summaryrefslogtreecommitdiffhomepage
path: root/eigen/bench/tensors/tensor_benchmarks.h
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2019-03-03 21:09:10 +0100
committerStanislaw Halik <sthalik@misaki.pl>2019-03-03 21:10:13 +0100
commitf0238cfb6997c4acfc2bd200de7295f3fa36968f (patch)
treeb215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/bench/tensors/tensor_benchmarks.h
parent543edd372a5193d04b3de9f23c176ab439e51b31 (diff)
don't index Eigen
Diffstat (limited to 'eigen/bench/tensors/tensor_benchmarks.h')
-rw-r--r--eigen/bench/tensors/tensor_benchmarks.h478
1 files changed, 0 insertions, 478 deletions
diff --git a/eigen/bench/tensors/tensor_benchmarks.h b/eigen/bench/tensors/tensor_benchmarks.h
deleted file mode 100644
index c2fb3de..0000000
--- a/eigen/bench/tensors/tensor_benchmarks.h
+++ /dev/null
@@ -1,478 +0,0 @@
-#ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
-#define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
-
-typedef int TensorIndex;
-#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
-
-#include "unsupported/Eigen/CXX11/Tensor"
-#include "benchmark.h"
-
-#define BENCHMARK_RANGE(bench, lo, hi) \
- BENCHMARK(bench)->Range(lo, hi)
-
-using Eigen::Tensor;
-using Eigen::TensorMap;
-
-// TODO(bsteiner): also templatize on the input type since we have users
-// for int8 as well as floats.
-template <typename Device, typename T> class BenchmarkSuite {
- public:
- BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n)
- : m_(m), k_(k), n_(n), device_(device) {
- initialize();
- }
-
- BenchmarkSuite(const Device& device, size_t m)
- : m_(m), k_(m), n_(m), device_(device) {
- initialize();
- }
-
- ~BenchmarkSuite() {
- device_.deallocate(a_);
- device_.deallocate(b_);
- device_.deallocate(c_);
- }
-
- void memcpy(int num_iters) {
- eigen_assert(m_ == k_ && k_ == n_);
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- device_.memcpy(c_, a_, m_ * m_ * sizeof(T));
- }
- // Record the number of values copied per second
- finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
- }
-
- void typeCasting(int num_iters) {
- eigen_assert(m_ == n_);
- Eigen::array<TensorIndex, 2> sizes;
- if (sizeof(T) >= sizeof(int)) {
- sizes[0] = m_;
- sizes[1] = k_;
- } else {
- sizes[0] = m_ * sizeof(T) / sizeof(int);
- sizes[1] = k_ * sizeof(T) / sizeof(int);
- }
- const TensorMap<Tensor<int, 2, 0, TensorIndex>, Eigen::Aligned> A((int*)a_, sizes);
- TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, sizes);
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- B.device(device_) = A.template cast<T>();
- }
- // Record the number of values copied per second
- finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
- }
-
- void random(int num_iters) {
- eigen_assert(m_ == k_ && k_ == n_);
- Eigen::array<TensorIndex, 2> sizes;
- sizes[0] = m_;
- sizes[1] = m_;
- TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.device(device_) = C.random();
- }
- // Record the number of random numbers generated per second
- finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
- }
-
- void slicing(int num_iters) {
- eigen_assert(m_ == k_ && k_ == n_);
- Eigen::array<TensorIndex, 2> sizes;
- sizes[0] = m_;
- sizes[1] = m_;
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
- TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
-
- const Eigen::DSizes<TensorIndex, 2> quarter_sizes(m_/2, m_/2);
- const Eigen::DSizes<TensorIndex, 2> first_quadrant(0, 0);
- const Eigen::DSizes<TensorIndex, 2> second_quadrant(0, m_/2);
- const Eigen::DSizes<TensorIndex, 2> third_quadrant(m_/2, 0);
- const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(m_/2, m_/2);
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.slice(first_quadrant, quarter_sizes).device(device_) =
- A.slice(first_quadrant, quarter_sizes);
- C.slice(second_quadrant, quarter_sizes).device(device_) =
- B.slice(second_quadrant, quarter_sizes);
- C.slice(third_quadrant, quarter_sizes).device(device_) =
- A.slice(third_quadrant, quarter_sizes);
- C.slice(fourth_quadrant, quarter_sizes).device(device_) =
- B.slice(fourth_quadrant, quarter_sizes);
- }
- // Record the number of values copied from the rhs slice to the lhs slice
- // each second
- finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
- }
-
- void rowChip(int num_iters) {
- Eigen::array<TensorIndex, 2> input_size;
- input_size[0] = k_;
- input_size[1] = n_;
- const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size);
- Eigen::array<TensorIndex, 1> output_size;
- output_size[0] = n_;
- TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.device(device_) = B.chip(iter % k_, 0);
- }
- // Record the number of values copied from the rhs chip to the lhs.
