summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/SparseCore/SparseMatrix.h
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2016-09-18 12:42:15 +0200
committerStanislaw Halik <sthalik@misaki.pl>2016-11-02 15:12:04 +0100
commit44861dcbfeee041223c4aac1ee075e92fa4daa01 (patch)
tree6dfdfd9637846a7aedd71ace97d7d2ad366496d7 /eigen/Eigen/src/SparseCore/SparseMatrix.h
parentf3fe458b9e0a29a99a39d47d9a76dc18964b6fec (diff)
update
Diffstat (limited to 'eigen/Eigen/src/SparseCore/SparseMatrix.h')
-rw-r--r--eigen/Eigen/src/SparseCore/SparseMatrix.h1262
1 files changed, 1262 insertions, 0 deletions
diff --git a/eigen/Eigen/src/SparseCore/SparseMatrix.h b/eigen/Eigen/src/SparseCore/SparseMatrix.h
new file mode 100644
index 0000000..3b8946a
--- /dev/null
+++ b/eigen/Eigen/src/SparseCore/SparseMatrix.h
@@ -0,0 +1,1262 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEMATRIX_H
+#define EIGEN_SPARSEMATRIX_H
+
+namespace Eigen {
+
+/** \ingroup SparseCore_Module
+ *
+ * \class SparseMatrix
+ *
+ * \brief A versatible sparse matrix representation
+ *
+ * This class implements a more versatile variants of the common \em compressed row/column storage format.
+ * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
+ * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
+ * space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
+ * can be done with limited memory reallocation and copies.
+ *
+ * A call to the function makeCompressed() turns the matrix into the standard \em compressed format
+ * compatible with many library.
+ *
+ * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
+ *
+ * \tparam _Scalar the scalar type, i.e. the type of the coefficients
+ * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
+ * is ColMajor or RowMajor. The default is 0 which means column-major.
+ * \tparam _Index the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
+ *
+ * This class can be extended with the help of the plugin mechanism described on the page
+ * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
+ */
+
+namespace internal {
+template<typename _Scalar, int _Options, typename _Index>
+struct traits<SparseMatrix<_Scalar, _Options, _Index> >
+{
+ typedef _Scalar Scalar;
+ typedef _Index Index;
+ typedef Sparse StorageKind;
+ typedef MatrixXpr XprKind;
+ enum {
+ RowsAtCompileTime = Dynamic,
+ ColsAtCompileTime = Dynamic,
+ MaxRowsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic,
+ Flags = _Options | NestByRefBit | LvalueBit,
+ CoeffReadCost = NumTraits<Scalar>::ReadCost,
+ SupportedAccessPatterns = InnerRandomAccessPattern
+ };
+};
+
+template<typename _Scalar, int _Options, typename _Index, int DiagIndex>
+struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _Index>, DiagIndex> >
+{
+ typedef SparseMatrix<_Scalar, _Options, _Index> MatrixType;
+ typedef typename nested<MatrixType>::type MatrixTypeNested;
+ typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
+
+ typedef _Scalar Scalar;
+ typedef Dense StorageKind;
+ typedef _Index Index;
+ typedef MatrixXpr XprKind;
+
+ enum {
+ RowsAtCompileTime = Dynamic,
+ ColsAtCompileTime = 1,
+ MaxRowsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = 1,
+ Flags = 0,
+ CoeffReadCost = _MatrixTypeNested::CoeffReadCost*10
+ };
+};
+
+} // end namespace internal
+
+template<typename _Scalar, int _Options, typename _Index>
+class SparseMatrix
+ : public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> >
+{
+ public:
+ EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
+ EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=)
+ EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=)
+
+ typedef MappedSparseMatrix<Scalar,Flags> Map;
+ using Base::IsRowMajor;
+ typedef internal::CompressedStorage<Scalar,Index> Storage;
+ enum {
+ Options = _Options
+ };
+
+ protected:
+
+ typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
+
+ Index m_outerSize;
+ Index m_innerSize;
+ Index* m_outerIndex;
+ Index* m_innerNonZeros; // optional, if null then the data is compressed
+ Storage m_data;
+
+ Eigen::Map<Matrix<Index,Dynamic,1> > innerNonZeros() { return Eigen::Map<Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }
+ const Eigen::Map<const Matrix<Index,Dynamic,1> > innerNonZeros() const { return Eigen::Map<const Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }
+
+ public:
+
+ /** \returns whether \c *this is in compressed form. */
+ inline bool isCompressed() const { return m_innerNonZeros==0; }
+
+ /** \returns the number of rows of the matrix */
+ inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
+ /** \returns the number of columns of the matrix */
+ inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
+
+ /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */
+ inline Index innerSize() const { return m_innerSize; }
+ /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */
+ inline Index outerSize() const { return m_outerSize; }
+
+ /** \returns a const pointer to the array of values.
+ * This function is aimed at interoperability with other libraries.
