_Scalar>,2> Base; + +public: + + using Base::operator*; + + enum { Dim = 2 }; + /** the scalar type of the coefficients */ + typedef _Scalar Scalar; + typedef Matrix<Scalar,2,1> Vector2; + typedef Matrix<Scalar,2,2> Matrix2; + +protected: + + Scalar m_angle; + +public: + + /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ + inline Rotation2D(const Scalar& a) : m_angle(a) {} + + /** Default constructor wihtout initialization. The represented rotation is undefined. */ + Rotation2D() {} + + /** \returns the rotation angle */ + inline Scalar angle() const { return m_angle; } + + /** \returns a read-write reference to the rotation angle */ + inline Scalar& angle() { return m_angle; } + + /** \returns the inverse rotation */ + inline Rotation2D inverse() const { return -m_angle; } + + /** Concatenates two rotations */ + inline Rotation2D operator*(const Rotation2D& other) const + { return m_angle + other.m_angle; } + + /** Concatenates two rotations */ + inline Rotation2D& operator*=(const Rotation2D& other) + { m_angle += other.m_angle; return *this; } + + /** Applies the rotation to a 2D vector */ + Vector2 operator* (const Vector2& vec) const + { return toRotationMatrix() * vec; } + + template<typename Derived> + Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); + Matrix2 toRotationMatrix() const; + + /** \returns the spherical interpolation between \c *this and \a other using + * parameter \a t. It is in fact equivalent to a linear interpolation. + */ + inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const + { return m_angle * (1-t) + other.angle() * t; } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template<typename NewScalarType> + inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const + { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template<typename OtherScalarType> + inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) + { + m_angle = Scalar(other.angle()); + } + + static inline Rotation2D Identity() { return Rotation2D(0); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const + { return internal::isApprox(m_angle,other.m_angle, prec); } +}; + +/** \ingroup Geometry_Module + * single precision 2D rotation type */ +typedef Rotation2D<float> Rotation2Df; +/** \ingroup Geometry_Module + * double precision 2D rotation type */ +typedef Rotation2D<double> Rotation2Dd; + +/** Set \c *this from a 2x2 rotation matrix \a mat. + * In other words, this function extract the rotation angle + * from the rotation matrix. + */ +template<typename Scalar> +template<typename Derived> +Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) +{ + using std::atan2; + EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) + m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0)); + return *this; +} + +/** Constructs and \returns an equivalent 2x2 rotation matrix. + */ +template<typename Scalar> +typename Rotation2D<Scalar>::Matrix2 +Rotation2D<Scalar>::toRotationMatrix(void) const +{ + using std::sin; + using std::cos; + Scalar sinA = sin(m_angle); + Scalar cosA = cos(m_angle); + return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); +} + +} // end namespace Eigen + +#endif // EIGEN_ROTATION2D_H diff --git a/eigen/Eigen/src/Geometry/RotationBase.h b/eigen/Eigen/src/Geometry/RotationBase.h new file mode 100644 index 0000000..b88661d --- /dev/null +++ b/eigen/Eigen/src/Geometry/RotationBase.h @@ -0,0 +1,206 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ROTATIONBASE_H +#define EIGEN_ROTATIONBASE_H + +namespace Eigen { + +// forward declaration +namespace internal { +template<typename RotationDerived, typename MatrixType, bool IsVector=MatrixType::IsVectorAtCompileTime> +struct rotation_base_generic_product_selector; +} + +/** \class RotationBase + * + * \brief Common base class for compact rotation representations + * + * \param Derived is the derived type, i.e., a rotation type + * \param _Dim the dimension of the space + */ +template<typename Derived, int _Dim> +class RotationBase +{ + public: + enum { Dim = _Dim }; + /** the scalar type of the coefficients */ + typedef typename internal::traits<Derived>::Scalar Scalar; + + /** corresponding linear transformation matrix type */ + typedef Matrix<Scalar,Dim,Dim> RotationMatrixType; + typedef Matrix<Scalar,Dim,1> VectorType; + + public: + inline const Derived& derived() const { return *static_cast<const Derived*>(this); } + inline Derived& derived() { return *static_cast<Derived*>(this); } + + /** \returns an equivalent rotation matrix */ + inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); } + + /** \returns an equivalent rotation matrix + * This function is added to be conform with the Transform class' naming scheme. + */ + inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); } + + /** \returns the inverse rotation */ + inline Derived inverse() const { return derived().inverse(); } + + /** \returns the concatenation of the rotation \c *this with a translation \a t */ + inline Transform<Scalar,Dim,Isometry> operator*(const Translation<Scalar,Dim>& t) const + { return Transform<Scalar,Dim,Isometry>(*this) * t; } + + /** \returns the concatenation of the rotation \c *this with a uniform scaling \a s */ + inline RotationMatrixType operator*(const UniformScaling<Scalar>& s) const + { return toRotationMatrix() * s.factor(); } + + /** \returns the concatenation of the rotation \c *this with a generic expression \a e + * \a e can be: + * - a DimxDim linear transformation matrix + * - a DimxDim diagonal matrix (axis aligned scaling) + * - a vector of size Dim + */ + template<typename OtherDerived> + EIGEN_STRONG_INLINE typename internal::rotation_base_generic_product_selector<Derived,OtherDerived,OtherDerived::IsVectorAtCompileTime>::ReturnType + operator*(const EigenBase<OtherDerived>& e) const + { return internal::rotation_base_generic_product_selector<Derived,OtherDerived>::run(derived(), e.derived()); } + + /** \returns the concatenation of a linear transformation \a l with the rotation \a r */ + template<typename OtherDerived> friend + inline RotationMatrixType operator*(const EigenBase<OtherDerived>& l, const Derived& r) + { return l.derived() * r.toRotationMatrix(); } + + /** \returns the concatenation of a scaling \a l with the rotation \a r */ + friend inline Transform<Scalar,Dim,Affine> operator*(const DiagonalMatrix<Scalar,Dim>& l, const Derived& r) + { + Transform<Scalar,Dim,Affine> res(r); + res.linear().applyOnTheLeft(l); + return res; + } + + /** \returns the concatenation of the rotation \c *this with a transformation \a t */ + template<int Mode, int Options> + inline Transform<Scalar,Dim,Mode> operator*(const Transform<Scalar,Dim,Mode,Options>& t) const + { return toRotationMatrix() * t; } + + template<typename OtherVectorType> + inline VectorType _transformVector(const OtherVectorType& v) const + { return toRotationMatrix() * v; } +}; + +namespace internal { + +// implementation of the generic product rotation * matrix +template<typename RotationDerived, typename MatrixType> +struct rotation_base_generic_product_selector<RotationDerived,MatrixType,false> +{ + enum { Dim = RotationDerived::Dim }; + typedef Matrix<typename RotationDerived::Scalar,Dim,Dim> ReturnType; + static inline ReturnType run(const RotationDerived& r, const MatrixType& m) + { return r.toRotationMatrix() * m; } +}; + +template<typename RotationDerived, typename Scalar, int Dim, int MaxDim> +struct rotation_base_generic_product_selector< RotationDerived, DiagonalMatrix<Scalar,Dim,MaxDim>, false > +{ + typedef Transform<Scalar,Dim,Affine> ReturnType; + static inline ReturnType run(const RotationDerived& r, const DiagonalMatrix<Scalar,Dim,MaxDim>& m) + { + ReturnType res(r); + res.linear() *= m; + return res; + } +}; + +template<typename RotationDerived,typename OtherVectorType> +struct rotation_base_generic_product_selector<RotationDerived,OtherVectorType,true> +{ + enum { Dim = RotationDerived::Dim }; + typedef Matrix<typename RotationDerived::Scalar,Dim,1> ReturnType; + static EIGEN_STRONG_INLINE ReturnType run(const RotationDerived& r, const OtherVectorType& v) + { + return r._transformVector(v); + } +}; + +} // end namespace internal + +/** \geometry_module + * + * \brief Constructs a Dim x Dim rotation matrix from the rotation \a r + */ +template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols> +template<typename OtherDerived> +Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> +::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r) +{ + EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) + *this = r.toRotationMatrix(); +} + +/** \geometry_module + * + * \brief Set a Dim x Dim rotation matrix from the rotation \a r + */ +template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols> +template<typename OtherDerived> +Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>& +Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> +::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r) +{ + EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) + return *this = r.toRotationMatrix(); +} + +namespace internal { + +/** \internal + * + * Helper function to return an arbitrary rotation object to a rotation matrix. + * + * \param Scalar the numeric type of the matrix coefficients + * \param Dim the dimension of the current space + * + * It returns a Dim x Dim fixed size matrix. + * + * Default specializations are provided for: + * - any scalar type (2D), + * - any matrix expression, + * - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D) + * + * Currently toRotationMatrix is only used by Transform. + * + * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis + */ +template<typename Scalar, int Dim> +static inline Matrix<Scalar,2,2> toRotationMatrix(const Scalar& s) +{ + EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE) + return Rotation2D<Scalar>(s).toRotationMatrix(); +} + +template<typename Scalar, int Dim, typename OtherDerived> +static