summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/LU
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2017-03-25 14:17:07 +0100
committerStanislaw Halik <sthalik@misaki.pl>2017-03-25 14:17:07 +0100
commit35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch)
tree7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/Eigen/src/LU
parent6e8724193e40a932faf9064b664b529e7301c578 (diff)
update
Diffstat (limited to 'eigen/Eigen/src/LU')
-rw-r--r--eigen/Eigen/src/LU/CMakeLists.txt8
-rw-r--r--eigen/Eigen/src/LU/Determinant.h2
-rw-r--r--eigen/Eigen/src/LU/FullPivLU.h312
-rw-r--r--eigen/Eigen/src/LU/InverseImpl.h (renamed from eigen/Eigen/src/LU/Inverse.h)79
-rw-r--r--eigen/Eigen/src/LU/PartialPivLU.h252
-rw-r--r--eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h (renamed from eigen/Eigen/src/LU/PartialPivLU_MKL.h)26
-rw-r--r--eigen/Eigen/src/LU/arch/CMakeLists.txt6
-rw-r--r--eigen/Eigen/src/LU/arch/Inverse_SSE.h47
8 files changed, 490 insertions, 242 deletions
diff --git a/eigen/Eigen/src/LU/CMakeLists.txt b/eigen/Eigen/src/LU/CMakeLists.txt
deleted file mode 100644
index e0d8d78..0000000
--- a/eigen/Eigen/src/LU/CMakeLists.txt
+++ /dev/null
@@ -1,8 +0,0 @@
-FILE(GLOB Eigen_LU_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_LU_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/LU COMPONENT Devel
- )
-
-ADD_SUBDIRECTORY(arch)
diff --git a/eigen/Eigen/src/LU/Determinant.h b/eigen/Eigen/src/LU/Determinant.h
index bb8e78a..d6a3c1e 100644
--- a/eigen/Eigen/src/LU/Determinant.h
+++ b/eigen/Eigen/src/LU/Determinant.h
@@ -92,7 +92,7 @@ template<typename Derived>
inline typename internal::traits<Derived>::Scalar MatrixBase<Derived>::determinant() const
{
eigen_assert(rows() == cols());
- typedef typename internal::nested<Derived,Base::RowsAtCompileTime>::type Nested;
+ typedef typename internal::nested_eval<Derived,Base::RowsAtCompileTime>::type Nested;
return internal::determinant_impl<typename internal::remove_all<Nested>::type>::run(derived());
}
diff --git a/eigen/Eigen/src/LU/FullPivLU.h b/eigen/Eigen/src/LU/FullPivLU.h
index e384704..ec61086 100644
--- a/eigen/Eigen/src/LU/FullPivLU.h
+++ b/eigen/Eigen/src/LU/FullPivLU.h
@@ -10,7 +10,18 @@
#ifndef EIGEN_LU_H
#define EIGEN_LU_H
-namespace Eigen {
+namespace Eigen {
+
+namespace internal {
+template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
+ : traits<_MatrixType>
+{
+ typedef MatrixXpr XprKind;
+ typedef SolverStorage StorageKind;
+ enum { Flags = 0 };
+};
+
+} // end namespace internal
/** \ingroup LU_Module
*
@@ -18,7 +29,7 @@ namespace Eigen {
*
* \brief LU decomposition of a matrix with complete pivoting, and related features
*
- * \param MatrixType the type of the matrix of which we are computing the LU decomposition
+ * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
* decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
@@ -41,27 +52,28 @@ namespace Eigen {
* \include class_FullPivLU.cpp
* Output: \verbinclude class_FullPivLU.out
*
+ * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
+ *
* \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
*/
template<typename _MatrixType> class FullPivLU
+ : public SolverBase<FullPivLU<_MatrixType> >
{
public:
typedef _MatrixType MatrixType;
+ typedef SolverBase<FullPivLU> Base;
+
+ EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU)
+ // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int
enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
- typedef typename MatrixType::Index Index;
- typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
- typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
+ typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType;
+ typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType;
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
+ typedef typename MatrixType::PlainObject PlainObject;
/**
* \brief Default Constructor.
@@ -84,7 +96,17 @@ template<typename _MatrixType> class FullPivLU
* \param matrix the matrix of which to compute the LU decomposition.
* It is required to be nonzero.
*/
- FullPivLU(const MatrixType& matrix);
+ template<typename InputType>
+ explicit FullPivLU(const EigenBase<InputType>& matrix);
+
+ /** \brief Constructs a LU factorization from a given matrix
+ *
+ * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
+ *
+ * \sa FullPivLU(const EigenBase&)
+ */
+ template<typename InputType>
+ explicit FullPivLU(EigenBase<InputType>& matrix);
/** Computes the LU decomposition of the given matrix.
*
@@ -93,7 +115,12 @@ template<typename _MatrixType> class FullPivLU
*
* \returns a reference to *this
*/
- FullPivLU& compute(const MatrixType& matrix);
+ template<typename InputType>
+ FullPivLU& compute(const EigenBase<InputType>& matrix) {
+ m_lu = matrix.derived();
+ computeInPlace();
+ return *this;
+ }
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
* unit-lower-triangular part is L (at least for square matrices; in the non-square
@@ -129,7 +156,7 @@ template<typename _MatrixType> class FullPivLU
*
* \sa permutationQ()
*/
- inline const PermutationPType& permutationP() const
+ EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
return m_p;
@@ -166,7 +193,7 @@ template<typename _MatrixType> class FullPivLU
}
/** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
- * will form a basis of the kernel.