+ * \sa innerIndexPtr(), outerIndexPtr() */
+ inline const Scalar* valuePtr() const { return m_data.valuePtr(); }
+ /** \returns a non-const pointer to the array of values.
+ * This function is aimed at interoperability with other libraries.
+ * \sa innerIndexPtr(), outerIndexPtr() */
+ inline Scalar* valuePtr() { return m_data.valuePtr(); }
+
+ /** \returns a const pointer to the array of inner indices.
+ * This function is aimed at interoperability with other libraries.
+ * \sa valuePtr(), outerIndexPtr() */
+ inline const Index* innerIndexPtr() const { return m_data.indexPtr(); }
+ /** \returns a non-const pointer to the array of inner indices.
+ * This function is aimed at interoperability with other libraries.
+ * \sa valuePtr(), outerIndexPtr() */
+ inline Index* innerIndexPtr() { return m_data.indexPtr(); }
+
+ /** \returns a const pointer to the array of the starting positions of the inner vectors.
+ * This function is aimed at interoperability with other libraries.
+ * \sa valuePtr(), innerIndexPtr() */
+ inline const Index* outerIndexPtr() const { return m_outerIndex; }
+ /** \returns a non-const pointer to the array of the starting positions of the inner vectors.
+ * This function is aimed at interoperability with other libraries.
+ * \sa valuePtr(), innerIndexPtr() */
+ inline Index* outerIndexPtr() { return m_outerIndex; }
+
+ /** \returns a const pointer to the array of the number of non zeros of the inner vectors.
+ * This function is aimed at interoperability with other libraries.
+ * \warning it returns the null pointer 0 in compressed mode */
+ inline const Index* innerNonZeroPtr() const { return m_innerNonZeros; }
+ /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
+ * This function is aimed at interoperability with other libraries.
+ * \warning it returns the null pointer 0 in compressed mode */
+ inline Index* innerNonZeroPtr() { return m_innerNonZeros; }
+
+ /** \internal */
+ inline Storage& data() { return m_data; }
+ /** \internal */
+ inline const Storage& data() const { return m_data; }
+
+ /** \returns the value of the matrix at position \a i, \a j
+ * This function returns Scalar(0) if the element is an explicit \em zero */
+ inline Scalar coeff(Index row, Index col) const
+ {
+ eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
+
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+ Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
+ return m_data.atInRange(m_outerIndex[outer], end, inner);
+ }
+
+ /** \returns a non-const reference to the value of the matrix at position \a i, \a j
+ *
+ * If the element does not exist then it is inserted via the insert(Index,Index) function
+ * which itself turns the matrix into a non compressed form if that was not the case.
+ *
+ * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
+ * function if the element does not already exist.
+ */
+ inline Scalar& coeffRef(Index row, Index col)
+ {
+ eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
+
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ Index start = m_outerIndex[outer];
+ Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
+ eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
+ if(end<=start)
+ return insert(row,col);
+ const Index p = m_data.searchLowerIndex(start,end-1,inner);
+ if((p<end) && (m_data.index(p)==inner))
+ return m_data.value(p);
+ else
+ return insert(row,col);
+ }
+
+ /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
+ * The non zero coefficient must \b not already exist.
+ *
+ * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
+ * mode while reserving room for 2 non zeros per inner vector. It is strongly recommended to first
+ * call reserve(const SizesType &) to reserve a more appropriate number of elements per
+ * inner vector that better match your scenario.
+ *
+ * This function performs a sorted insertion in O(1) if the elements of each inner vector are
+ * inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
+ *
+ */
+ Scalar& insert(Index row, Index col)
+ {
+ eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
+
+ if(isCompressed())
+ {
+ reserve(Matrix<Index,Dynamic,1>::Constant(outerSize(), 2));
+ }
+ return insertUncompressed(row,col);
+ }
+
+ public:
+
+ class InnerIterator;
+ class ReverseInnerIterator;
+
+ /** Removes all non zeros but keep allocated memory */
+ inline void setZero()
+ {
+ m_data.clear();
+ memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
+ if(m_innerNonZeros)
+ memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(Index));
+ }
+
+ /** \returns the number of non zero coefficients */
+ inline Index nonZeros() const
+ {
+ if(m_innerNonZeros)
+ return innerNonZeros().sum();
+ return static_cast<Index>(m_data.size());
+ }
+
+ /** Preallocates \a reserveSize non zeros.