- finalizeBenchmark(static_cast<int64_t>(n_) * num_iters);
- }
-
- void colChip(int num_iters) {
- Eigen::array<TensorIndex, 2> input_size;
- input_size[0] = k_;
- input_size[1] = n_;
- const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size);
- Eigen::array<TensorIndex, 1> output_size;
- output_size[0] = n_;
- TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.device(device_) = B.chip(iter % n_, 1);
- }
- // Record the number of values copied from the rhs chip to the lhs.
- finalizeBenchmark(static_cast<int64_t>(n_) * num_iters);
- }
-
- void shuffling(int num_iters) {
- eigen_assert(m_ == n_);
- Eigen::array<TensorIndex, 2> size_a;
- size_a[0] = m_;
- size_a[1] = k_;
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
- Eigen::array<TensorIndex, 2> size_b;
- size_b[0] = k_;
- size_b[1] = m_;
- TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
-
- Eigen::array<int, 2> shuffle;
- shuffle[0] = 1;
- shuffle[1] = 0;
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- B.device(device_) = A.shuffle(shuffle);
- }
- // Record the number of values shuffled from A and copied to B each second
- finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
- }
-
- void padding(int num_iters) {
- eigen_assert(m_ == k_);
- Eigen::array<TensorIndex, 2> size_a;
- size_a[0] = m_;
- size_a[1] = k_-3;
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
- Eigen::array<TensorIndex, 2> size_b;
- size_b[0] = k_;
- size_b[1] = m_;
- TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
-
-#if defined(EIGEN_HAS_INDEX_LIST)
- Eigen::IndexPairList<Eigen::type2indexpair<0, 0>,
- Eigen::type2indexpair<2, 1> > paddings;
-#else
- Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings;
- paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0);
- paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1);
-#endif
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- B.device(device_) = A.pad(paddings);
- }
- // Record the number of values copied from the padded tensor A each second
- finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
- }
-
- void striding(int num_iters) {
- eigen_assert(m_ == k_);
- Eigen::array<TensorIndex, 2> size_a;
- size_a[0] = m_;
- size_a[1] = k_;
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
- Eigen::array<TensorIndex, 2> size_b;
- size_b[0] = m_;
- size_b[1] = k_/2;
- TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
-
-#ifndef EIGEN_HAS_INDEX_LIST
- Eigen::array<TensorIndex, 2> strides;
- strides[0] = 1;
- strides[1] = 2;
-#else
- // Take advantage of cxx11 to give the compiler information it can use to
- // optimize the code.
- Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> > strides;
-#endif
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- B.device(device_) = A.stride(strides);
- }
- // Record the number of values copied from the padded tensor A each second
- finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
- }
-
- void broadcasting(int num_iters) {
- Eigen::array<TensorIndex, 2> size_a;
- size_a[0] = m_;
- size_a[1] = 1;
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
- Eigen::array<TensorIndex, 2> size_c;
- size_c[0] = m_;
- size_c[1] = n_;
- TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, size_c);
-
-#ifndef EIGEN_HAS_INDEX_LIST
- Eigen::array<int, 2> broadcast;
- broadcast[0] = 1;
- broadcast[1] = n_;
-#else
- // Take advantage of cxx11 to give the compiler information it can use to
- // optimize the code.