inline Matrix<Scalar,Dim,Dim> toRotationMatrix(const RotationBase<OtherDerived,Dim>& r) +{ + return r.toRotationMatrix(); +} + +template<typename Scalar, int Dim, typename OtherDerived> +static inline const MatrixBase<OtherDerived>& toRotationMatrix(const MatrixBase<OtherDerived>& mat) +{ + EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim, + YOU_MADE_A_PROGRAMMING_MISTAKE) + return mat; +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_ROTATIONBASE_H diff --git a/eigen/Eigen/src/Geometry/Scaling.h b/eigen/Eigen/src/Geometry/Scaling.h new file mode 100644 index 0000000..1c25f36 --- /dev/null +++ b/eigen/Eigen/src/Geometry/Scaling.h @@ -0,0 +1,166 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SCALING_H +#define EIGEN_SCALING_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Scaling + * + * \brief Represents a generic uniform scaling transformation + * + * \param _Scalar the scalar type, i.e., the type of the coefficients. + * + * This class represent a uniform scaling transformation. It is the return + * type of Scaling(Scalar), and most of the time this is the only way it + * is used. In particular, this class is not aimed to be used to store a scaling transformation, + * but rather to make easier the constructions and updates of Transform objects. + * + * To represent an axis aligned scaling, use the DiagonalMatrix class. + * + * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform + */ +template<typename _Scalar> +class UniformScaling +{ +public: + /** the scalar type of the coefficients */ + typedef _Scalar Scalar; + +protected: + + Scalar m_factor; + +public: + + /** Default constructor without initialization. */ + UniformScaling() {} + /** Constructs and initialize a uniform scaling transformation */ + explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} + + inline const Scalar& factor() const { return m_factor; } + inline Scalar& factor() { return m_factor; } + + /** Concatenates two uniform scaling */ + inline UniformScaling operator* (const UniformScaling& other) const + { return UniformScaling(m_factor * other.factor()); } + + /** Concatenates a uniform scaling and a translation */ + template<int Dim> + inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const; + + /** Concatenates a uniform scaling and an affine transformation */ + template<int Dim, int Mode, int Options> + inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const + { + Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t; + res.prescale(factor()); + return res; +} + + /** Concatenates a uniform scaling and a linear transformation matrix */ + // TODO returns an expression + template<typename Derived> + inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const + { return other * m_factor; } + + template<typename Derived,int Dim> + inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const + { return r.toRotationMatrix() * m_factor; } + + /** \returns the inverse scaling */ + inline UniformScaling inverse() const + { return UniformScaling(Scalar(1)/m_factor); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template<typename NewScalarType> + inline UniformScaling<NewScalarType> cast() const + { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); } + + /** Copy constructor with scalar type conversion */ + template<typename OtherScalarType> + inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other) + { m_factor = Scalar(other.factor()); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const + { return internal::isApprox(m_factor, other.factor(), prec); } + +}; + +/** Concatenates a linear transformation matrix and a uniform scaling */ +// NOTE this operator is defiend in MatrixBase and not as a friend function +// of UniformScaling to fix an internal crash of Intel's ICC +template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType +MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const +{ return derived() * s.factor(); } + +/** Constructs a uniform scaling from scale factor \a s */ +static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); } +/** Constructs a uniform scaling from scale factor \a s */ +static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); } +/** Constructs a uniform scaling from scale factor \a s */ +template<typename RealScalar> +static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s) +{ return UniformScaling<std::complex<RealScalar> >(s); } + +/** Constructs a 2D axis aligned scaling */ +template<typename Scalar> +static inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy) +{ return DiagonalMatrix<Scalar,2>(sx, sy); } +/** Constructs a 3D axis aligned scaling */ +template<typename Scalar> +static inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) +{ return DiagonalMatrix<Scalar,3>(sx, sy, sz); } + +/** Constructs an axis aligned scaling expression from vector expression \a coeffs + * This is an alias for coeffs.asDiagonal() + */ +template<typename Derived> +static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs) +{ return coeffs.asDiagonal(); } + +/** \addtogroup Geometry_Module */ +//@{ +/** \deprecated */ +typedef DiagonalMatrix<float, 2> AlignedScaling2f; +/** \deprecated */ +typedef DiagonalMatrix<double,2> AlignedScaling2d; +/** \deprecated */ +typedef DiagonalMatrix<float, 3> AlignedScaling3f; +/** \deprecated */ +typedef DiagonalMatrix<double,3> AlignedScaling3d; +//@} + +template<typename Scalar> +template<int Dim> +inline Transform<Scalar,Dim,Affine> +UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const +{ + Transform<Scalar,Dim,Affine> res; + res.matrix().setZero(); + res.linear().diagonal().fill(factor()); + res.translation() = factor() * t.vector(); + res(Dim,Dim) = Scalar(1); + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_SCALING_H diff --git a/eigen/Eigen/src/Geometry/Transform.h b/eigen/Eigen/src/Geometry/Transform.h new file mode 100644 index 0000000..0186f3b --- /dev/null +++ b/eigen/Eigen/src/Geometry/Transform.h @@ -0,0 +1,1474 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> +// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRANSFORM_H +#define EIGEN_TRANSFORM_H + +namespace Eigen { + +namespace internal { + +template<typename Transform> +struct transform_traits +{ + enum + { + Dim = Transform::Dim, + HDim = Transform::HDim, + Mode = Transform::Mode, + IsProjective = (int(Mode)==int(Projective)) + }; +}; + +template< typename TransformType, + typename MatrixType, + int Case = transform_traits<TransformType>::IsProjective ? 0 + : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1 + : 2> +struct transform_right_product_impl; + +template< typename Other, + int Mode, + int Options, + int Dim, + int HDim, + int OtherRows=Other::RowsAtCompileTime, + int OtherCols=Other::ColsAtCompileTime> +struct transform_left_product_impl; + +template< typename Lhs, + typename Rhs, + bool AnyProjective = + transform_traits<Lhs>::IsProjective || + transform_traits<Rhs>::IsProjective> +struct transform_transform_product_impl; + +template< typename Other, + int Mode, + int Options, + int Dim, + int HDim, + int OtherRows=Other::RowsAtCompileTime, + int OtherCols=Other::ColsAtCompileTime> +struct transform_construct_from_matrix; + +template<typename TransformType> struct transform_take_affine_part; + +template<int Mode> struct transform_make_affine; + +} // end namespace internal + +/** \geometry_module \ingroup Geometry_Module + * + * \class Transform + * + * \brief Represents an homogeneous transformation in a N dimensional space + * + * \tparam _Scalar the scalar type, i.e., the type of the coefficients + * \tparam _Dim the dimension of the space + * \tparam _Mode the type of the transformation. Can be: + * - #Affine: the transformation is stored as a (Dim+1)^2 matrix, + * where the last row is assumed to be [0 ... 0 1]. + * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. + * - #Projective: the transformation is stored as a (Dim+1)^2 matrix + * without any assumption. + * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. + * These Options are passed directly to the underlying matrix type. + * + * The homography is internally represented and stored by a matrix which + * is available through the matrix() method. To understand the behavior of + * this class you have to think a Transform object as its internal + * matrix representation. The chosen convention is right multiply: + * + * \code v' = T * v \endcode + * + * Therefore, an affine transformation matrix M is shaped like this: + * + * \f$ \left( \begin{array}{cc} + * linear & translation\\ + * 0 ... 0 & 1 + * \end{array} \right) \f$ + * + * Note that for a projective transformation the last row can be anything, + * and then the interpretation of different parts might be sightly different. + * + * However, unlike a plain matrix, the Transform class provides many features + * simplifying both its assembly and usage. In particular, it can be composed + * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix) + * and can be directly used to transform implicit homogeneous vectors. All these + * operations are handled via the operator*. For the composition of transformations, + * its principle consists to first convert the right/left hand sides of the product + * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. + * Of course, internally, operator* tries to perform the minimal number of operations + * according to the nature of each terms. Likewise, when applying the transform + * to points, the latters are automatically promoted to homogeneous vectors + * before doing the matrix product. The conventions to homogeneous representations + * are performed as follow: + * + * \b Translation t (Dim)x(1): + * \f$ \left( \begin{array}{cc} + * I & t \\ + * 0\,...\,0 & 1 + * \end{array} \right) \f$ + * + * \b Rotation R (Dim)x(Dim): + * \f$ \left( \begin{array}{cc} + * R & 0\\ + * 0\,...\,0 & 1 + * \end{array} \right) \f$ + *<!