+ *
+ * Precondition: the matrix must be in compressed mode. */
+ inline void reserve(Index reserveSize)
+ {
+ eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
+ m_data.reserve(reserveSize);
+ }
+
+ #ifdef EIGEN_PARSED_BY_DOXYGEN
+ /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
+ *
+ * This function turns the matrix in non-compressed mode */
+ template<class SizesType>
+ inline void reserve(const SizesType& reserveSizes);
+ #else
+ template<class SizesType>
+ inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = typename SizesType::value_type())
+ {
+ EIGEN_UNUSED_VARIABLE(enableif);
+ reserveInnerVectors(reserveSizes);
+ }
+ template<class SizesType>
+ inline void reserve(const SizesType& reserveSizes, const typename SizesType::Scalar& enableif =
+ #if (!defined(_MSC_VER)) || (_MSC_VER>=1500) // MSVC 2005 fails to compile with this typename
+ typename
+ #endif
+ SizesType::Scalar())
+ {
+ EIGEN_UNUSED_VARIABLE(enableif);
+ reserveInnerVectors(reserveSizes);
+ }
+ #endif // EIGEN_PARSED_BY_DOXYGEN
+ protected:
+ template<class SizesType>
+ inline void reserveInnerVectors(const SizesType& reserveSizes)
+ {
+ if(isCompressed())
+ {
+ std::size_t totalReserveSize = 0;
+ // turn the matrix into non-compressed mode
+ m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index)));
+ if (!m_innerNonZeros) internal::throw_std_bad_alloc();
+
+ // temporarily use m_innerSizes to hold the new starting points.
+ Index* newOuterIndex = m_innerNonZeros;
+
+ Index count = 0;
+ for(Index j=0; j<m_outerSize; ++j)
+ {
+ newOuterIndex[j] = count;
+ count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
+ totalReserveSize += reserveSizes[j];
+ }
+ m_data.reserve(totalReserveSize);
+ Index previousOuterIndex = m_outerIndex[m_outerSize];
+ for(Index j=m_outerSize-1; j>=0; --j)
+ {
+ Index innerNNZ = previousOuterIndex - m_outerIndex[j];
+ for(Index i=innerNNZ-1; i>=0; --i)
+ {
+ m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
+ m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
+ }
+ previousOuterIndex = m_outerIndex[j];
+ m_outerIndex[j] = newOuterIndex[j];
+ m_innerNonZeros[j] = innerNNZ;
+ }
+ m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
+
+ m_data.resize(m_outerIndex[m_outerSize]);
+ }
+ else
+ {
+ Index* newOuterIndex = static_cast<Index*>(std::malloc((m_outerSize+1)*sizeof(Index)));
+ if (!newOuterIndex) internal::throw_std_bad_alloc();
+
+ Index count = 0;
+ for(Index j=0; j<m_outerSize; ++j)
+ {
+ newOuterIndex[j] = count;
+ Index alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
+ Index toReserve = std::max<Index>(reserveSizes[j], alreadyReserved);
+ count += toReserve + m_innerNonZeros[j];
+ }
+ newOuterIndex[m_outerSize] = count;
+
+ m_data.resize(count);
+ for(Index j=m_outerSize-1; j>=0; --j)
+ {
+ Index offset = newOuterIndex[j] - m_outerIndex[j];
+ if(offset>0)
+ {
+ Index innerNNZ = m_innerNonZeros[j];
+ for(Index i=innerNNZ-1; i>=0; --i)
+ {
+ m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
+ m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
+ }
+ }
+ }
+
+ std::swap(m_outerIndex, newOuterIndex);
+ std::free(newOuterIndex);
+ }
+
+ }
+ public:
+
+ //--- low level purely coherent filling ---
+
+ /** \internal
+ * \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
+ * - the nonzero does not already exist
+ * - the new coefficient is the last one according to the storage order
+ *
+ * Before filling a given inner vector you must call the statVec(Index) function.
+ *
+ * After an insertion session, you should call the finalize() function.
+ *
+ * \sa insert, insertBackByOuterInner, startVec */
+ inline Scalar& insertBack(Index row, Index col)
+ {
+ return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
+ }
+
+ /** \internal
+ * \sa insertBack, startVec */
+ inline Scalar& insertBackByOuterInner(Index outer, Index inner)
+ {
+ eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
+ eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
+ Index p = m_outerIndex[outer+1];
+ ++m_outerIndex[outer+1];
+ m_data.append(0, inner);
+ return m_data.value(p);
+ }
+
+ /** \internal
+ * \warning use it only if you know what you are doing */
+ inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
+ {
+ Index p = m_outerIndex[outer+1];
+ ++m_outerIndex[outer+1];
+ m_data.append(0, inner);
+ return m_data.value(p);
+ }
+
+ /** \internal
+ * \sa insertBack, insertBackByOuterInner */
+ inline void startVec(Index outer)
+ {
+ eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
+ eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
+ m_outerIndex[outer+1] = m_outerIndex[outer];
+ }
+
+ /** \internal
+ * Must be called after inserting a set of non zero entries using the low level compressed API.
+ */
+ inline void finalize()
+ {
+ if(isCompressed())
+ {
+ Index size = static_cast<Index>(m_data.size());
+ Index i = m_outerSize;
+ // find the last filled column
+ while (i>=0 && m_outerIndex[i]==0)
+ --i;
+ ++i;
+ while (i<=m_outerSize)
+ {
+ m_outerIndex[i] = size;
+ ++i;
+ }
+ }
+ }
+
+ //---
+
+ template<typename InputIterators>
+ void setFromTriplets(const InputIterators& begin, const InputIterators& end);
+
+ void sumupDuplicates();
+
+ //---
+
+ /** \internal
+ * same as insert(Index,Index) except that the indices are given relative to the storage order */
+ Scalar& insertByOuterInner(Index j, Index i)
+ {
+ return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
+ }
+
+ /** Turns the matrix into the \em compressed format.
