diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2016-09-18 12:42:15 +0200 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2016-11-02 15:12:04 +0100 |
commit | 44861dcbfeee041223c4aac1ee075e92fa4daa01 (patch) | |
tree | 6dfdfd9637846a7aedd71ace97d7d2ad366496d7 /eigen/bench/sparse_cholesky.cpp | |
parent | f3fe458b9e0a29a99a39d47d9a76dc18964b6fec (diff) |
update
Diffstat (limited to 'eigen/bench/sparse_cholesky.cpp')
-rw-r--r-- | eigen/bench/sparse_cholesky.cpp | 216 |
1 files changed, 216 insertions, 0 deletions
diff --git a/eigen/bench/sparse_cholesky.cpp b/eigen/bench/sparse_cholesky.cpp new file mode 100644 index 0000000..ecb2267 --- /dev/null +++ b/eigen/bench/sparse_cholesky.cpp @@ -0,0 +1,216 @@ +// #define EIGEN_TAUCS_SUPPORT +// #define EIGEN_CHOLMOD_SUPPORT +#include <iostream> +#include <Eigen/Sparse> + +// g++ -DSIZE=10000 -DDENSITY=0.001 sparse_cholesky.cpp -I.. -DDENSEMATRI -O3 -g0 -DNDEBUG -DNBTRIES=1 -I /home/gael/Coding/LinearAlgebra/taucs_full/src/ -I/home/gael/Coding/LinearAlgebra/taucs_full/build/linux/ -L/home/gael/Coding/LinearAlgebra/taucs_full/lib/linux/ -ltaucs /home/gael/Coding/LinearAlgebra/GotoBLAS/libgoto.a -lpthread -I /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Include/ $CHOLLIB -I /home/gael/Coding/LinearAlgebra/SuiteSparse/UFconfig/ /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Lib/libcholmod.a -lmetis /home/gael/Coding/LinearAlgebra/SuiteSparse/AMD/Lib/libamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CAMD/Lib/libcamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/COLAMD/Lib/libcolamd.a -llapack && ./a.out + +#define NOGMM +#define NOMTL + +#ifndef SIZE +#define SIZE 10 +#endif + +#ifndef DENSITY +#define DENSITY 0.01 +#endif + +#ifndef REPEAT +#define REPEAT 1 +#endif + +#include "BenchSparseUtil.h" + +#ifndef MINDENSITY +#define MINDENSITY 0.0004 +#endif + +#ifndef NBTRIES +#define NBTRIES 10 +#endif + +#define BENCH(X) \ + timer.reset(); \ + for (int _j=0; _j<NBTRIES; ++_j) { \ + timer.start(); \ + for (int _k=0; _k<REPEAT; ++_k) { \ + X \ + } timer.stop(); } + +// typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix; +typedef SparseMatrix<Scalar,SelfAdjoint|LowerTriangular> EigenSparseSelfAdjointMatrix; + +void fillSpdMatrix(float density, int rows, int cols, EigenSparseSelfAdjointMatrix& dst) +{ + dst.startFill(rows*cols*density); + for(int j = 0; j < cols; j++) + { + dst.fill(j,j) = internal::random<Scalar>(10,20); + for(int i = j+1; i < rows; i++) + { + Scalar v = (internal::random<float>(0,1) < density) ? internal::random<Scalar>() : 0; + if (v!=0) + dst.fill(i,j) = v; + } + + } + dst.endFill(); +} + +#include <Eigen/Cholesky> + +template<int Backend> +void doEigen(const char* name, const EigenSparseSelfAdjointMatrix& sm1, int flags = 0) +{ + std::cout << name << "..." << std::flush; + BenchTimer timer; + timer.start(); + SparseLLT<EigenSparseSelfAdjointMatrix,Backend> chol(sm1, flags); + timer.stop(); + std::cout << ":\t" << timer.value() << endl; + + std::cout << " nnz: " << sm1.nonZeros() << " => " << chol.matrixL().nonZeros() << "\n"; +// std::cout << "sparse\n" << chol.matrixL() << "%\n"; +} + +int main(int argc, char *argv[]) +{ + int rows = SIZE; + int cols = SIZE; + float density = DENSITY; + BenchTimer timer; + + VectorXf b = VectorXf::Random(cols); + VectorXf x = VectorXf::Random(cols); + + bool densedone = false; + + //for (float density = DENSITY; density>=MINDENSITY; density*=0.5) +// float density = 0.5; + { + EigenSparseSelfAdjointMatrix sm1(rows, cols); + std::cout << "Generate sparse matrix (might take a while)...