+ * will form a basis of the image (column-space).
*
* \param originalMatrix the original matrix, of which *this is the LU decomposition.
* The reason why it is needed to pass it here, is that this allows
@@ -210,12 +237,22 @@ template<typename _MatrixType> class FullPivLU
*
* \sa TriangularView::solve(), kernel(), inverse()
*/
+ // FIXME this is a copy-paste of the base-class member to add the isInitialized assertion.
template<typename Rhs>
- inline const internal::solve_retval<FullPivLU, Rhs>
+ inline const Solve<FullPivLU, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
- return internal::solve_retval<FullPivLU, Rhs>(*this, b.derived());
+ return Solve<FullPivLU, Rhs>(*this, b.derived());
+ }
+
+ /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
+ the LU decomposition.
+ */
+ inline RealScalar rcond() const
+ {
+ eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
+ return internal::rcond_estimate_helper(m_l1_norm, *this);
}
/** \returns the determinant of the matrix of which
@@ -360,33 +397,44 @@ template<typename _MatrixType> class FullPivLU
*
* \sa MatrixBase::inverse()
*/
- inline const internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const
+ inline const Inverse<FullPivLU> inverse() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
- return internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
+ return Inverse<FullPivLU>(*this);
}
MatrixType reconstructedMatrix() const;
- inline Index rows() const { return m_lu.rows(); }
- inline Index cols() const { return m_lu.cols(); }
+ EIGEN_DEVICE_FUNC inline Index rows() const { return m_lu.rows(); }
+ EIGEN_DEVICE_FUNC inline Index cols() const { return m_lu.cols(); }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
+
+ template<bool Conjugate, typename RhsType, typename DstType>
+ void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
+ #endif
protected:
-
+
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
-
+
+ void computeInPlace();
+
MatrixType m_lu;
PermutationPType m_p;
PermutationQType m_q;
IntColVectorType m_rowsTranspositions;
IntRowVectorType m_colsTranspositions;
- Index m_det_pq, m_nonzero_pivots;
+ Index m_nonzero_pivots;
+ RealScalar m_l1_norm;
RealScalar m_maxpivot, m_prescribedThreshold;
+ signed char m_det_pq;
bool m_isInitialized, m_usePrescribedThreshold;
};
@@ -409,7 +457,8 @@ FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
}
template<typename MatrixType>
-FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
+template<typename InputType>
+FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix)
: m_lu(matrix.rows(), matrix.cols()),
m_p(matrix.rows()),
m_q(matrix.cols()),
@@ -418,28 +467,41 @@ FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
m_isInitialized(false),
m_usePrescribedThreshold(false)
{
- compute(matrix);
+ compute(matrix.derived());
+}
+
+template<typename MatrixType>
+template<typename InputType>
+FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix)
+ : m_lu(matrix.derived()),
+ m_p(matrix.rows()),
+ m_q(matrix.cols()),
+ m_rowsTranspositions(matrix.rows()),
+ m_colsTranspositions(matrix.cols()),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false)
+{
+ computeInPlace();
}
template<typename MatrixType>
-FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
+void FullPivLU<MatrixType>::computeInPlace()
{
check_template_parameters();
-
+
// the permutations are stored as int indices, so just to be sure:
- eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
-
- m_isInitialized = true;
- m_lu = matrix;
+ eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest());
+
+ m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
- const Index size = matrix.diagonalSize();
- const Index rows = matrix.rows();
- const Index cols = matrix.cols();
+ const Index size = m_lu.diagonalSize();
+ const Index rows = m_lu.rows();
+ const Index cols = m_lu.cols();
// will store the transpositions, before we accumulate them at the end.
// can't accumulate on-the-fly because that will be done in reverse order for the rows.
- m_rowsTranspositions.resize(matrix.rows());
- m_colsTranspositions.resize(matrix.cols());
+ m_rowsTranspositions.resize(m_lu.rows());
+ m_colsTranspositions.resize(m_lu.cols());
Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
@@ -451,14 +513,16 @@ FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
// biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
Index row_of_biggest_in_corner, col_of_biggest_in_corner;
- RealScalar biggest_in_corner;
+ typedef internal::scalar_score_coeff_op<Scalar> Scoring;
+ typedef typename Scoring::result_type Score;
+ Score biggest_in_corner;
biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
- .cwiseAbs()
+ .unaryExpr(Scoring())
.maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
col_of_biggest_in_corner += k; // need to add k to them.
- if(biggest_in_corner==RealScalar(0))
+ if(biggest_in_corner==Score(0))
{
// before exiting, make sure to initialize the still uninitialized transpositions
// in a sane state without destroying what we already have.
@@ -471,7 +535,8 @@ FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
break;
}
- if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner;
+ RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner);
+ if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot;
// Now that we've found the pivot, we need to apply the row/col swaps to
// bring it to the location (k,k).
@@ -508,7 +573,8 @@ FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
- return *this;
+
+ m_isInitialized = true;
}
template<typename MatrixType>
@@ -671,64 +737,136 @@ struct image_retval<FullPivLU<_MatrixType> >
/***** Implementation of solve() *****************************************************/
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<FullPivLU<_MatrixType>, Rhs>
- : solve_retval_base<FullPivLU<_MatrixType>, Rhs>
+} // end namespace internal
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename _MatrixType>
+template<typename RhsType, typename DstType>
+void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
- EIGEN_MAKE_SOLVE_HELPERS(FullPivLU<_MatrixType>,Rhs)
+ /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
+ * So we proceed as follows:
+ * Step 1: compute c = P * rhs.
+ * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
+ * Step 3: replace c by the solution x to Ux = c. May or may not exist.
+ * Step 4: result = Q * c;
+ */
- template<typename Dest> void evalTo(Dest& dst) const
+ const Index rows = this->rows(),
+ cols = this->cols(),
+ nonzero_pivots = this->rank();
+ eigen_assert(rhs.rows() == rows);
+ const Index smalldim = (std::min)(rows, cols);
+
+ if(nonzero_pivots == 0)
{
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
- * So we proceed as follows:
- * Step 1: compute c = P * rhs.
- * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
- * Step 3: replace c by the solution x to Ux = c. May or may not exist.
- * Step 4: result = Q * c;
- */
-
- const Index rows = dec().rows(), cols = dec().cols(),
- nonzero_pivots = dec().rank();
- eigen_assert(rhs().rows() == rows);
- const Index smalldim = (std::min)(rows, cols);
-
- if(nonzero_pivots == 0)
- {
- dst.setZero();
- return;
- }
+ dst.setZero();
+ return;
+ }
+
+ typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
+
+ // Step 1
+ c = permutationP() * rhs;
- typename Rhs::PlainObject c(rhs().rows(), rhs().cols());
+ // Step 2
+ m_lu.topLeftCorner(smalldim,smalldim)
+ .template triangularView<UnitLower>()
+ .solveInPlace(c.topRows(smalldim));
+ if(rows>cols)
+ c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols);
- // Step 1
- c = dec().permutationP() * rhs();
+ // Step 3
+ m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
+ .template triangularView<Upper>()
+ .solveInPlace(c.topRows(nonzero_pivots));
+ // Step 4
+ for(Index i = 0; i < nonzero_pivots; ++i)
+ dst.row(permutationQ().indices().coeff(i)) = c.row(i);
+ for(Index i = nonzero_pivots; i < m_lu.cols(); ++i)
+ dst.row(permutationQ().indices().coeff(i)).setZero();
+}
+
+template<typename _MatrixType>
+template<bool Conjugate, typename RhsType, typename DstType>
+void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
+{
+ /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1},
+ * and since permutations are real and unitary, we can write this
+ * as A^T = Q U^T L^T P,
+ * So we proceed as follows:
+ * Step 1: compute c = Q^T rhs.
+ * Step 2: replace c by the solution x to U^T x = c. May or may not exist.
+ * Step 3: replace c by the solution x to L^T x = c.
+ * Step 4: result = P^T c.
+ * If Conjugate is true, replace "^T" by "^*" above.
+ */
+
+ const Index rows = this->rows(), cols = this->cols(),
+ nonzero_pivots = this->rank();
+ eigen_assert(rhs.rows() == cols);
+ const Index smalldim = (std::min)(rows, cols);
+
+ if(nonzero_pivots == 0)
+ {
+ dst.setZero();
+ return;
+ }
+
+ typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
+
+ // Step 1
+ c = permutationQ().inverse() * rhs;
+
+ if (Conjugate) {
// Step 2
- dec().matrixLU()
- .topLeftCorner(smalldim,smalldim)
+ m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
+ .template triangularView<Upper>()
+ .adjoint()
+ .solveInPlace(c.topRows(nonzero_pivots));
+ // Step 3
+ m_lu.topLeftCorner(smalldim, smalldim)
.template triangularView<UnitLower>()
+ .adjoint()
.solveInPlace(c.topRows(smalldim));
- if(rows>cols)
- {
- c.bottomRows(rows-cols)
- -= dec().matrixLU().bottomRows(rows-cols)
- * c.topRows(cols);
- }
-
- // Step 3
- dec().matrixLU()
- .topLeftCorner(nonzero_pivots, nonzero_pivots)
+ } else {
+ // Step 2
+ m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
.template triangularView<Upper>()
+ .transpose()
.solveInPlace(c.topRows(nonzero_pivots));
+ // Step 3
+ m_lu.topLeftCorner(smalldim, smalldim)
+ .template triangularView<UnitLower>()
+ .transpose()
+ .solveInPlace(c.topRows(smalldim));
+ }
+
+ // Step 4
+ PermutationPType invp = permutationP().inverse().eval();
+ for(Index i = 0; i < smalldim; ++i)
+ dst.row(invp.indices().coeff(i)) = c.row(i);
+ for(Index i = smalldim; i < rows; ++i)
+ dst.row(invp.indices().coeff(i)).setZero();
+}
+
+#endif
+
+namespace internal {
+
- // Step 4
- for(Index i = 0; i < nonzero_pivots; ++i)
- dst.row(dec().permutationQ().indices().coeff(i)) = c.row(i);
- for(Index i = nonzero_pivots; i < dec().matrixLU().cols(); ++i)
- dst.row(dec().permutationQ().indices().coeff(i)).setZero();
+/***** Implementation of inverse() *****************************************************/
+template<typename DstXprType, typename MatrixType>
+struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense>
+{
+ typedef FullPivLU<MatrixType> LuType;
+ typedef Inverse<LuType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &)
+ {
+ dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
}
};
-
} // end namespace internal
/******* MatrixBase methods *****************************************************************/
diff --git a/eigen/Eigen/src/LU/Inverse.h b/eigen/Eigen/src/LU/InverseImpl.h
index e836fd6..018f99b 100644
--- a/eigen/Eigen/src/LU/Inverse.h
+++ b/eigen/Eigen/src/LU/InverseImpl.h
@@ -2,13 +2,14 @@
// for linear algebra.