+ */
+ void makeCompressed()
+ {
+ if(isCompressed())
+ return;
+
+ Index oldStart = m_outerIndex[1];
+ m_outerIndex[1] = m_innerNonZeros[0];
+ for(Index j=1; j<m_outerSize; ++j)
+ {
+ Index nextOldStart = m_outerIndex[j+1];
+ Index offset = oldStart - m_outerIndex[j];
+ if(offset>0)
+ {
+ for(Index k=0; k<m_innerNonZeros[j]; ++k)
+ {
+ m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
+ m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
+ }
+ }
+ m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
+ oldStart = nextOldStart;
+ }
+ std::free(m_innerNonZeros);
+ m_innerNonZeros = 0;
+ m_data.resize(m_outerIndex[m_outerSize]);
+ m_data.squeeze();
+ }
+
+ /** Turns the matrix into the uncompressed mode */
+ void uncompress()
+ {
+ if(m_innerNonZeros != 0)
+ return;
+ m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index)));
+ for (Index i = 0; i < m_outerSize; i++)
+ {
+ m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
+ }
+ }
+
+ /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
+ void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
+ {
+ prune(default_prunning_func(reference,epsilon));
+ }
+
+ /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep.
+ * The functor type \a KeepFunc must implement the following function:
+ * \code
+ * bool operator() (const Index& row, const Index& col, const Scalar& value) const;
+ * \endcode
+ * \sa prune(Scalar,RealScalar)
+ */
+ template<typename KeepFunc>
+ void prune(const KeepFunc& keep = KeepFunc())
+ {
+ // TODO optimize the uncompressed mode to avoid moving and allocating the data twice
+ // TODO also implement a unit test
+ makeCompressed();
+
+ Index k = 0;
+ for(Index j=0; j<m_outerSize; ++j)
+ {
+ Index previousStart = m_outerIndex[j];
+ m_outerIndex[j] = k;
+ Index end = m_outerIndex[j+1];
+ for(Index i=previousStart; i<end; ++i)
+ {
+ if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
+ {
+ m_data.value(k) = m_data.value(i);
+ m_data.index(k) = m_data.index(i);
+ ++k;
+ }
+ }
+ }
+ m_outerIndex[m_outerSize] = k;
+ m_data.resize(k,0);
+ }
+
+ /** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched.
+ * \sa resizeNonZeros(Index), reserve(), setZero()
+ */
+ void conservativeResize(Index rows, Index cols)
+ {
+ // No change
+ if (this->rows() == rows && this->cols() == cols) return;
+
+ // If one dimension is null, then there is nothing to be preserved
+ if(rows==0 || cols==0) return resize(rows,cols);
+
+ Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows();
+ Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols();
+ Index newInnerSize = IsRowMajor ? cols : rows;
+
+ // Deals with inner non zeros
+ if (m_innerNonZeros)
+ {
+ // Resize m_innerNonZeros
+ Index *newInnerNonZeros = static_cast<Index*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(Index)));
+ if (!newInnerNonZeros) internal::throw_std_bad_alloc();
+ m_innerNonZeros = newInnerNonZeros;
+
+ for(Index i=m_outerSize; i<m_outerSize+outerChange; i++)
+ m_innerNonZeros[i] = 0;
+ }
+ else if (innerChange < 0)
+ {
+ // Inner size decreased: allocate a new m_innerNonZeros
+ m_innerNonZeros = static_cast<Index*>(std::malloc((m_outerSize+outerChange+1) * sizeof(Index)));
+ if (!m_innerNonZeros) internal::throw_std_bad_alloc();
+ for(Index i = 0; i < m_outerSize; i++)
+ m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
+ }
+
+ // Change the m_innerNonZeros in case of a decrease of inner size
+ if (m_innerNonZeros && innerChange < 0)
+ {
+ for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
+ {
+ Index &n = m_innerNonZeros[i];
+ Index start = m_outerIndex[i];
+ while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n;
+ }
+ }
+
+ m_innerSize = newInnerSize;
+
+ // Re-allocate outer index structure if necessary
+ if (outerChange == 0)
+ return;
+
+ Index *newOuterIndex = static_cast<Index*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(Index)));
+ if (!newOuterIndex) internal::throw_std_bad_alloc();
+ m_outerIndex = newOuterIndex;
+ if (outerChange > 0)
+ {
+ Index last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize];
+ for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++)
+ m_outerIndex[i] = last;
+ }
+ m_outerSize += outerChange;
+ }
+
+ /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
+ * \sa resizeNonZeros(Index), reserve(), setZero()
+ */
+ void resize(Index rows, Index cols)
+ {
+ const Index outerSize = IsRowMajor ? rows : cols;
+ m_innerSize = IsRowMajor ? cols : rows;
+ m_data.clear();
+ if (m_outerSize != outerSize || m_outerSize==0)
+ {
+ std::free(m_outerIndex);
+ m_outerIndex = static_cast<Index*>(std::malloc((outerSize + 1) * sizeof(Index)));
+ if (!m_outerIndex) internal::throw_std_bad_alloc();
+
+ m_outerSize = outerSize;
+ }
+ if(m_innerNonZeros)
+ {
+ std::free(m_innerNonZeros);
+ m_innerNonZeros = 0;
+ }
+ memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
+ }
+
+ /** \internal
+ * Resize the nonzero vector to \a size */