-- + * \b Linear \b Matrix L (Dim)x(Dim): + * \f$ \left( \begin{array}{cc} + * L & 0\\ + * 0\,...\,0 & 1 + * \end{array} \right) \f$ + * + * \b Affine \b Matrix A (Dim)x(Dim+1): + * \f$ \left( \begin{array}{c} + * A\\ + * 0\,...\,0\,1 + * \end{array} \right) \f$ + *--> + * \b Scaling \b DiagonalMatrix S (Dim)x(Dim): + * \f$ \left( \begin{array}{cc} + * S & 0\\ + * 0\,...\,0 & 1 + * \end{array} \right) \f$ + * + * \b Column \b point v (Dim)x(1): + * \f$ \left( \begin{array}{c} + * v\\ + * 1 + * \end{array} \right) \f$ + * + * \b Set \b of \b column \b points V1...Vn (Dim)x(n): + * \f$ \left( \begin{array}{ccc} + * v_1 & ... & v_n\\ + * 1 & ... & 1 + * \end{array} \right) \f$ + * + * The concatenation of a Transform object with any kind of other transformation + * always returns a Transform object. + * + * A little exception to the "as pure matrix product" rule is the case of the + * transformation of non homogeneous vectors by an affine transformation. In + * that case the last matrix row can be ignored, and the product returns non + * homogeneous vectors. + * + * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, + * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. + * The solution is either to use a Dim x Dynamic matrix or explicitly request a + * vector transformation by making the vector homogeneous: + * \code + * m' = T * m.colwise().homogeneous(); + * \endcode + * Note that there is zero overhead. + * + * Conversion methods from/to Qt's QMatrix and QTransform are available if the + * preprocessor token EIGEN_QT_SUPPORT is defined. + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN. + * + * \sa class Matrix, class Quaternion + */ +template<typename _Scalar, int _Dim, int _Mode, int _Options> +class Transform +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) + enum { + Mode = _Mode, + Options = _Options, + Dim = _Dim, ///< space dimension in which the transformation holds + HDim = _Dim+1, ///< size of a respective homogeneous vector + Rows = int(Mode)==(AffineCompact) ? Dim : HDim + }; + /** the scalar type of the coefficients */ + typedef _Scalar Scalar; + typedef DenseIndex Index; + /** type of the matrix used to represent the transformation */ + typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType; + /** constified MatrixType */ + typedef const MatrixType ConstMatrixType; + /** type of the matrix used to represent the linear part of the transformation */ + typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType; + /** type of read/write reference to the linear part of the transformation */ + typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart; + /** type of read reference to the linear part of the transformation */ + typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart; + /** type of read/write reference to the affine part of the transformation */ + typedef typename internal::conditional<int(Mode)==int(AffineCompact), + MatrixType&, + Block<MatrixType,Dim,HDim> >::type AffinePart; + /** type of read reference to the affine part of the transformation */ + typedef typename internal::conditional<int(Mode)==int(AffineCompact), + const MatrixType&, + const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart; + /** type of a vector */ + typedef Matrix<Scalar,Dim,1> VectorType; + /** type of a read/write reference to the translation part of the rotation */ + typedef Block<MatrixType,Dim,1,int(Mode)==(AffineCompact)> TranslationPart; + /** type of a read reference to the translation part of the rotation */ + typedef const Block<ConstMatrixType,Dim,1,int(Mode)==(AffineCompact)> ConstTranslationPart; + /** corresponding translation type */ + typedef Translation<Scalar,Dim> TranslationType; + + // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0 + enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) }; + /** The return type of the product between a diagonal matrix and a transform */ + typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType; + +protected: + + MatrixType m_matrix; + +public: + + /** Default constructor without initialization of the meaningful coefficients. + * If Mode==Affine, then the last row is set to [0 ... 0 1] */ + inline Transform() + { + check_template_params(); + internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix); + } + + inline Transform(const Transform& other) + { + check_template_params(); + m_matrix = other.m_matrix; + } + + inline explicit Transform(const TranslationType& t) + { + check_template_params(); + *this = t; + } + inline explicit Transform(const UniformScaling<Scalar>& s) + { + check_template_params(); + *this = s; + } + template<typename Derived> + inline explicit Transform(const RotationBase<Derived, Dim>& r) + { + check_template_params(); + *this = r; + } + + inline Transform& operator=(const Transform& other) + { m_matrix = other.m_matrix; return *this; } + + typedef internal::transform_take_affine_part<Transform> take_affine_part; + + /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ + template<typename OtherDerived> + inline explicit Transform(const EigenBase<OtherDerived>& other) + { + EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); + + check_template_params(); + internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived()); + } + + /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ + template<typename OtherDerived> + inline Transform& operator=(const EigenBase<OtherDerived>& other) + { + EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); + + internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived()); + return *this; + } + + template<int OtherOptions> + inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other) + { + check_template_params(); + // only the options change, we can directly copy the matrices + m_matrix = other.matrix(); + } + + template<int OtherMode,int OtherOptions> + inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) + { + check_template_params(); + // prevent conversions as: + // Affine | AffineCompact | Isometry = Projective + EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)), + YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) + + // prevent conversions as: + // Isometry = Affine | AffineCompact + EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)), + YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) + + enum { ModeIsAffineCompact = Mode == int(AffineCompact), + OtherModeIsAffineCompact = OtherMode == int(AffineCompact) + }; + + if(ModeIsAffineCompact == OtherModeIsAffineCompact) + { + // We need the block expression because the code is compiled for all + // combinations of transformations and will trigger a compile time error + // if one tries to assign the matrices directly + m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0); + makeAffine(); + } + else if(OtherModeIsAffineCompact) + { + typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType; + internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix()); + } + else + { + // here we know that Mode == AffineCompact and OtherMode != AffineCompact. + // if OtherMode were Projective, the static assert above would already have caught it. + // So the only possibility is that OtherMode == Affine + linear() = other.linear(); + translation() = other.translation(); + } + } + + template<typename OtherDerived> + Transform(const ReturnByValue<OtherDerived>& other) + { + check_template_params(); + other.evalTo(*this); + } + + template<typename OtherDerived> + Transform& operator=(const ReturnByValue<OtherDerived>& other) + { + other.evalTo(*this); + return *this; + } + + #ifdef EIGEN_QT_SUPPORT + inline Transform(const QMatrix& other); + inline Transform& operator=(const QMatrix& other); + inline QMatrix toQMatrix(void) const; + inline Transform(const QTransform& other); + inline Transform& operator=(const QTransform& other); + inline QTransform toQTransform(void) const; + #endif + + /** shortcut for m_matrix(row,col); + * \sa MatrixBase::operator(Index,Index) const */ + inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); } + /** shortcut for m_matrix(row,col); + * \sa MatrixBase::operator(Index,Index) */ + inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); } + + /** \returns a read-only expression of the transformation matrix */ + inline const MatrixType& matrix() const { return m_matrix; } + /** \returns a writable expression of the transformation matrix */ + inline MatrixType& matrix() { return m_matrix; } + + /** \returns a read-only expression of the linear part of the transformation */ + inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); } + /** \returns a writable expression of the linear part of the transformation */ + inline LinearPart linear() { return LinearPart(m_matrix,0,0); } + + /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ + inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); } + /** \returns a writable expression of the Dim x HDim affine part of the transformation */ + inline AffinePart affine() { return take_affine_part::run(m_matrix); } + + /** \returns a read-only expression of the translation vector of the transformation */ + inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); } + /** \returns a writable expression of the translation vector of the transformation */ + inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); } + + /** \returns an expression of the product between the transform \c *this and a matrix expression \a other. + * + * The right-hand-side \a other can be either: + * \li an homogeneous vector of size Dim+1, + * \li a set of homogeneous vectors of size Dim+1 x N, + * \li a transformation matrix of size Dim+1 x Dim+1. + * + * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be: + * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode), + * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode), + * + * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other. + * + * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type, + * or