//
// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-#ifndef EIGEN_INVERSE_H
-#define EIGEN_INVERSE_H
+#ifndef EIGEN_INVERSE_IMPL_H
+#define EIGEN_INVERSE_IMPL_H
namespace Eigen {
@@ -21,6 +22,7 @@ namespace internal {
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct compute_inverse
{
+ EIGEN_DEVICE_FUNC
static inline void run(const MatrixType& matrix, ResultType& result)
{
result = matrix.partialPivLu().inverse();
@@ -37,16 +39,19 @@ struct compute_inverse_and_det_with_check { /* nothing! general case not support
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 1>
{
+ EIGEN_DEVICE_FUNC
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename MatrixType::Scalar Scalar;
- result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
+ internal::evaluator<MatrixType> matrixEval(matrix);
+ result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0);
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
{
+ EIGEN_DEVICE_FUNC
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
@@ -67,19 +72,21 @@ struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
****************************/
template<typename MatrixType, typename ResultType>
+EIGEN_DEVICE_FUNC
inline void compute_inverse_size2_helper(
const MatrixType& matrix, const typename ResultType::Scalar& invdet,
ResultType& result)
{
- result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
+ result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
- result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
+ result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
}
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 2>
{
+ EIGEN_DEVICE_FUNC
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
@@ -91,6 +98,7 @@ struct compute_inverse<MatrixType, ResultType, 2>
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
{
+ EIGEN_DEVICE_FUNC
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
@@ -114,6 +122,7 @@ struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
****************************/
template<typename MatrixType, int i, int j>
+EIGEN_DEVICE_FUNC
inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
{
enum {
@@ -127,6 +136,7 @@ inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
}
template<typename MatrixType, typename ResultType>
+EIGEN_DEVICE_FUNC
inline void compute_inverse_size3_helper(
const MatrixType& matrix,
const typename ResultType::Scalar& invdet,
@@ -145,6 +155,7 @@ inline void compute_inverse_size3_helper(
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 3>
{
+ EIGEN_DEVICE_FUNC
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
@@ -161,6 +172,7 @@ struct compute_inverse<MatrixType, ResultType, 3>
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
{
+ EIGEN_DEVICE_FUNC
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
@@ -188,6 +200,7 @@ struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
****************************/
template<typename Derived>
+EIGEN_DEVICE_FUNC
inline const typename Derived::Scalar general_det3_helper
(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
{
@@ -196,6 +209,7 @@ inline const typename Derived::Scalar general_det3_helper
}
template<typename MatrixType, int i, int j>
+EIGEN_DEVICE_FUNC
inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
{
enum {
@@ -214,6 +228,7 @@ inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
struct compute_inverse_size4
{
+ EIGEN_DEVICE_FUNC
static void run(const MatrixType& matrix, ResultType& result)
{
result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix);
@@ -246,6 +261,7 @@ struct compute_inverse<MatrixType, ResultType, 4>
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
{
+ EIGEN_DEVICE_FUNC
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
@@ -265,38 +281,37 @@ struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
*** MatrixBase methods ***
*************************/
-template<typename MatrixType>
-struct traits<inverse_impl<MatrixType> >
-{
- typedef typename MatrixType::PlainObject ReturnType;
-};
-
-template<typename MatrixType>
-struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> >
-{
- typedef typename MatrixType::Index Index;
- typedef typename internal::eval<MatrixType>::type MatrixTypeNested;
- typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
- MatrixTypeNested m_matrix;
-
- inverse_impl(const MatrixType& matrix)
- : m_matrix(matrix)
- {}
+} // end namespace internal
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
+namespace internal {
- template<typename Dest> inline void evalTo(Dest& dst) const
+// Specialization for "dense = dense_xpr.inverse()"
+template<typename DstXprType, typename XprType>
+struct Assignment<DstXprType, Inverse<XprType>, internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar>, Dense2Dense>
+{
+ typedef Inverse<XprType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar> &)
{
- const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime);
+ Index dstRows = src.rows();
+ Index dstCols = src.cols();
+ if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
+ dst.resize(dstRows, dstCols);
+
+ const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime);
EIGEN_ONLY_USED_FOR_DEBUG(Size);
- eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=0 && extract_data(m_matrix)!=extract_data(dst)))
+ eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst)))
&& "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
- compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst);
+ typedef typename internal::nested_eval<XprType,XprType::ColsAtCompileTime>::type ActualXprType;
+ typedef typename internal::remove_all<ActualXprType>::type ActualXprTypeCleanded;
+
+ ActualXprType actual_xpr(src.nestedExpression());
+
+ compute_inverse<ActualXprTypeCleanded, DstXprType>::run(actual_xpr, dst);
}
};
+
} // end namespace internal
/** \lu_module
@@ -317,11 +332,11 @@ struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> >
* \sa computeInverseAndDetWithCheck()
*/
template<typename Derived>
-inline const internal::inverse_impl<Derived> MatrixBase<Derived>::inverse() const
+inline const Inverse<Derived> MatrixBase<Derived>::inverse() const
{
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
eigen_assert(rows() == cols());
- return internal::inverse_impl<Derived>(derived());
+ return Inverse<Derived>(derived());
}
/** \lu_module
@@ -357,7 +372,7 @@ inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
// for larger sizes, evaluating has negligible cost and limits code size.