+ void resizeNonZeros(Index size)
+ {
+ // TODO remove this function
+ m_data.resize(size);
+ }
+
+ /** \returns a const expression of the diagonal coefficients */
+ const Diagonal<const SparseMatrix> diagonal() const { return *this; }
+
+ /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
+ inline SparseMatrix()
+ : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ check_template_parameters();
+ resize(0, 0);
+ }
+
+ /** Constructs a \a rows \c x \a cols empty matrix */
+ inline SparseMatrix(Index rows, Index cols)
+ : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ check_template_parameters();
+ resize(rows, cols);
+ }
+
+ /** Constructs a sparse matrix from the sparse expression \a other */
+ template<typename OtherDerived>
+ inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
+ : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+ check_template_parameters();
+ *this = other.derived();
+ }
+
+ /** Constructs a sparse matrix from the sparse selfadjoint view \a other */
+ template<typename OtherDerived, unsigned int UpLo>
+ inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other)
+ : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ check_template_parameters();
+ *this = other;
+ }
+
+ /** Copy constructor (it performs a deep copy) */
+ inline SparseMatrix(const SparseMatrix& other)
+ : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ check_template_parameters();
+ *this = other.derived();
+ }
+
+ /** \brief Copy constructor with in-place evaluation */
+ template<typename OtherDerived>
+ SparseMatrix(const ReturnByValue<OtherDerived>& other)
+ : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
+ {
+ check_template_parameters();
+ initAssignment(other);
+ other.evalTo(*this);
+ }
+
+ /** Swaps the content of two sparse matrices of the same type.
+ * This is a fast operation that simply swaps the underlying pointers and parameters. */
+ inline void swap(SparseMatrix& other)
+ {
+ //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
+ std::swap(m_outerIndex, other.m_outerIndex);
+ std::swap(m_innerSize, other.m_innerSize);
+ std::swap(m_outerSize, other.m_outerSize);
+ std::swap(m_innerNonZeros, other.m_innerNonZeros);
+ m_data.swap(other.m_data);
+ }
+
+ /** Sets *this to the identity matrix.
+ * This function also turns the matrix into compressed mode, and drop any reserved memory. */
+ inline void setIdentity()
+ {
+ eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
+ this->m_data.resize(rows());
+ Eigen::Map<Matrix<Index, Dynamic, 1> >(this->m_data.indexPtr(), rows()).setLinSpaced(0, rows()-1);
+ Eigen::Map<Matrix<Scalar, Dynamic, 1> >(this->m_data.valuePtr(), rows()).setOnes();
+ Eigen::Map<Matrix<Index, Dynamic, 1> >(this->m_outerIndex, rows()+1).setLinSpaced(0, rows());
+ std::free(m_innerNonZeros);
+ m_innerNonZeros = 0;
+ }
+ inline SparseMatrix& operator=(const SparseMatrix& other)
+ {
+ if (other.isRValue())
+ {
+ swap(other.const_cast_derived());
+ }
+ else if(this!=&other)
+ {
+ initAssignment(other);
+ if(other.isCompressed())
+ {
+ memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index));
+ m_data = other.m_data;
+ }
+ else
+ {
+ Base::operator=(other);
+ }
+ }
+ return *this;
+ }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename Lhs, typename Rhs>
+ inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
+ { return Base::operator=(product); }
+
+ template<typename OtherDerived>
+ inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other)
+ {
+ initAssignment(other);
+ return Base::operator=(other.derived());
+ }
+
+ template<typename OtherDerived>
+ inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
+ { return Base::operator=(other.derived()); }
+ #endif
+
+ template<typename OtherDerived>
+ EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);
+
+ friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
+ {
+ EIGEN_DBG_SPARSE(
+ s << "Nonzero entries:\n";
+ if(m.isCompressed())
+ for (Index i=0; i<m.nonZeros(); ++i)
+ s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
+ else
+ for (Index i=0; i<m.outerSize(); ++i)
+ {
+ Index p = m.m_outerIndex[i];
+ Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
+ Index k=p;
+ for (; k<pe; ++k)
+ s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
+ for (; k<m.m_outerIndex[i+1]; ++k)
+ s << "(_,_) ";
+ }
+ s << std::endl;
+ s << std::endl;
+ s << "Outer pointers:\n";
+ for (Index i=0; i<m.outerSize(); ++i)
+ s << m.m_outerIndex[i] << " ";
+ s << " $" << std::endl;
+ if(!m.isCompressed())
+ {
+ s << "Inner non zeros:\n";
+ for (Index i=0; i<m.outerSize(); ++i)
+ s << m.m_innerNonZeros[i] << " ";
+ s << " $" << std::endl;
+ }
+ s << std::endl;
+ );
+ s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
+ return s;
+ }
+
+ /** Destructor */
+ inline ~SparseMatrix()
+ {
+ std::free(m_outerIndex);
+ std::free(m_innerNonZeros);
+ }
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+ /** Overloaded for performance */
+ Scalar sum() const;