do your own cooking. + * + * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only: + * \code + * Affine3f A; + * Vector3f v1, v2; + * v2 = A.linear() * v1; + * \endcode + * + */ + // note: this function is defined here because some compilers cannot find the respective declaration + template<typename OtherDerived> + EIGEN_STRONG_INLINE const typename OtherDerived::PlainObject + operator * (const EigenBase<OtherDerived> &other) const + { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); } + + /** \returns the product expression of a transformation matrix \a a times a transform \a b + * + * The left hand side \a other can be either: + * \li a linear transformation matrix of size Dim x Dim, + * \li an affine transformation matrix of size Dim x Dim+1, + * \li a general transformation matrix of size Dim+1 x Dim+1. + */ + template<typename OtherDerived> friend + inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType + operator * (const EigenBase<OtherDerived> &a, const Transform &b) + { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); } + + /** \returns The product expression of a transform \a a times a diagonal matrix \a b + * + * The rhs diagonal matrix is interpreted as an affine scaling transformation. The + * product results in a Transform of the same type (mode) as the lhs only if the lhs + * mode is no isometry. In that case, the returned transform is an affinity. + */ + template<typename DiagonalDerived> + inline const TransformTimeDiagonalReturnType + operator * (const DiagonalBase<DiagonalDerived> &b) const + { + TransformTimeDiagonalReturnType res(*this); + res.linear() *= b; + return res; + } + + /** \returns The product expression of a diagonal matrix \a a times a transform \a b + * + * The lhs diagonal matrix is interpreted as an affine scaling transformation. The + * product results in a Transform of the same type (mode) as the lhs only if the lhs + * mode is no isometry. In that case, the returned transform is an affinity. + */ + template<typename DiagonalDerived> + friend inline TransformTimeDiagonalReturnType + operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b) + { + TransformTimeDiagonalReturnType res; + res.linear().noalias() = a*b.linear(); + res.translation().noalias() = a*b.translation(); + if (Mode!=int(AffineCompact)) + res.matrix().row(Dim) = b.matrix().row(Dim); + return res; + } + + template<typename OtherDerived> + inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; } + + /** Concatenates two transformations */ + inline const Transform operator * (const Transform& other) const + { + return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other); + } + + #ifdef __INTEL_COMPILER +private: + // this intermediate structure permits to workaround a bug in ICC 11: + // error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0> + // (const Eigen::Transform<double, 3, 2, 0> &) const" + // (the meaning of a name may have changed since the template declaration -- the type of the template is: + // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>, + // Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const") + // + template<int OtherMode,int OtherOptions> struct icc_11_workaround + { + typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType; + typedef typename ProductType::ResultType ResultType; + }; + +public: + /** Concatenates two different transformations */ + template<int OtherMode,int OtherOptions> + inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType + operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const + { + typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType; + return ProductType::run(*this,other); + } + #else + /** Concatenates two different transformations */ + template<int OtherMode,int OtherOptions> + inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType + operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const + { + return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other); + } + #endif + + /** \sa MatrixBase::setIdentity() */ + void setIdentity() { m_matrix.setIdentity(); } + + /** + * \brief Returns an identity transformation. + * \todo In the future this function should be returning a Transform expression. + */ + static const Transform Identity() + { + return Transform(MatrixType::Identity()); + } + + template<typename OtherDerived> + inline Transform& scale(const MatrixBase<OtherDerived> &other); + + template<typename OtherDerived> + inline Transform& prescale(const MatrixBase<OtherDerived> &other); + + inline Transform& scale(const Scalar& s); + inline Transform& prescale(const Scalar& s); + + template<typename OtherDerived> + inline Transform& translate(const MatrixBase<OtherDerived> &other); + + template<typename OtherDerived> + inline Transform& pretranslate(const MatrixBase<OtherDerived> &other); + + template<typename RotationType> + inline Transform& rotate(const RotationType& rotation); + + template<typename RotationType> + inline Transform& prerotate(const RotationType& rotation); + + Transform& shear(const Scalar& sx, const Scalar& sy); + Transform& preshear(const Scalar& sx, const Scalar& sy); + + inline Transform& operator=(const TranslationType& t); + inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } + inline Transform operator*(const TranslationType& t) const; + + inline Transform& operator=(const UniformScaling<Scalar>& t); + inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); } + inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode))> operator*(const UniformScaling<Scalar>& s) const + { + Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode)),Options> res = *this; + res.scale(s.factor()); + return res; + } + + inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; } + + template<typename Derived> + inline Transform& operator=(const RotationBase<Derived,Dim>& r); + template<typename Derived> + inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); } + template<typename Derived> + inline Transform operator*(const RotationBase<Derived,Dim>& r) const; + + const LinearMatrixType rotation() const; + template<typename RotationMatrixType, typename ScalingMatrixType> + void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; + template<typename ScalingMatrixType, typename RotationMatrixType> + void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; + + template<typename PositionDerived, typename OrientationType, typename ScaleDerived> + Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, + const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale); + + inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; + + /** \returns a const pointer to the column major internal matrix */ + const Scalar* data() const { return m_matrix.data(); } + /** \returns a non-const pointer to the column major internal matrix */ + Scalar* data() { return m_matrix.data(); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template<typename NewScalarType> + inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const + { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template<typename OtherScalarType> + inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other) + { + check_template_params(); + m_matrix = other.matrix().template cast<Scalar>(); + } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const + { return m_matrix.isApprox(other.m_matrix, prec); } + + /** Sets the last row to [0 ... 0 1] + */ + void makeAffine() + { + internal::transform_make_affine<int(Mode)>::run(m_matrix); + } + + /** \internal + * \returns the Dim x Dim linear part if the transformation is affine, + * and the HDim x Dim part for projective transformations. + */ + inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() + { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } + /** \internal + * \returns the Dim x Dim linear part if the transformation is affine, + * and the HDim x Dim part for projective transformations. + */ + inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const + { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } + + /** \internal + * \returns the translation part if the transformation is affine, + * and the last column for projective transformations. + */ + inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() + { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } + /** \internal + * \returns the translation part if the transformation is affine, + * and the last column for projective transformations. + */ + inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const + { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } + + + #ifdef EIGEN_TRANSFORM_PLUGIN + #include EIGEN_TRANSFORM_PLUGIN + #endif + +protected: + #ifndef EIGEN_PARSED_BY_DOXYGEN + static EIGEN_STRONG_INLINE void check_template_params() + { + EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) + } + #endif + +}; + +/** \ingroup Geometry_Module */ +typedef Transform<float,2,Isometry> Isometry2f; +/** \ingroup Geometry_Module */ +typedef Transform<float,3,Isometry> Isometry3f; +/** \ingroup Geometry_Module */ +typedef Transform<double,2,Isometry> Isometry2d; +/** \ingroup Geometry_Module */ +typedef Transform<double,3,Isometry> Isometry3d; + +/** \ingroup Geometry_Module */ +typedef Transform<float,2,Affine> Affine2f; +/** \ingroup Geometry_Module */ +typedef Transform<float,3,Affine> Affine3f; +/** \ingroup Geometry_Module */ +typedef Transform<double,2,Affine> Affine2d; +/** \ingroup Geometry_Module */ +typedef Transform<double,3,Affine> Affine3d; + +/** \ingroup Geometry_Module */ +typedef Transform<float,2,AffineCompact> AffineCompact2f; +/** \ingroup Geometry_Module */ +typedef Transform<float,3,AffineCompact> AffineCompact3f; +/** \ingroup Geometry_Module */ +typedef Transform<double,2,AffineCompact> AffineCompact2d; +/** \ingroup Geometry_Module */ +typedef Transform<double,3,AffineCompact> AffineCompact3d; + +/** \ingroup Geometry_Module */ +typedef Transform<float,2,Projective> Projective2f; +/** \ingroup