typedef typename internal::conditional<
RowsAtCompileTime == 2,
- typename internal::remove_all<typename internal::nested<Derived, 2>::type>::type,
+ typename internal::remove_all<typename internal::nested_eval<Derived, 2>::type>::type,
PlainObject
>::type MatrixType;
internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
@@ -397,4 +412,4 @@ inline void MatrixBase<Derived>::computeInverseWithCheck(
} // end namespace Eigen
-#endif // EIGEN_INVERSE_H
+#endif // EIGEN_INVERSE_IMPL_H
diff --git a/eigen/Eigen/src/LU/PartialPivLU.h b/eigen/Eigen/src/LU/PartialPivLU.h
index 7d1db94..d439618 100644
--- a/eigen/Eigen/src/LU/PartialPivLU.h
+++ b/eigen/Eigen/src/LU/PartialPivLU.h
@@ -11,7 +11,33 @@
#ifndef EIGEN_PARTIALLU_H
#define EIGEN_PARTIALLU_H
-namespace Eigen {
+namespace Eigen {
+
+namespace internal {
+template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
+ : traits<_MatrixType>
+{
+ typedef MatrixXpr XprKind;
+ typedef SolverStorage StorageKind;
+ typedef traits<_MatrixType> BaseTraits;
+ enum {
+ Flags = BaseTraits::Flags & RowMajorBit,
+ CoeffReadCost = Dynamic
+ };
+};
+
+template<typename T,typename Derived>
+struct enable_if_ref;
+// {
+// typedef Derived type;
+// };
+
+template<typename T,typename Derived>
+struct enable_if_ref<Ref<T>,Derived> {
+ typedef Derived type;
+};
+
+} // end namespace internal
/** \ingroup LU_Module
*
@@ -19,7 +45,7 @@ namespace Eigen {
*
* \brief LU decomposition of a matrix with partial pivoting, and related features
*
- * \param MatrixType the type of the matrix of which we are computing the LU decomposition
+ * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
* is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
@@ -42,34 +68,33 @@ namespace Eigen {
*
* The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
*
+ * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
+ *
* \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
*/
template<typename _MatrixType> class PartialPivLU
+ : public SolverBase<PartialPivLU<_MatrixType> >
{
public:
typedef _MatrixType MatrixType;
+ typedef SolverBase<PartialPivLU> Base;
+ EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU)
+ // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int
enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
- typedef typename MatrixType::Index Index;
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
-
+ typedef typename MatrixType::PlainObject PlainObject;
/**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via PartialPivLU::compute(const MatrixType&).
- */
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via PartialPivLU::compute(const MatrixType&).
+ */
PartialPivLU();
/** \brief Default Constructor with memory preallocation
@@ -78,7 +103,7 @@ template<typename _MatrixType> class PartialPivLU
* according to the specified problem \a size.
* \sa PartialPivLU()
*/
- PartialPivLU(Index size);
+ explicit PartialPivLU(Index size);
/** Constructor.
*
@@ -87,9 +112,25 @@ template<typename _MatrixType> class PartialPivLU
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
* If you need to deal with non-full rank, use class FullPivLU instead.
*/
- PartialPivLU(const MatrixType& matrix);
+ template<typename InputType>
+ explicit PartialPivLU(const EigenBase<InputType>& matrix);
- PartialPivLU& compute(const MatrixType& matrix);
+ /** Constructor for \link InplaceDecomposition inplace decomposition \endlink
+ *
+ * \param matrix the matrix of which to compute the LU decomposition.
+ *
+ * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
+ * If you need to deal with non-full rank, use class FullPivLU instead.
+ */
+ template<typename InputType>
+ explicit PartialPivLU(EigenBase<InputType>& matrix);
+
+ template<typename InputType>
+ PartialPivLU& compute(const EigenBase<InputType>& matrix) {
+ m_lu = matrix.derived();
+ compute();
+ return *this;
+ }
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
* unit-lower-triangular part is L (at least for square matrices; in the non-square
@@ -128,12 +169,22 @@ template<typename _MatrixType> class PartialPivLU
*
* \sa TriangularView::solve(), inverse(), computeInverse()
*/
+ // FIXME this is a copy-paste of the base-class member to add the isInitialized assertion.
template<typename Rhs>
- inline const internal::solve_retval<PartialPivLU, Rhs>
+ inline const Solve<PartialPivLU, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived());
+ return Solve<PartialPivLU, Rhs>(*this, b.derived());
+ }
+
+ /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
+ the LU decomposition.
+ */
+ inline RealScalar rcond() const
+ {
+ eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
+ return internal::rcond_estimate_helper(m_l1_norm, *this);
}
/** \returns the inverse of the matrix of which *this is the LU decomposition.
@@ -143,11 +194,10 @@ template<typename _MatrixType> class PartialPivLU
*
* \sa MatrixBase::inverse(), LU::inverse()
*/
- inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
+ inline const Inverse<PartialPivLU> inverse() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
+ return Inverse<PartialPivLU>(*this);
}
/** \returns the determinant of the matrix of which
@@ -163,24 +213,78 @@ template<typename _MatrixType> class PartialPivLU
*
* \sa MatrixBase::determinant()
*/
- typename internal::traits<MatrixType>::Scalar determinant() const;
+ Scalar determinant() const;
MatrixType reconstructedMatrix() const;
inline Index rows() const { return m_lu.rows(); }
inline Index cols() const { return m_lu.cols(); }
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC
+ void _solve_impl(const RhsType &rhs, DstType &dst) const {
+ /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
+ * So we proceed as follows:
+ * Step 1: compute c = Pb.