+#endif
+
+# ifdef EIGEN_SPARSEMATRIX_PLUGIN
+# include EIGEN_SPARSEMATRIX_PLUGIN
+# endif
+
+protected:
+
+ template<typename Other>
+ void initAssignment(const Other& other)
+ {
+ resize(other.rows(), other.cols());
+ if(m_innerNonZeros)
+ {
+ std::free(m_innerNonZeros);
+ m_innerNonZeros = 0;
+ }
+ }
+
+ /** \internal
+ * \sa insert(Index,Index) */
+ EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col);
+
+ /** \internal
+ * A vector object that is equal to 0 everywhere but v at the position i */
+ class SingletonVector
+ {
+ Index m_index;
+ Index m_value;
+ public:
+ typedef Index value_type;
+ SingletonVector(Index i, Index v)
+ : m_index(i), m_value(v)
+ {}
+
+ Index operator[](Index i) const { return i==m_index ? m_value : 0; }
+ };
+
+ /** \internal
+ * \sa insert(Index,Index) */
+ EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col);
+
+public:
+ /** \internal
+ * \sa insert(Index,Index) */
+ EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col)
+ {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ eigen_assert(!isCompressed());
+ eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer]));
+
+ Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++;
+ m_data.index(p) = inner;
+ return (m_data.value(p) = 0);
+ }
+
+private:
+ static void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT(NumTraits<Index>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
+ EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
+ }
+
+ struct default_prunning_func {
+ default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {}
+ inline bool operator() (const Index&, const Index&, const Scalar& value) const
+ {
+ return !internal::isMuchSmallerThan(value, reference, epsilon);
+ }
+ Scalar reference;
+ RealScalar epsilon;
+ };
+};
+
+template<typename Scalar, int _Options, typename _Index>
+class SparseMatrix<Scalar,_Options,_Index>::InnerIterator
+{
+ public:
+ InnerIterator(const SparseMatrix& mat, Index outer)
+ : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer])
+ {
+ if(mat.isCompressed())
+ m_end = mat.m_outerIndex[outer+1];
+ else
+ m_end = m_id + mat.m_innerNonZeros[outer];
+ }
+
+ inline InnerIterator& operator++() { m_id++; return *this; }
+
+ inline const Scalar& value() const { return m_values[m_id]; }
+ inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }
+
+ inline Index index() const { return m_indices[m_id]; }
+ inline Index outer() const { return m_outer; }
+ inline Index row() const { return IsRowMajor ? m_outer : index(); }
+ inline Index col() const { return IsRowMajor ? index() : m_outer; }
+
+ inline operator bool() const { return (m_id < m_end); }
+
+ protected:
+ const Scalar* m_values;
+ const Index* m_indices;
+ const Index m_outer;
+ Index m_id;
+ Index m_end;
+};
+
+template<typename Scalar, int _Options, typename _Index>
+class SparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator
+{
+ public:
+ ReverseInnerIterator(const SparseMatrix& mat, Index outer)
+ : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_start(mat.m_outerIndex[outer])
+ {
+ if(mat.isCompressed())
+ m_id = mat.m_outerIndex[outer+1];
+ else
+ m_id = m_start + mat.m_innerNonZeros[outer];
+ }
+
+ inline ReverseInnerIterator& operator--() { --m_id; return *this; }
+
+ inline const Scalar& value() const { return m_values[m_id-1]; }
+ inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); }
+
+ inline Index index() const { return m_indices[m_id-1]; }
+ inline Index outer() const { return m_outer; }
+ inline Index row() const { return IsRowMajor ? m_outer : index(); }
+ inline Index col() const { return IsRowMajor ? index() : m_outer; }
+
+ inline operator bool() const { return (m_id > m_start); }
+
+ protected:
+ const Scalar* m_values;
+ const Index* m_indices;
+ const Index m_outer;
+ Index m_id;
+ const Index m_start;
+};
+
+namespace internal {
+
+template<typename InputIterator, typename SparseMatrixType>
+void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, int Options = 0)
+{
+ EIGEN_UNUSED_VARIABLE(Options);
+ enum { IsRowMajor = SparseMatrixType::IsRowMajor };
+ typedef typename SparseMatrixType::Scalar Scalar;
+ typedef typename SparseMatrixType::Index Index;
+ SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,Index> trMat(mat.rows(),mat.cols());
+
+ if(begin!=end)
+ {
+ // pass 1: count the nnz per inner-vector
+ Matrix<Index,Dynamic,1> wi(trMat.outerSize());
+ wi.setZero();
+ for(InputIterator it(begin); it!=end; ++it)
+ {
+ eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols());
+ wi(IsRowMajor ? it->col() : it->row())++;
+ }
+
+ // pass 2: insert all the elements into trMat
+ trMat.reserve(wi);
+ for(InputIterator it(begin); it!=end; ++it)
+ trMat.insertBackUncompressed(it->row(),it->col()) = it->value();
+
+ // pass 3:
+ trMat.sumupDuplicates();
+ }
+
+ // pass 4: transposed copy -> implicit sorting
+ mat = trMat;
+}
+
+}
+
+
+/** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end.