Geometry_Module */ +typedef Transform<float,3,Projective> Projective3f; +/** \ingroup Geometry_Module */ +typedef Transform<double,2,Projective> Projective2d; +/** \ingroup Geometry_Module */ +typedef Transform<double,3,Projective> Projective3d; + +/************************** +*** Optional QT support *** +**************************/ + +#ifdef EIGEN_QT_SUPPORT +/** Initializes \c *this from a QMatrix assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template<typename Scalar, int Dim, int Mode,int Options> +Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other) +{ + check_template_params(); + *this = other; +} + +/** Set \c *this from a QMatrix assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template<typename Scalar, int Dim, int Mode,int Options> +Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other) +{ + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(), + 0, 0, 1; + return *this; +} + +/** \returns a QMatrix from \c *this assuming the dimension is 2. + * + * \warning this conversion might loss data if \c *this is not affine + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template<typename Scalar, int Dim, int Mode, int Options> +QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const +{ + check_template_params(); + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), + m_matrix.coeff(0,1), m_matrix.coeff(1,1), + m_matrix.coeff(0,2), m_matrix.coeff(1,2)); +} + +/** Initializes \c *this from a QTransform assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template<typename Scalar, int Dim, int Mode,int Options> +Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other) +{ + check_template_params(); + *this = other; +} + +/** Set \c *this from a QTransform assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template<typename Scalar, int Dim, int Mode, int Options> +Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other) +{ + check_template_params(); + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + if (Mode == int(AffineCompact)) + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(); + else + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(), + other.m13(), other.m23(), other.m33(); + return *this; +} + +/** \returns a QTransform from \c *this assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template<typename Scalar, int Dim, int Mode, int Options> +QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const +{ + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + if (Mode == int(AffineCompact)) + return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), + m_matrix.coeff(0,1), m_matrix.coeff(1,1), + m_matrix.coeff(0,2), m_matrix.coeff(1,2)); + else + return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), + m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), + m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); +} +#endif + +/********************* +*** Procedural API *** +*********************/ + +/** Applies on the right the non uniform scale transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \sa prescale() + */ +template<typename Scalar, int Dim, int Mode, int Options> +template<typename OtherDerived> +Transform<Scalar,Dim,Mode,Options>& +Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + linearExt().noalias() = (linearExt() * other.asDiagonal()); + return *this; +} + +/** Applies on the right a uniform scale of a factor \a c to \c *this + * and returns a reference to \c *this. + * \sa prescale(Scalar) + */ +template<typename Scalar, int Dim, int Mode, int Options> +inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s) +{ + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + linearExt() *= s; + return *this; +} + +/** Applies on the left the non uniform scale transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \sa scale() + */ +template<typename Scalar, int Dim, int Mode, int Options> +template<typename OtherDerived> +Transform<Scalar,Dim,Mode,Options>& +Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)); + return *this; +} + +/** Applies on the left a uniform scale of a factor \a c to \c *this + * and returns a reference to \c *this. + * \sa scale(Scalar) + */ +template<typename Scalar, int Dim, int Mode, int Options> +inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s) +{ + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + m_matrix.template topRows<Dim>() *= s; + return *this; +} + +/** Applies on the right the translation matrix represented by the vector \a other + * to \c *this and returns a reference to \c *this. + * \sa pretranslate() + */ +template<typename Scalar, int Dim, int Mode, int Options> +template<typename OtherDerived> +Transform<Scalar,Dim,Mode,Options>& +Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + translationExt() += linearExt() * other; + return *this; +} + +/** Applies on the left the translation matrix represented by the vector \a other + * to \c *this and returns a reference to \c *this. + * \sa translate() + */ +template<typename Scalar, int Dim, int Mode, int Options> +template<typename OtherDerived> +Transform<Scalar,Dim,Mode,Options>& +Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + if(int(Mode)==int(Projective)) + affine() += other * m_matrix.row(Dim); + else + translation() += other; + return *this; +} + +/** Applies on the right the rotation represented by the rotation \a rotation + * to \c *this and returns a reference to \c *this. + * + * The template parameter \a RotationType is the type of the rotation which + * must be known by internal::toRotationMatrix<>. + * + * Natively supported types includes: + * - any scalar (2D), + * - a Dim x Dim matrix expression, + * - a Quaternion (3D), + * - a AngleAxis (3D) + * + * This mechanism is easily extendable to support user types such as Euler angles, + * or a pair of Quaternion for 4D rotations. + * + * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) + */ +template<typename Scalar, int Dim, int Mode, int Options> +template<typename RotationType> +Transform<Scalar,Dim,Mode,Options>& +Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation) +{ + linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation); + return *this; +} + +/** Applies on the left the rotation represented by the rotation \a rotation + * to \c *this and returns a reference to \c *this. + * + * See rotate() for further details. + * + * \sa rotate() + */ +template<typename Scalar, int Dim, int Mode, int Options> +template<typename RotationType> +Transform<Scalar,Dim,Mode,Options>& +Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation) +{ + m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation) + * m_matrix.template block<Dim,HDim>(0,0); + return *this; +} + +/** Applies on the right the shear transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \warning 2D only. + * \sa preshear() + */ +template<typename Scalar, int Dim, int Mode, int Options> +Transform<Scalar,Dim,Mode,Options>& +Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy) +{ + EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + VectorType tmp = linear().col(0)*sy + linear().col(1); + linear() << linear().col(0) + linear().col(1)*sx, tmp; + return *this; +} + +/** Applies on the left the shear transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \warning 2D only. + * \sa shear() + */ +template<typename Scalar, int Dim, int Mode, int Options> +Transform<Scalar,Dim,Mode,Options>& +Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy) +{ + EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0); + return *this; +} + +/****************************************************** +*** Scaling, Translation and Rotation compatibility *** +******************************************************/ + +template<typename Scalar, int Dim, int Mode, int Options> +inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t) +{ + linear().setIdentity(); + translation() = t.vector(); + makeAffine(); + return *this; +} + +template<typename Scalar, int Dim, int Mode, int Options> +inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const +{ + Transform res = *this; + res.translate(t.vector()); + return res; +} + +template<typename Scalar, int Dim, int Mode, int Options> +inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s) +{ + m_matrix.setZero(); + linear().diagonal().fill(s.factor()); + makeAffine(); + return *this; +} + +template<typename Scalar, int Dim, int Mode, int Options> +template<typename Derived> +inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r) +{ + linear() = internal::toRotationMatrix<Scalar,Dim>(r); + translation().setZero(); + makeAffine(); + return *this; +} + +template<typename Scalar, int Dim, int Mode, int Options> +template<typename Derived> +inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const +{ + Transform res = *this; + res.rotate(r.derived()); + return res; +} + +/************************ +*** Special functions *** +************************/ + +/** \returns the rotation part of the transformation + * + * + * \svd_module + * + * \sa computeRotationScaling(), computeScalingRotation(), class SVD + */ +template<typename Scalar, int Dim, int Mode, int Options> +const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType +Transform<Scalar,Dim,Mode,Options>::rotation() const +{ + LinearMatrixType result; + computeRotationScaling(&result, (LinearMatrixType*)0); + return result; +} + + +/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being + * not necessarily positive. + * + * If either pointer is zero, the corresponding computation is skipped. + * + * + * + * \svd_module + * + * \sa computeScalingRotation(), rotation(), class SVD + */ +template<typename Scalar, int Dim, int Mode, int Options> +template<typename RotationMatrixType, typename ScalingMatrixType> +void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const +{ + JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); + + Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 + VectorType sv(svd.singularValues()); + sv.coeffRef(0) *= x; + if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint()); + if(rotation) + { + LinearMatrixType m(svd.matrixU()); + m.col(0) /= x; + rotation->lazyAssign(m * svd.matrixV().adjoint()); + } +} + +/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being + * not necessarily positive. + * + * If either pointer is zero, the corresponding computation is skipped. + * + * + * + * \svd_module + * + * \sa computeRotationScaling(), rotation(), class SVD + */ +template<typename Scalar, int Dim, int Mode, int Options> +template<typename ScalingMatrixType, typename RotationMatrixType> +void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const +{ + JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); + + Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 + VectorType sv(svd.singularValues()); + sv.coeffRef(0) *= x; + if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint()); + if(rotation) + { + LinearMatrixType m(svd.matrixU()); + m.col(0) /= x; + rotation->lazyAssign(m * svd.matrixV().adjoint()); + } +} + +/** Convenient method to set \c *this from a position, orientation and scale + * of a 3D object. + */ +template<typename Scalar, int Dim, int Mode, int Options> +template<typename PositionDerived, typename OrientationType, typename ScaleDerived> +Transform<Scalar,Dim,Mode,Options>& +Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, + const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale) +{ + linear() = internal::toRotationMatrix<Scalar,Dim>(orientation); + linear() *= scale.asDiagonal(); + translation() = position; + makeAffine(); + return *this; +} + +namespace internal { + +template<int Mode> +struct transform_make_affine +{ + template<typename MatrixType> + static void run(MatrixType &mat) + { + static const int Dim = MatrixType::ColsAtCompileTime-1; + mat.template block<1,Dim>(Dim,0).setZero(); + mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1); + } +}; + +template<> +struct transform_make_affine<AffineCompact> +{ + template<typename MatrixType> static void run(MatrixType &) { } +}; + +// selector needed to avoid taking the inverse of a 3x4 matrix +template<typename TransformType, int Mode=TransformType::Mode> +struct projective_transform_inverse +{ + static inline void run(const TransformType&, TransformType&) + {} +}; + +template<typename TransformType> +struct projective_transform_inverse<TransformType, Projective> +{ + static inline void run(const TransformType& m, TransformType& res) + { + res.matrix() = m.matrix().inverse(); + } +}; + +} // end namespace internal + + +/** + * + * \returns the inverse transformation according to some given knowledge + * on \c *this. + * + * \param hint allows to optimize the inversion process when the transformation + * is known to be not a general transformation (optional). The possible values are: + * - #Projective if the transformation is not necessarily affine, i.e., if the + * last row is not guaranteed to be [0 ... 0 1] + * - #Affine if the last row can be assumed to be [0 ... 0 1] + * - #Isometry if the transformation is only a concatenations of translations + * and rotations. + * The default is the template class parameter \c Mode. + * + * \warning unless \a traits is always set to NoShear or NoScaling, this function + * requires the generic inverse method of MatrixBase defined in the LU module. If + * you forget to include this module, then you will get hard to debug linking errors. + * + * \sa MatrixBase::inverse() + */ +template<typename Scalar, int Dim, int Mode, int Options> +Transform<Scalar,Dim,Mode,Options> +Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const +{ + Transform res; + if (hint == Projective) + { + internal::projective_transform_inverse<Transform>::run(*this, res); + } + else + { + if (hint == Isometry) + { + res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose(); + } + else if(hint&Affine) + { + res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse(); + } + else + { + eigen_assert(false && "Invalid transform traits in Transform::Inverse"); + } + // translation and remaining parts + res.matrix().template topRightCorner<Dim,1>() + = - res.matrix().template topLeftCorner<Dim,Dim>() * translation(); + res.makeAffine(); // we do need this, because in the beginning res is uninitialized + } + return res; +} + +namespace internal { + +/***************************************************** +*** Specializations of take affine part *** +*****************************************************/ + +template<typename TransformType> struct transform_take_affine_part { + typedef typename TransformType::MatrixType MatrixType; + typedef typename TransformType::AffinePart AffinePart; + typedef typename TransformType::ConstAffinePart ConstAffinePart; + static inline AffinePart run(MatrixType& m) + { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } + static inline ConstAffinePart run(const MatrixType& m) + { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } +}; + +template<typename Scalar, int Dim, int Options> +struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > { + typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType; + static inline MatrixType& run(MatrixType& m) { return m; } + static inline const MatrixType& run(const MatrixType& m) { return m; } +}; + +/***************************************************** +*** Specializations of construct from matrix *** +*****************************************************/ + +template<typename Other, int Mode, int Options, int Dim, int HDim> +struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim> +{ + static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) + { + transform->linear() = other; + transform->translation().setZero(); + transform->makeAffine(); + } +}; + +template<typename Other, int Mode, int Options, int Dim, int HDim> +struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim> +{ + static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) + { + transform->affine() = other; + transform->makeAffine(); + } +}; + +template<typename Other, int Mode, int Options, int Dim, int HDim> +struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim> +{ + static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) + { transform->matrix() = other; } +}; + +template<typename Other, int Options, int Dim, int HDim> +struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim> +{ + static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other) + { transform->matrix() = other.template block<Dim,HDim>(0,0); } +}; + +/********************************************************** +*** Specializations of operator* with rhs EigenBase *** +**********************************************************/ + +template<int LhsMode,int RhsMode> +struct transform_product_result +{ + enum + { + Mode = + (LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective : + (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine : + (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact : + (LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective + }; +}; + +template< typename TransformType, typename MatrixType > +struct transform_right_product_impl< TransformType, MatrixType, 0 > +{ + typedef typename MatrixType::PlainObject ResultType; + + static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) + { + return T.matrix() * other; + } +}; + +template< typename TransformType, typename MatrixType > +struct transform_right_product_impl< TransformType, MatrixType, 1 > +{ + enum { + Dim = TransformType::Dim, + HDim = TransformType::HDim, + OtherRows = MatrixType::RowsAtCompileTime, + OtherCols = MatrixType::ColsAtCompileTime + }; + + typedef typename MatrixType::PlainObject ResultType; + + static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) + { + EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); + + typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs; + + ResultType res(other.rows(),other.cols()); + TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other; + res.row(OtherRows-1) = other.row(OtherRows-1); + + return res; + } +}; + +template< typename TransformType, typename MatrixType > +struct transform_right_product_impl< TransformType, MatrixType, 2 > +{ + enum { + Dim = TransformType::Dim, + HDim = TransformType::HDim, + OtherRows = MatrixType::RowsAtCompileTime, + OtherCols = MatrixType::ColsAtCompileTime + }; + + typedef typename MatrixType::PlainObject ResultType; + + static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) + { + EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); + + typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs; + ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols())); + TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other; + + return res; + } +}; + +/********************************************************** +*** Specializations of operator* with lhs EigenBase *** +**********************************************************/ + +// generic HDim x HDim matrix * T => Projective +template<typename Other,int Mode, int Options, int Dim, int HDim> +struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim> +{ + typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType; + static ResultType run(const Other& other,const TransformType& tr) + { return ResultType(other * tr.matrix()); } +}; + +// generic HDim x HDim matrix * AffineCompact => Projective +template<typename Other, int Options, int Dim, int HDim> +struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim> +{ + typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType; + static ResultType run(const Other& other,const TransformType& tr) + { + ResultType res; + res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix(); + res.matrix().col(Dim) += other.col(Dim); + return res; + } +}; + +// affine matrix * T +template<typename Other,int Mode, int Options, int Dim, int HDim> +struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim> +{ + typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef TransformType ResultType; + static ResultType run(const Other& other,const TransformType& tr) + { + ResultType res; + res.affine().noalias() = other * tr.matrix(); + res.matrix().row(Dim) = tr.matrix().row(Dim); + return res; + } +}; + +// affine matrix * AffineCompact +template<typename Other, int Options, int Dim, int HDim> +struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim> +{ + typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef TransformType ResultType; + static ResultType run(const Other& other,const TransformType& tr) + { + ResultType res; + res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix(); + res.translation() += other.col(Dim); + return res; + } +}; + +// linear matrix * T +template<typename Other,int Mode, int Options, int Dim, int HDim> +struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim> +{ + typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef TransformType ResultType; + static ResultType run(const Other& other, const TransformType& tr) + { + TransformType res; + if(Mode!