+ * Step 2: replace c by the solution x to Lx = c.
+ * Step 3: replace c by the solution x to Ux = c.
+ */
+
+ eigen_assert(rhs.rows() == m_lu.rows());
+
+ // Step 1
+ dst = permutationP() * rhs;
+
+ // Step 2
+ m_lu.template triangularView<UnitLower>().solveInPlace(dst);
+
+ // Step 3
+ m_lu.template triangularView<Upper>().solveInPlace(dst);
+ }
+
+ template<bool Conjugate, typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC
+ void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const {
+ /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
+ * So we proceed as follows:
+ * Step 1: compute c = Pb.
+ * Step 2: replace c by the solution x to Lx = c.
+ * Step 3: replace c by the solution x to Ux = c.
+ */
+
+ eigen_assert(rhs.rows() == m_lu.cols());
+
+ if (Conjugate) {
+ // Step 1
+ dst = m_lu.template triangularView<Upper>().adjoint().solve(rhs);
+ // Step 2
+ m_lu.template triangularView<UnitLower>().adjoint().solveInPlace(dst);
+ } else {
+ // Step 1
+ dst = m_lu.template triangularView<Upper>().transpose().solve(rhs);
+ // Step 2
+ m_lu.template triangularView<UnitLower>().transpose().solveInPlace(dst);
+ }
+ // Step 3
+ dst = permutationP().transpose() * dst;
+ }
+ #endif
+
protected:
-
+
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
-
+
+ void compute();
+
MatrixType m_lu;
PermutationType m_p;
TranspositionType m_rowsTranspositions;
- Index m_det_p;
+ RealScalar m_l1_norm;
+ signed char m_det_p;
bool m_isInitialized;
};
@@ -189,6 +293,7 @@ PartialPivLU<MatrixType>::PartialPivLU()
: m_lu(),
m_p(),
m_rowsTranspositions(),
+ m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
@@ -199,20 +304,36 @@ PartialPivLU<MatrixType>::PartialPivLU(Index size)
: m_lu(size, size),
m_p(size),
m_rowsTranspositions(size),
+ m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
}
template<typename MatrixType>
-PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
- : m_lu(matrix.rows(), matrix.rows()),
+template<typename InputType>
+PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
+ : m_lu(matrix.rows(),matrix.cols()),
m_p(matrix.rows()),
m_rowsTranspositions(matrix.rows()),
+ m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
- compute(matrix);
+ compute(matrix.derived());
+}
+
+template<typename MatrixType>
+template<typename InputType>
+PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix)
+ : m_lu(matrix.derived()),
+ m_p(matrix.rows()),
+ m_rowsTranspositions(matrix.rows()),
+ m_l1_norm(0),
+ m_det_p(0),
+ m_isInitialized(false)
+{
+ compute();
}
namespace internal {
@@ -230,7 +351,6 @@ struct partial_lu_impl
typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
/** \internal performs the LU decomposition in-place of the matrix \a lu
* using an unblocked algorithm.
@@ -244,6 +364,8 @@ struct partial_lu_impl
*/
static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
{
+ typedef scalar_score_coeff_op<Scalar> Scoring;
+ typedef typename Scoring::result_type Score;
const Index rows = lu.rows();
const Index cols = lu.cols();
const Index size = (std::min)(rows,cols);
@@ -253,15 +375,15 @@ struct partial_lu_impl
{
Index rrows = rows-k-1;
Index rcols = cols-k-1;
-
+
Index row_of_biggest_in_col;
- RealScalar biggest_in_corner
- = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col);
+ Score biggest_in_corner
+ = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col);
row_of_biggest_in_col += k;
row_transpositions[k] = PivIndex(row_of_biggest_in_col);
- if(biggest_in_corner != RealScalar(0))
+ if(biggest_in_corner != Score(0))
{
if(k != row_of_biggest_in_col)
{
@@ -354,7 +476,7 @@ struct partial_lu_impl
// update permutations and apply them to A_0
for(Index i=k; i<k+bs; ++i)
{
- Index piv = (row_transpositions[i] += k);
+ Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k));
A_0.row(i).swap(A_0.row(piv));
}
@@ -377,45 +499,44 @@ struct partial_lu_impl
/** \internal performs the LU decomposition with partial pivoting in-place.
*/
template<typename MatrixType, typename TranspositionType>
-void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions)
+void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions)
{
eigen_assert(lu.cols() == row_transpositions.size());
eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
partial_lu_impl
- <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index>
+ <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::StorageIndex>
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
}
} // end namespace internal
template<typename MatrixType>
-PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
+void PartialPivLU<MatrixType>::compute()
{
check_template_parameters();
-
+
// the row permutation is stored as int indices, so just to be sure:
- eigen_assert(matrix.rows()<NumTraits<int>::highest());
-
- m_lu = matrix;
+ eigen_assert(m_lu.rows()<NumTraits<int>::highest());
+
+ m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
- eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
- const Index size = matrix.rows();
+ eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
+ const Index size = m_lu.rows();
m_rowsTranspositions.resize(size);
- typename TranspositionType::Index nb_transpositions;
+ typename TranspositionType::StorageIndex nb_transpositions;
internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
m_det_p = (nb_transpositions%2) ? -1 : 1;
m_p = m_rowsTranspositions;
m_isInitialized = true;
- return *this;
}
template<typename MatrixType>
-typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
+typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return Scalar(m_det_p) * m_lu.diagonal().prod();
@@ -438,38 +559,21 @@ MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
return res;
}
-/***** Implementation of solve() *****************************************************/
+/***** Implementation details *****************************************************/
namespace internal {
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<PartialPivLU<_MatrixType>, Rhs>
- : solve_retval_base<PartialPivLU<_MatrixType>, Rhs>
+/***** Implementation of inverse() *****************************************************/
+template<typename DstXprType, typename MatrixType>
+struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense>
{
- EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
+ typedef PartialPivLU<MatrixType> LuType;
+ typedef Inverse<LuType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &)
{
- /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
- * So we proceed as follows:
- * Step 1: compute c = Pb.