+ *
+ * A \em triplet is a tuple (i,j,value) defining a non-zero element.
+ * The input list of triplets does not have to be sorted, and can contains duplicated elements.
+ * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up.
+ * This is a \em O(n) operation, with \em n the number of triplet elements.
+ * The initial contents of \c *this is destroyed.
+ * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor,
+ * or the resize(Index,Index) method. The sizes are not extracted from the triplet list.
+ *
+ * The \a InputIterators value_type must provide the following interface:
+ * \code
+ * Scalar value() const; // the value
+ * Scalar row() const; // the row index i
+ * Scalar col() const; // the column index j
+ * \endcode
+ * See for instance the Eigen::Triplet template class.
+ *
+ * Here is a typical usage example:
+ * \code
+ typedef Triplet<double> T;
+ std::vector<T> tripletList;
+ triplets.reserve(estimation_of_entries);
+ for(...)
+ {
+ // ...
+ tripletList.push_back(T(i,j,v_ij));
+ }
+ SparseMatrixType m(rows,cols);
+ m.setFromTriplets(tripletList.begin(), tripletList.end());
+ // m is ready to go!
+ * \endcode
+ *
+ * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define
+ * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather
+ * be explicitely stored into a std::vector for instance.
+ */
+template<typename Scalar, int _Options, typename _Index>
+template<typename InputIterators>
+void SparseMatrix<Scalar,_Options,_Index>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
+{
+ internal::set_from_triplets(begin, end, *this);
+}
+
+/** \internal */
+template<typename Scalar, int _Options, typename _Index>
+void SparseMatrix<Scalar,_Options,_Index>::sumupDuplicates()
+{
+ eigen_assert(!isCompressed());
+ // TODO, in practice we should be able to use m_innerNonZeros for that task
+ Matrix<Index,Dynamic,1> wi(innerSize());
+ wi.fill(-1);
+ Index count = 0;
+ // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
+ for(Index j=0; j<outerSize(); ++j)
+ {
+ Index start = count;
+ Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j];
+ for(Index k=m_outerIndex[j]; k<oldEnd; ++k)
+ {
+ Index i = m_data.index(k);
+ if(wi(i)>=start)
+ {
+ // we already meet this entry => accumulate it
+ m_data.value(wi(i)) += m_data.value(k);
+ }
+ else
+ {
+ m_data.value(count) = m_data.value(k);
+ m_data.index(count) = m_data.index(k);
+ wi(i) = count;
+ ++count;
+ }
+ }
+ m_outerIndex[j] = start;
+ }
+ m_outerIndex[m_outerSize] = count;
+
+ // turn the matrix into compressed form
+ std::free(m_innerNonZeros);
+ m_innerNonZeros = 0;
+ m_data.resize(m_outerIndex[m_outerSize]);
+}
+
+template<typename Scalar, int _Options, typename _Index>
+template<typename OtherDerived>
+EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_Index>& SparseMatrix<Scalar,_Options,_Index>::operator=(const SparseMatrixBase<OtherDerived>& other)
+{
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+
+ const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
+ if (needToTranspose)
+ {
+ // two passes algorithm:
+ // 1 - compute the number of coeffs per dest inner vector
+ // 2 - do the actual copy/eval
+ // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
+ typedef typename internal::nested<OtherDerived,2>::type OtherCopy;
+ typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
+ OtherCopy otherCopy(other.derived());
+
+ SparseMatrix dest(other.rows(),other.cols());
+ Eigen::Map<Matrix<Index, Dynamic, 1> > (dest.m_outerIndex,dest.outerSize()).setZero();
+
+ // pass 1
+ // FIXME the above copy could be merged with that pass
+ for (Index j=0; j<otherCopy.outerSize(); ++j)
+ for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
+ ++dest.m_outerIndex[it.index()];
+
+ // prefix sum
+ Index count = 0;
+ Matrix<Index,Dynamic,1> positions(dest.outerSize());
+ for (Index j=0; j<dest.outerSize(); ++j)
+ {
+ Index tmp = dest.m_outerIndex[j];
+ dest.m_outerIndex[j] = count;
+ positions[j] = count;
+ count += tmp;
+ }
+ dest.m_outerIndex[dest.outerSize()] = count;
+ // alloc
+ dest.m_data.resize(count);
+ // pass 2
+ for (Index j=0; j<otherCopy.outerSize(); ++j)
+ {
+ for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
+ {