=int(AffineCompact)) + res.matrix().row(Dim) = tr.matrix().row(Dim); + res.matrix().template topRows<Dim>().noalias() + = other * tr.matrix().template topRows<Dim>(); + return res; + } +}; + +/********************************************************** +*** Specializations of operator* with another Transform *** +**********************************************************/ + +template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> +struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false > +{ + enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode }; + typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs; + typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs; + typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType; + static ResultType run(const Lhs& lhs, const Rhs& rhs) + { + ResultType res; + res.linear() = lhs.linear() * rhs.linear(); + res.translation() = lhs.linear() * rhs.translation() + lhs.translation(); + res.makeAffine(); + return res; + } +}; + +template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> +struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true > +{ + typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs; + typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs; + typedef Transform<Scalar,Dim,Projective> ResultType; + static ResultType run(const Lhs& lhs, const Rhs& rhs) + { + return ResultType( lhs.matrix() * rhs.matrix() ); + } +}; + +template<typename Scalar, int Dim, int LhsOptions, int RhsOptions> +struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true > +{ + typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs; + typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs; + typedef Transform<Scalar,Dim,Projective> ResultType; + static ResultType run(const Lhs& lhs, const Rhs& rhs) + { + ResultType res; + res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix(); + res.matrix().row(Dim) = rhs.matrix().row(Dim); + return res; + } +}; + +template<typename Scalar, int Dim, int LhsOptions, int RhsOptions> +struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true > +{ + typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs; + typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs; + typedef Transform<Scalar,Dim,Projective> ResultType; + static ResultType run(const Lhs& lhs, const Rhs& rhs) + { + ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix()); + res.matrix().col(Dim) += lhs.matrix().col(Dim); + return res; + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRANSFORM_H diff --git a/eigen/Eigen/src/Geometry/Translation.h b/eigen/Eigen/src/Geometry/Translation.h new file mode 100644 index 0000000..2e77986 --- /dev/null +++ b/eigen/Eigen/src/Geometry/Translation.h @@ -0,0 +1,206 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRANSLATION_H +#define EIGEN_TRANSLATION_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Translation + * + * \brief Represents a translation transformation + * + * \param _Scalar the scalar type, i.e., the type of the coefficients. + * \param _Dim the dimension of the space, can be a compile time value or Dynamic + * + * \note This class is not aimed to be used to store a translation transformation, + * but rather to make easier the constructions and updates of Transform objects. + * + * \sa class Scaling, class Transform + */ +template<typename _Scalar, int _Dim> +class Translation +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim) + /** dimension of the space */ + enum { Dim = _Dim }; + /** the scalar type of the coefficients */ + typedef _Scalar Scalar; + /** corresponding vector type */ + typedef Matrix<Scalar,Dim,1> VectorType; + /** corresponding linear transformation matrix type */ + typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; + /** corresponding affine transformation type */ + typedef Transform<Scalar,Dim,Affine> AffineTransformType; + /** corresponding isometric transformation type */ + typedef Transform<Scalar,Dim,Isometry> IsometryTransformType; + +protected: + + VectorType m_coeffs; + +public: + + /** Default constructor without initialization. */ + Translation() {} + /** */ + inline Translation(const Scalar& sx, const Scalar& sy) + { + eigen_assert(Dim==2); + m_coeffs.x() = sx; + m_coeffs.y() = sy; + } + /** */ + inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz) + { + eigen_assert(Dim==3); + m_coeffs.x() = sx; + m_coeffs.y() = sy; + m_coeffs.z() = sz; + } + /** Constructs and initialize the translation transformation from a vector of translation coefficients */ + explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {} + + /** \brief Retruns the x-translation by value. **/ + inline Scalar x() const { return m_coeffs.x(); } + /** \brief Retruns the y-translation by value. **/ + inline Scalar y() const { return m_coeffs.y(); } + /** \brief Retruns the z-translation by value. **/ + inline Scalar z() const { return m_coeffs.z(); } + + /** \brief Retruns the x-translation as a reference. **/ + inline Scalar& x() { return m_coeffs.x(); } + /** \brief Retruns the y-translation as a reference. **/ + inline Scalar& y() { return m_coeffs.y(); } + /** \brief Retruns the z-translation as a reference. **/ + inline Scalar& z() { return m_coeffs.z(); } + + const VectorType& vector() const { return m_coeffs; } + VectorType& vector() { return m_coeffs; } + + const VectorType& translation() const { return m_coeffs; } + VectorType& translation() { return m_coeffs; } + + /** Concatenates two translation */ + inline Translation operator* (const Translation& other) const + { return Translation(m_coeffs + other.m_coeffs); } + + /** Concatenates a translation and a uniform scaling */ + inline AffineTransformType operator* (const UniformScaling<Scalar>& other) const; + + /** Concatenates a translation and a linear transformation */ + template<typename OtherDerived> + inline AffineTransformType operator* (const EigenBase<OtherDerived>& linear) const; + + /** Concatenates a translation and a rotation */ + template<typename Derived> + inline IsometryTransformType operator*(const RotationBase<Derived,Dim>& r) const + { return *this * IsometryTransformType(r); } + + /** \returns the concatenation of a linear transformation \a l with the translation \a t */ + // its a nightmare to define a templated friend function outside its declaration + template<typename OtherDerived> friend + inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, const Translation& t) + { + AffineTransformType res; + res.matrix().setZero(); + res.linear() = linear.derived(); + res.translation() = linear.derived() * t.m_coeffs; + res.matrix().row(Dim).setZero(); + res(Dim,Dim) = Scalar(1); + return res; + } + + /** Concatenates a translation and a transformation */ + template<int Mode, int Options> + inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim,Mode,Options>& t) const + { + Transform<Scalar,Dim,Mode> res = t; + res.pretranslate(m_coeffs); + return res; + } + + /** Applies translation to vector */ + inline VectorType operator* (const VectorType& other) const + { return m_coeffs + other; } + + /** \returns the inverse translation (opposite) */ + Translation inverse() const { return Translation(-m_coeffs); } + + Translation& operator=(const Translation& other) + { + m_coeffs = other.m_coeffs; + return *this; + } + + static const Translation Identity() { return Translation(VectorType::Zero()); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template<typename NewScalarType> + inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const + { return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template<typename OtherScalarType> + inline explicit Translation(const Translation<OtherScalarType,Dim>& other) + { m_coeffs = other.vector().template cast<Scalar>(); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + bool isApprox(const Translation& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const + { return m_coeffs.isApprox(other.m_coeffs, prec); } + +}; + +/** \addtogroup Geometry_Module */ +//@{ +typedef Translation<float, 2> Translation2f; +typedef Translation<double,2> Translation2d; +typedef Translation<float, 3> Translation3f; +typedef Translation<double,3> Translation3d; +//@} + +template<typename Scalar, int Dim> +inline typename Translation<Scalar,Dim>::AffineTransformType +Translation<Scalar,Dim>::operator* (const UniformScaling<Scalar>& other) const +{ + AffineTransformType res; + res.matrix().setZero(); + res.linear().diagonal().fill(other.factor()); + res.translation() = m_coeffs; + res(Dim,Dim) = Scalar(1); + return res; +} + +template<typename Scalar, int Dim> +template<typename OtherDerived> +inline typename Translation<Scalar,Dim>::AffineTransformType +Translation<Scalar,Dim>::operator* (const