- * Step 2: replace c by the solution x to Lx = c.
- * Step 3: replace c by the solution x to Ux = c.
- */
-
- eigen_assert(rhs().rows() == dec().matrixLU().rows());
-
- // Step 1
- dst = dec().permutationP() * rhs();
-
- // Step 2
- dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst);
-
- // Step 3
- dec().matrixLU().template triangularView<Upper>().solveInPlace(dst);
+ dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
}
};
-
} // end namespace internal
/******** MatrixBase methods *******/
@@ -487,7 +591,6 @@ MatrixBase<Derived>::partialPivLu() const
return PartialPivLU<PlainObject>(eval());
}
-#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
/** \lu_module
*
* Synonym of partialPivLu().
@@ -502,7 +605,6 @@ MatrixBase<Derived>::lu() const
{
return PartialPivLU<PlainObject>(eval());
}
-#endif
} // end namespace Eigen
diff --git a/eigen/Eigen/src/LU/PartialPivLU_MKL.h b/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h
index 9035953..755168a 100644
--- a/eigen/Eigen/src/LU/PartialPivLU_MKL.h
+++ b/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h
@@ -25,7 +25,7 @@
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
+ * Content : Eigen bindings to LAPACKe
* LU decomposition with partial pivoting based on LAPACKE_?getrf function.
********************************************************************************
*/
@@ -33,20 +33,18 @@
#ifndef EIGEN_PARTIALLU_LAPACK_H
#define EIGEN_PARTIALLU_LAPACK_H
-#include "Eigen/src/Core/util/MKL_support.h"
-
namespace Eigen {
namespace internal {
-/** \internal Specialization for the data types supported by MKL */
+/** \internal Specialization for the data types supported by LAPACKe */
-#define EIGEN_MKL_LU_PARTPIV(EIGTYPE, MKLTYPE, MKLPREFIX) \
+#define EIGEN_LAPACKE_LU_PARTPIV(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX) \
template<int StorageOrder> \
struct partial_lu_impl<EIGTYPE, StorageOrder, lapack_int> \
{ \
/* \internal performs the LU decomposition in-place of the matrix represented */ \
- static lapack_int blocked_lu(lapack_int rows, lapack_int cols, EIGTYPE* lu_data, lapack_int luStride, lapack_int* row_transpositions, lapack_int& nb_transpositions, lapack_int maxBlockSize=256) \
+ static lapack_int blocked_lu(Index rows, Index cols, EIGTYPE* lu_data, Index luStride, lapack_int* row_transpositions, lapack_int& nb_transpositions, lapack_int maxBlockSize=256) \
{ \
EIGEN_UNUSED_VARIABLE(maxBlockSize);\
lapack_int matrix_order, first_zero_pivot; \
@@ -54,14 +52,14 @@ struct partial_lu_impl<EIGTYPE, StorageOrder, lapack_int> \
EIGTYPE* a; \
/* Set up parameters for ?getrf */ \
matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
- lda = luStride; \
+ lda = convert_index<lapack_int>(luStride); \
a = lu_data; \
ipiv = row_transpositions; \
- m = rows; \
- n = cols; \
+ m = convert_index<lapack_int>(rows); \
+ n = convert_index<lapack_int>(cols); \
nb_transpositions = 0; \
\
- info = LAPACKE_##MKLPREFIX##getrf( matrix_order, m, n, (MKLTYPE*)a, lda, ipiv ); \
+ info = LAPACKE_##LAPACKE_PREFIX##getrf( matrix_order, m, n, (LAPACKE_TYPE*)a, lda, ipiv ); \
\
for(int i=0;i<m;i++) { ipiv[i]--; if (ipiv[i]!=i) nb_transpositions++; } \
\
@@ -73,10 +71,10 @@ struct partial_lu_impl<EIGTYPE, StorageOrder, lapack_int> \
} \
};
-EIGEN_MKL_LU_PARTPIV(double, double, d)
-EIGEN_MKL_LU_PARTPIV(float, float, s)
-EIGEN_MKL_LU_PARTPIV(dcomplex, MKL_Complex16, z)
-EIGEN_MKL_LU_PARTPIV(scomplex, MKL_Complex8, c)
+EIGEN_LAPACKE_LU_PARTPIV(double, double, d)
+EIGEN_LAPACKE_LU_PARTPIV(float, float, s)
+EIGEN_LAPACKE_LU_PARTPIV(dcomplex, lapack_complex_double, z)
+EIGEN_LAPACKE_LU_PARTPIV(scomplex, lapack_complex_float, c)
} // end namespace internal
diff --git a/eigen/Eigen/src/LU/arch/CMakeLists.txt b/eigen/Eigen/src/LU/arch/CMakeLists.txt
deleted file mode 100644
index f6b7ed9..0000000
--- a/eigen/Eigen/src/LU/arch/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_LU_arch_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_LU_arch_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/LU/arch COMPONENT Devel
- )
diff --git a/eigen/Eigen/src/LU/arch/Inverse_SSE.h b/eigen/Eigen/src/LU/arch/Inverse_SSE.h
index 60b7a23..ebb64a6 100644
--- a/eigen/Eigen/src/LU/arch/Inverse_SSE.h
+++ b/eigen/Eigen/src/LU/arch/Inverse_SSE.h
@@ -35,13 +35,15 @@ template<typename MatrixType, typename ResultType>
struct compute_inverse_size4<Architecture::SSE, float, MatrixType, ResultType>
{
enum {
- MatrixAlignment = bool(MatrixType::Flags&AlignedBit),
- ResultAlignment = bool(ResultType::Flags&AlignedBit),
+ MatrixAlignment = traits<MatrixType>::Alignment,
+ ResultAlignment = traits<ResultType>::Alignment,
StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit)
};
