summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2019-03-03 21:09:10 +0100
committerStanislaw Halik <sthalik@misaki.pl>2019-03-03 21:10:13 +0100
commitf0238cfb6997c4acfc2bd200de7295f3fa36968f (patch)
treeb215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
parent543edd372a5193d04b3de9f23c176ab439e51b31 (diff)
don't index Eigen
Diffstat (limited to 'eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h')
-rw-r--r--eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h226
1 files changed, 0 insertions, 226 deletions
diff --git a/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h b/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
deleted file mode 100644
index f66c846..0000000
--- a/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
+++ /dev/null
@@ -1,226 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BASIC_PRECONDITIONERS_H
-#define EIGEN_BASIC_PRECONDITIONERS_H
-
-namespace Eigen {
-
-/** \ingroup IterativeLinearSolvers_Module
- * \brief A preconditioner based on the digonal entries
- *
- * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
- * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
- \code
- A.diagonal().asDiagonal() . x = b
- \endcode
- *
- * \tparam _Scalar the type of the scalar.
- *
- * \implsparsesolverconcept
- *
- * This preconditioner is suitable for both selfadjoint and general problems.
- * The diagonal entries are pre-inverted and stored into a dense vector.
- *
- * \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
- *
- * \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient
- */
-template <typename _Scalar>
-class DiagonalPreconditioner
-{
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,Dynamic,1> Vector;
- public:
- typedef typename Vector::StorageIndex StorageIndex;
- enum {
- ColsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic
- };
-
- DiagonalPreconditioner() : m_isInitialized(false) {}
-
- template<typename MatType>
- explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols())
- {
- compute(mat);
- }
-
- Index rows() const { return m_invdiag.size(); }
- Index cols() const { return m_invdiag.size(); }
-
- template<typename MatType>
- DiagonalPreconditioner& analyzePattern(const MatType& )
- {
- return *this;
- }
-
- template<typename MatType>
- DiagonalPreconditioner& factorize(const MatType& mat)
- {
- m_invdiag.resize(mat.cols());
- for(int j=0; j<mat.outerSize(); ++j)
- {
- typename MatType::InnerIterator it(mat,j);
- while(it && it.index()!=j) ++it;
- if(it && it.index()==j && it.value()!=Scalar(0))
- m_invdiag(j) = Scalar(1)/it.value();
- else
- m_invdiag(j) = Scalar(1);
- }
- m_isInitialized = true;
- return *this;
- }
-
- template<typename MatType>
- DiagonalPreconditioner& compute(const MatType& mat)
- {
- return factorize(mat);
- }
-
- /** \internal */
- template<typename Rhs, typename Dest>
- void _solve_impl(const Rhs& b, Dest& x) const
- {
- x = m_invdiag.array() * b.array() ;
- }
-
- template<typename Rhs> inline const Solve<DiagonalPreconditioner, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
- eigen_assert(m_invdiag.size()==b.rows()
- && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
- return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived());
- }
-
- ComputationInfo info() { return Success; }
-
- protected:
- Vector m_invdiag;
- bool m_isInitialized;
-};
-
-/** \ingroup IterativeLinearSolvers_Module
- * \brief Jacobi preconditioner for LeastSquaresConjugateGradient
- *
- * This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix.
- * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
- \code
- (A.adjoint() * A).diagonal().asDiagonal() * x = b
- \endcode
- *
- * \tparam _Scalar the type of the scalar.
- *
- * \implsparsesolverconcept
- *
- * The diagonal entries are pre-inverted and stored into a dense vector.
- *
- * \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner
- */
-template <typename _Scalar>
-class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar>
-{
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef DiagonalPreconditioner<_Scalar> Base;
- using Base::m_invdiag;
- public:
-
- LeastSquareDiagonalPreconditioner() : Base() {}
-
- template<typename MatType>
- explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base()
- {
- compute(mat);
- }
-
- template<typename MatType>
- LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& )
- {
- return *this;
- }
-
- template<typename MatType>
- LeastSquareDiagonalPreconditioner& factorize(const MatType& mat)
- {
- // Compute the inverse squared-norm of each column of mat
- m_invdiag.resize(mat.cols());
- if(MatType::IsRowMajor)
- {
- m_invdiag.setZero();
- for(Index j=0; j<mat.outerSize(); ++j)
- {
- for(typename MatType::InnerIterator it(mat,j); it; ++it)
- m_invdiag(it.index()) += numext::abs2(it.value());
- }
- for(Index j=0; j<mat.cols(); ++j)
- if(numext::real(m_invdiag(j))>RealScalar(0))
- m_invdiag(j) = RealScalar(1)/numext::real(m_invdiag(j));
- }
- else
- {
- for(Index j=0; j<mat.outerSize(); ++j)
- {
- RealScalar sum = mat.col(j).squaredNorm();
- if(sum>RealScalar(0))
- m_invdiag(j) = RealScalar(1)/sum;
- else
- m_invdiag(j) = RealScalar(1);
- }
- }
- Base::m_isInitialized = true;
- return *this;
- }
-
- template<typename MatType>
- LeastSquareDiagonalPreconditioner& compute(const MatType& mat)
- {
- return factorize(mat);
- }
-
- ComputationInfo info() { return Success; }
-
- protected:
-};
-
-/** \ingroup IterativeLinearSolvers_Module
- * \brief A naive preconditioner which approximates any matrix as the identity matrix
- *
- * \implsparsesolverconcept
- *
- * \sa class DiagonalPreconditioner
- */
-class IdentityPreconditioner
-{
- public:
-
- IdentityPreconditioner() {}
-
- template<typename MatrixType>
- explicit IdentityPreconditioner(const MatrixType& ) {}
-
- template<typename MatrixType>
- IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
-
- template<typename MatrixType>
- IdentityPreconditioner& factorize(const MatrixType& ) { return *this; }
-
- template<typename MatrixType>
- IdentityPreconditioner& compute(const MatrixType& ) { return *this; }
-
- template<typename Rhs>
- inline const Rhs& solve(const Rhs& b) const { return b; }
-
- ComputationInfo info() { return Success; }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_BASIC_PRECONDITIONERS_H