EigenBase<OtherDerived>& linear) const +{ + AffineTransformType res; + res.matrix().setZero(); + res.linear() = linear.derived(); + res.translation() = m_coeffs; + res.matrix().row(Dim).setZero(); + res(Dim,Dim) = Scalar(1); + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_TRANSLATION_H diff --git a/eigen/Eigen/src/Geometry/Umeyama.h b/eigen/Eigen/src/Geometry/Umeyama.h new file mode 100644 index 0000000..5e20662 --- /dev/null +++ b/eigen/Eigen/src/Geometry/Umeyama.h @@ -0,0 +1,177 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_UMEYAMA_H +#define EIGEN_UMEYAMA_H + +// This file requires the user to include +// * Eigen/Core +// * Eigen/LU +// * Eigen/SVD +// * Eigen/Array + +namespace Eigen { + +#ifndef EIGEN_PARSED_BY_DOXYGEN + +// These helpers are required since it allows to use mixed types as parameters +// for the Umeyama. The problem with mixed parameters is that the return type +// cannot trivially be deduced when float and double types are mixed. +namespace internal { + +// Compile time return type deduction for different MatrixBase types. +// Different means here different alignment and parameters but the same underlying +// real scalar type. +template<typename MatrixType, typename OtherMatrixType> +struct umeyama_transform_matrix_type +{ + enum { + MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime), + + // When possible we want to choose some small fixed size value since the result + // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want. + HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1 + }; + + typedef Matrix<typename traits<MatrixType>::Scalar, + HomogeneousDimension, + HomogeneousDimension, + AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor), + HomogeneousDimension, + HomogeneousDimension + > type; +}; + +} + +#endif + +/** +* \geometry_module \ingroup Geometry_Module +* +* \brief Returns the transformation between two point sets. +* +* The algorithm is based on: +* "Least-squares estimation of transformation parameters between two point patterns", +* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573 +* +* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that +* \f{align*} +* \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2 +* \f} +* is minimized. +* +* The algorithm is based on the analysis of the covariance matrix +* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$ +* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where +* \f$d\f$ is corresponding to the dimension (which is typically small). +* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$ +* though the actual computational effort lies in the covariance +* matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when +* the input point sets have dimension \f$d \times m\f$. +* +* Currently the method is working only for floating point matrices. +* +* \todo Should the return type of umeyama() become a Transform? +* +* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$. +* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$. +* \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed. +* \return The homogeneous transformation +* \f{align*} +* T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} +* \f} +* minimizing the resudiual above. This transformation is always returned as an +* Eigen::Matrix. +*/ +template <typename Derived, typename OtherDerived> +typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type +umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true) +{ + typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType; + typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef typename Derived::Index Index; + + EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + + enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) }; + + typedef Matrix<Scalar, Dimension, 1> VectorType; + typedef Matrix<Scalar, Dimension, Dimension> MatrixType; + typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType; + + const Index m = src.rows(); // dimension + const Index n = src.cols(); // number of measurements + + // required for demeaning ... + const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n); + + // computation of mean + const VectorType src_mean = src.rowwise().sum() * one_over_n; + const VectorType dst_mean = dst.rowwise().sum() * one_over_n; + + // demeaning of src and dst points + const RowMajorMatrixType src_demean = src.colwise() - src_mean; + const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean; + + // Eq. (36)-(37) + const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n; + + // Eq. (38) + const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose(); + + JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV); + + // Initialize the resulting transformation with an identity matrix... + TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1); + + // Eq. (39) + VectorType S = VectorType::Ones(m); + if (sigma.determinant()<Scalar(0)) S(m-1) = Scalar(-1); + + // Eq. (40) and (43) + const VectorType& d = svd.singularValues(); + Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank; + if (rank == m-1) { + if ( svd.matrixU().determinant() * svd.matrixV().determinant() > Scalar(0) ) { + Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose(); + } else { + const Scalar s = S(m-1); S(m-1) = Scalar(-1); + Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); + S(m-1) = s; + } + } else { + Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); + } + + if (with_scaling) + { + // Eq. (42) + const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S); + + // Eq. (41) + Rt.col(m).head(m) = dst_mean; + Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean; + Rt.block(0,0,m,m) *= c; + } + else + { + Rt.col(m).head(m) = dst_mean; + Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean; + } + + return Rt; +} + +} // end namespace Eigen + +#endif // EIGEN_UMEYAMA_H diff --git a/eigen/Eigen/src/Geometry/arch/CMakeLists.txt b/eigen/Eigen/src/Geometry/arch/CMakeLists.txt new file mode 100644 index 0000000..1267a79 --- /dev/null +++ b/eigen/Eigen/src/Geometry/arch/CMakeLists.txt @@ -0,0 +1,6 @@ +FILE(GLOB Eigen_Geometry_arch_SRCS "*.h") + +INSTALL(FILES + ${Eigen_Geometry_arch_SRCS} + DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Geometry/arch COMPONENT Devel + ) diff --git a/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h b/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h new file mode 100644 index 0000000..3d8284f --- /dev/null +++ b/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h @@ -0,0 +1,115 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Rohit Garg <rpg.314@gmail.com> +// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GEOMETRY_SSE_H +#define EIGEN_GEOMETRY_SSE_H + +namespace Eigen { + +namespace internal { + +template<class Derived, class OtherDerived> +struct quat_product<Architecture::SSE, Derived, OtherDerived, float, Aligned> +{ + static inline Quaternion<float> run(const QuaternionBase<Derived>& _a, const QuaternionBase<OtherDerived>& _b) + { + const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0,0,0,0x80000000)); + Quaternion<float> res; + __m128 a = _a.coeffs().template packet<Aligned>(0); + __m128 b = _b.coeffs().template packet<Aligned>(0); + __m128 flip1 = _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a,1,2,0,2), + vec4f_swizzle1(b,2,0,1,2)),mask); + __m128 flip2 = _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a,3,3,3,1), + vec4f_swizzle1(b,0,1,2,1)),mask); + pstore(&res.x(), + _mm_add_ps(_mm_sub_ps(_mm_mul_ps(a,vec4f_swizzle1(b,3,3,3,3)), + _mm_mul_ps(vec4f_swizzle1(a,2,0,1,0), + vec4f_swizzle1(b,1,2,0,0))), + _mm_add_ps(flip1,flip2))); + return res; + } +}; + +template<typename VectorLhs,typename VectorRhs> +struct cross3_impl<Architecture::SSE,VectorLhs,VectorRhs,float,true> +{ + static inline typename plain_matrix_type<VectorLhs>::type + run(const VectorLhs& lhs, const VectorRhs& rhs) + { + __m128 a = lhs.template packet<VectorLhs::Flags&AlignedBit ? Aligned : Unaligned>(0); + __m128 b = rhs.template packet<VectorRhs::Flags&AlignedBit ? Aligned : Unaligned>(0); + __m128 mul1=_mm_mul_ps(vec4f_swizzle1(a,1,2,0,3),vec4f_swizzle1(b,2,0,1,3)); + __m128 mul2=_mm_mul_ps(vec4f_swizzle1(a,2,0,1,3),vec4f_swizzle1(b,1,2,0,3)); + typename plain_matrix_type<VectorLhs>::type res; + pstore(&res.x(),_mm_sub_ps(mul1,mul2)); + return res; + } +}; + + + + +template<class Derived, class OtherDerived> +struct quat_product<Architecture::SSE, Derived, OtherDerived, double, Aligned> +{ + static inline Quaternion<double> run(const QuaternionBase<Derived>& _a, const QuaternionBase<OtherDerived>& _b) + { + const Packet2d mask = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0)); + + Quaternion<double> res; + + const double* a = _a.coeffs().data(); + Packet2d b_xy = _b.coeffs().template packet<Aligned>(0); + Packet2d b_zw = _b.coeffs().template packet<Aligned>(2); + Packet2d a_xx = pset1<Packet2d>(a[0]); + Packet2d a_yy = pset1<Packet2d>(a[1]); + Packet2d a_zz = pset1<Packet2d>(a[2]); + Packet2d a_ww = pset1<Packet2d>(a[3]); + + // two temporaries: + Packet2d t1, t2; + + /* + * t1 = ww*xy + yy*zw + * t2 = zz*xy - xx*zw + * res.xy = t1 +/- swap(t2) + */ + t1 = padd(pmul(a_ww, b_xy), pmul(a_yy, b_zw)); + t2 = psub(pmul(a_zz, b_xy), pmul(a_xx, b_zw)); +#ifdef EIGEN_VECTORIZE_SSE3 + EIGEN_UNUSED_VARIABLE(mask) + pstore(&res.x(), _mm_addsub_pd(t1, preverse(t2))); +#else + pstore(&res.x(), padd(t1, pxor(mask,preverse(t2)))); +#endif + + /* + * t1 = ww*zw - yy*xy + * t2 = zz*zw + xx*xy + * res.zw = t1 -/+ swap(t2) = swap( swap(t1) +/- t2) + */ + t1 = psub(pmul(a_ww, b_zw), pmul(a_yy, b_xy)); + t2 = padd(pmul(a_zz, b_zw), pmul(a_xx, b_xy)); +#ifdef EIGEN_VECTORIZE_SSE3 + EIGEN_UNUSED_VARIABLE(mask) + pstore(&res.z(), preverse(_mm_addsub_pd(preverse(t1), t2))); +#else + pstore(&res.z(), psub(t1, pxor(mask,preverse(t2)))); +#endif + + return res; +} +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_GEOMETRY_SSE_H |