+ typedef typename conditional<(MatrixType::Flags&LinearAccessBit),MatrixType const &,typename MatrixType::PlainObject>::type ActualMatrixType;
- static void run(const MatrixType& matrix, ResultType& result)
+ static void run(const MatrixType& mat, ResultType& result)
{
+ ActualMatrixType matrix(mat);
EIGEN_ALIGN16 const unsigned int _Sign_PNNP[4] = { 0x00000000, 0x80000000, 0x80000000, 0x00000000 };
// Load the full matrix into registers
@@ -151,10 +153,12 @@ struct compute_inverse_size4<Architecture::SSE, float, MatrixType, ResultType>
iC = _mm_mul_ps(rd,iC);
iD = _mm_mul_ps(rd,iD);
- result.template writePacket<ResultAlignment>( 0, _mm_shuffle_ps(iA,iB,0x77));
- result.template writePacket<ResultAlignment>( 4, _mm_shuffle_ps(iA,iB,0x22));
- result.template writePacket<ResultAlignment>( 8, _mm_shuffle_ps(iC,iD,0x77));
- result.template writePacket<ResultAlignment>(12, _mm_shuffle_ps(iC,iD,0x22));
+ Index res_stride = result.outerStride();
+ float* res = result.data();
+ pstoret<float, Packet4f, ResultAlignment>(res+0, _mm_shuffle_ps(iA,iB,0x77));
+ pstoret<float, Packet4f, ResultAlignment>(res+res_stride, _mm_shuffle_ps(iA,iB,0x22));
+ pstoret<float, Packet4f, ResultAlignment>(res+2*res_stride, _mm_shuffle_ps(iC,iD,0x77));
+ pstoret<float, Packet4f, ResultAlignment>(res+3*res_stride, _mm_shuffle_ps(iC,iD,0x22));
}
};
@@ -163,18 +167,21 @@ template<typename MatrixType, typename ResultType>
struct compute_inverse_size4<Architecture::SSE, double, MatrixType, ResultType>
{
enum {
- MatrixAlignment = bool(MatrixType::Flags&AlignedBit),
- ResultAlignment = bool(ResultType::Flags&AlignedBit),
+ MatrixAlignment = traits<MatrixType>::Alignment,
+ ResultAlignment = traits<ResultType>::Alignment,
StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit)
};
- static void run(const MatrixType& matrix, ResultType& result)
+ typedef typename conditional<(MatrixType::Flags&LinearAccessBit),MatrixType const &,typename MatrixType::PlainObject>::type ActualMatrixType;
+
+ static void run(const MatrixType& mat, ResultType& result)
{
+ ActualMatrixType matrix(mat);
const __m128d _Sign_NP = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0));
const __m128d _Sign_PN = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
// The inverse is calculated using "Divide and Conquer" technique. The
// original matrix is divide into four 2x2 sub-matrices. Since each
- // register of the matrix holds two element, the smaller matrices are
+ // register of the matrix holds two elements, the smaller matrices are
// consisted of two registers. Hence we get a better locality of the
// calculations.
@@ -311,14 +318,16 @@ struct compute_inverse_size4<Architecture::SSE, double, MatrixType, ResultType>
iC1 = _mm_sub_pd(_mm_mul_pd(B1, dC), iC1);
iC2 = _mm_sub_pd(_mm_mul_pd(B2, dC), iC2);
- result.template writePacket<ResultAlignment>( 0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1)); // iA# / det
- result.template writePacket<ResultAlignment>( 4, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2));
- result.template writePacket<ResultAlignment>( 2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1)); // iB# / det
- result.template writePacket<ResultAlignment>( 6, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2));
- result.template writePacket<ResultAlignment>( 8, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1)); // iC# / det
- result.template writePacket<ResultAlignment>(12, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2));
- result.template writePacket<ResultAlignment>(10, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1)); // iD# / det
- result.template writePacket<ResultAlignment>(14, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2));
+ Index res_stride = result.outerStride();
+ double* res = result.data();
+ pstoret<double, Packet2d, ResultAlignment>(res+0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1));
+ pstoret<double, Packet2d, ResultAlignment>(res+res_stride, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2));
+ pstoret<double, Packet2d, ResultAlignment>(res+2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1));
+ pstoret<double, Packet2d, ResultAlignment>(res+res_stride+2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2));
+ pstoret<double, Packet2d, ResultAlignment>(res+2*res_stride, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1));
+ pstoret<double, Packet2d, ResultAlignment>(res+3*res_stride, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2));
+ pstoret<double, Packet2d, ResultAlignment>(res+2*res_stride+2,_mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1));
+ pstoret<double, Packet2d, ResultAlignment>(res+3*res_stride+2,_mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2));
}
};