\n"; + fillSpdMatrix(density, rows, cols, sm1); + std::cout << "DONE\n\n"; + + // dense matrices + #ifdef DENSEMATRIX + if (!densedone) + { + densedone = true; + std::cout << "Eigen Dense\t" << density*100 << "%\n"; + DenseMatrix m1(rows,cols); + eiToDense(sm1, m1); + m1 = (m1 + m1.transpose()).eval(); + m1.diagonal() *= 0.5; + +// BENCH(LLT<DenseMatrix> chol(m1);) +// std::cout << "dense:\t" << timer.value() << endl; + + BenchTimer timer; + timer.start(); + LLT<DenseMatrix> chol(m1); + timer.stop(); + std::cout << "dense:\t" << timer.value() << endl; + int count = 0; + for (int j=0; j<cols; ++j) + for (int i=j; i<rows; ++i) + if (!internal::isMuchSmallerThan(internal::abs(chol.matrixL()(i,j)), 0.1)) + count++; + std::cout << "dense: " << "nnz = " << count << "\n"; +// std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl; + } + #endif + + // eigen sparse matrices + doEigen<Eigen::DefaultBackend>("Eigen/Sparse", sm1, Eigen::IncompleteFactorization); + + #ifdef EIGEN_CHOLMOD_SUPPORT + doEigen<Eigen::Cholmod>("Eigen/Cholmod", sm1, Eigen::IncompleteFactorization); + #endif + + #ifdef EIGEN_TAUCS_SUPPORT + doEigen<Eigen::Taucs>("Eigen/Taucs", sm1, Eigen::IncompleteFactorization); + #endif + + #if 0 + // TAUCS + { + taucs_ccs_matrix A = sm1.asTaucsMatrix(); + + //BENCH(taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);) +// BENCH(taucs_supernodal_factor_to_ccs(taucs_ccs_factor_llt_ll(&A));) +// std::cout << "taucs:\t" << timer.value() << endl; + + taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0); + + for (int j=0; j<cols; ++j) + { + for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i) + std::cout << chol->values.d[i] << " "; + } + } + + // CHOLMOD + #ifdef EIGEN_CHOLMOD_SUPPORT + { + cholmod_common c; + cholmod_start (&c); + cholmod_sparse A; + cholmod_factor *L; + + A = sm1.asCholmodMatrix(); + BenchTimer timer; +// timer.reset(); + timer.start(); + std::vector<int> perm(cols); +// std::vector<int> set(ncols); + for (int i=0; i<cols; ++i) + perm[i] = i; +// c.nmethods = 1; +// c.method[0] = 1; + + c.nmethods = 1; + c.method [0].ordering = CHOLMOD_NATURAL; + c.postorder = 0; + c.final_ll = 1; + + L = cholmod_analyze_p(&A, &perm[0], &perm[0], cols, &c); + timer.stop(); + std::cout << "cholmod/analyze:\t" << timer.value() << endl; + timer.reset(); + timer.start(); + cholmod_factorize(&A, L, &c); + timer.stop(); + std::cout << "cholmod/factorize:\t" << timer.value() << endl; + + cholmod_sparse* cholmat = cholmod_factor_to_sparse(L, &c); + + cholmod_print_factor(L, "Factors", &c); + + cholmod_print_sparse(cholmat, "Chol", &c); + cholmod_write_sparse(stdout, cholmat, 0, 0, &c); +// +// cholmod_print_sparse(&A, "A", &c); +// cholmod_write_sparse(stdout, &A, 0, 0, &c); + + +// for (int j=0; j<cols; ++j) +// { +// for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i) +// std::cout << chol->values.s[i] << " "; +// } + } + #endif + + #endif + + + + } + + + return 0; +} + |