+ Index pos = positions[it.index()]++;
+ dest.m_data.index(pos) = j;
+ dest.m_data.value(pos) = it.value();
+ }
+ }
+ this->swap(dest);
+ return *this;
+ }
+ else
+ {
+ if(other.isRValue())
+ initAssignment(other.derived());
+ // there is no special optimization
+ return Base::operator=(other.derived());
+ }
+}
+
+template<typename _Scalar, int _Options, typename _Index>
+EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertUncompressed(Index row, Index col)
+{
+ eigen_assert(!isCompressed());
+
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ Index room = m_outerIndex[outer+1] - m_outerIndex[outer];
+ Index innerNNZ = m_innerNonZeros[outer];
+ if(innerNNZ>=room)
+ {
+ // this inner vector is full, we need to reallocate the whole buffer :(
+ reserve(SingletonVector(outer,std::max<Index>(2,innerNNZ)));
+ }
+
+ Index startId = m_outerIndex[outer];
+ Index p = startId + m_innerNonZeros[outer];
+ while ( (p > startId) && (m_data.index(p-1) > inner) )
+ {
+ m_data.index(p) = m_data.index(p-1);
+ m_data.value(p) = m_data.value(p-1);
+ --p;
+ }
+ eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exist, you must call coeffRef to this end");
+
+ m_innerNonZeros[outer]++;
+
+ m_data.index(p) = inner;
+ return (m_data.value(p) = 0);
+}
+
+template<typename _Scalar, int _Options, typename _Index>
+EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertCompressed(Index row, Index col)
+{
+ eigen_assert(isCompressed());
+
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ Index previousOuter = outer;
+ if (m_outerIndex[outer+1]==0)
+ {
+ // we start a new inner vector
+ while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
+ {
+ m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
+ --previousOuter;
+ }
+ m_outerIndex[outer+1] = m_outerIndex[outer];
+ }
+
+ // here we have to handle the tricky case where the outerIndex array
+ // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
+ // the 2nd inner vector...
+ bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
+ && (size_t(m_outerIndex[outer+1]) == m_data.size());
+
+ size_t startId = m_outerIndex[outer];
+ // FIXME let's make sure sizeof(long int) == sizeof(size_t)
+ size_t p = m_outerIndex[outer+1];
+ ++m_outerIndex[outer+1];
+
+ double reallocRatio = 1;
+ if (m_data.allocatedSize()<=m_data.size())
+ {
+ // if there is no preallocated memory, let's reserve a minimum of 32 elements
+ if (m_data.size()==0)
+ {
+ m_data.reserve(32);
+ }
+ else
+ {
+ // we need to reallocate the data, to reduce multiple reallocations
+ // we use a smart resize algorithm based on the current filling ratio
+ // in addition, we use double to avoid integers overflows
+ double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
+ reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
+ // furthermore we bound the realloc ratio to:
+ // 1) reduce multiple minor realloc when the matrix is almost filled
+ // 2) avoid to allocate too much memory when the matrix is almost empty
+ reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
+ }
+ }
+ m_data.resize(m_data.size()+1,reallocRatio);
+
+ if (!isLastVec)
+ {
+ if (previousOuter==-1)
+ {
+ // oops wrong guess.
+ // let's correct the outer offsets
+ for (Index k=0; k<=(outer+1); ++k)
+ m_outerIndex[k] = 0;
+ Index k=outer+1;
+ while(m_outerIndex[k]==0)
+ m_outerIndex[k++] = 1;
+ while (k<=m_outerSize && m_outerIndex[k]!=0)
+ m_outerIndex[k++]++;
+ p = 0;
+ --k;
+ k = m_outerIndex[k]-1;
+ while (k>0)
+ {
+ m_data.index(k) = m_data.index(k-1);
+ m_data.value(k) = m_data.value(k-1);
+ k--;
+ }
+ }
+ else
+ {
+ // we are not inserting into the last inner vec
+ // update outer indices:
+ Index j = outer+2;
+ while (j<=m_outerSize && m_outerIndex[j]!=0)
+ m_outerIndex[j++]++;
+ --j;
+ // shift data of last vecs:
+ Index k = m_outerIndex[j]-1;
+ while (k>=Index(p))
+ {
+ m_data.index(k) = m_data.index(k-1);
+ m_data.value(k) = m_data.value(k-1);
+ k--;
+ }
+ }
+ }
+
+ while ( (p > startId) && (m_data.index(p-1) > inner) )
+ {
+ m_data.index(p) = m_data.index(p-1);
+ m_data.value(p) = m_data.value(p-1);
+ --p;
+ }
+
+ m_data.index(p) = inner;
+ return (m_data.value(p) = 0);
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEMATRIX_H