- Eigen::IndexList<Eigen::type2index<1>, int> broadcast;
- broadcast.set(1, n_);
-#endif
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.device(device_) = A.broadcast(broadcast);
- }
- // Record the number of values broadcasted from A and copied to C each second
- finalizeBenchmark(static_cast<int64_t>(m_) * n_ * num_iters);
- }
-
- void coeffWiseOp(int num_iters) {
- eigen_assert(m_ == k_ && k_ == n_);
- Eigen::array<TensorIndex, 2> sizes;
- sizes[0] = m_;
- sizes[1] = m_;
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
- TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7));
- }
- // Record the number of FLOP executed per second (2 multiplications and
- // 1 addition per value)
- finalizeBenchmark(static_cast<int64_t>(3) * m_ * m_ * num_iters);
- }
-
- void algebraicFunc(int num_iters) {
- eigen_assert(m_ == k_ && k_ == n_);
- Eigen::array<TensorIndex, 2> sizes;
- sizes[0] = m_;
- sizes[1] = m_;
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
- TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.device(device_) = A.rsqrt() + B.sqrt() * B.square();
- }
- // Record the number of FLOP executed per second (assuming one operation
- // per value)
- finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
- }
-
- void transcendentalFunc(int num_iters) {
- eigen_assert(m_ == k_ && k_ == n_);
- Eigen::array<TensorIndex, 2> sizes;
- sizes[0] = m_;
- sizes[1] = m_;
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
- TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.device(device_) = A.exp() + B.log();
- }
- // Record the number of FLOP executed per second (assuming one operation
- // per value)
- finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
- }
-
- // Row reduction
- void rowReduction(int num_iters) {
- Eigen::array<TensorIndex, 2> input_size;
- input_size[0] = k_;
- input_size[1] = n_;
- const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size);
- Eigen::array<TensorIndex, 1> output_size;
- output_size[0] = n_;
- TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
-
-#ifndef EIGEN_HAS_INDEX_LIST
- Eigen::array<TensorIndex, 1> sum_along_dim;
- sum_along_dim[0] = 0;
-#else
- // Take advantage of cxx11 to give the compiler information it can use to
- // optimize the code.
- Eigen::IndexList<Eigen::type2index<0>> sum_along_dim;
-#endif
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.device(device_) = B.sum(sum_along_dim);
- }
- // Record the number of FLOP executed per second (assuming one operation
- // per value)
- finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters);
- }
-
- // Column reduction
- void colReduction(int num_iters) {
- Eigen::array<TensorIndex, 2> input_size;
- input_size[0] = k_;
- input_size[1] = n_;
- const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(
- b_, input_size);
- Eigen::array<TensorIndex, 1> output_size;
- output_size[0] = k_;
- TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(
- c_, output_size);
-
-#ifndef EIGEN_HAS_INDEX_LIST
- Eigen::array<TensorIndex, 1> sum_along_dim;
- sum_along_dim[0] = 1;
-#else
- // Take advantage of cxx11 to give the compiler information it can use to
- // optimize the code.
- Eigen::IndexList<Eigen::type2index<1>> sum_along_dim;
-#endif
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.device(device_) = B.sum(sum_along_dim);
- }
- // Record the number of FLOP executed per second (assuming one operation
- // per value)
- finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters);
- }
-
- // Full reduction
- void fullReduction(int num_iters) {
- Eigen::array<TensorIndex, 2> input_size;
- input_size[0] = k_;
- input_size[1] = n_;
- const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(
- b_, input_size);
- Eigen::array<TensorIndex, 0> output_size;
- TensorMap<Tensor<T, 0, 0, TensorIndex>, Eigen::Aligned> C(
- c_, output_size);
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.device(device_) = B.sum();
- }
- // Record the number of FLOP executed per second (assuming one operation
- // per value)
- finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters);
- }
-
- // do a contraction which is equivalent to a matrix multiplication
- void contraction(int num_iters) {
- Eigen::array<TensorIndex, 2> sizeA;
- sizeA[0] = m_;
- sizeA[1] = k_;
- Eigen::array<TensorIndex, 2> sizeB;
- sizeB[0] = k_;
- sizeB[1] = n_;
- Eigen::array<TensorIndex, 2> sizeC;
- sizeC[0] = m_;
- sizeC[1] = n_;
-
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizeA);
- const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizeB);
- TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizeC);
-
- typedef typename Tensor<T, 2>::DimensionPair DimPair;
- Eigen::array<DimPair, 1> dims;
- dims[0] = DimPair(1, 0);
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.device(device_) = A.contract(B, dims);
- }
- // Record the number of FLOP executed per second (size_ multiplications and
- // additions for each value in the resulting tensor)
- finalizeBenchmark(static_cast<int64_t>(2) * m_ * n_ * k_ * num_iters);
- }
-
- void convolution(int num_iters, int kernel_x, int kernel_y) {
- Eigen::array<TensorIndex, 2> input_sizes;
- input_sizes[0] = m_;
- input_sizes[1] = n_;
- TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, input_sizes);
- Eigen::array<TensorIndex, 2> kernel_sizes;
- kernel_sizes[0] = kernel_x;
- kernel_sizes[1] = kernel_y;
- TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, kernel_sizes);
- Eigen::array<TensorIndex, 2> result_sizes;
- result_sizes[0] = m_ - kernel_x + 1;
- result_sizes[1] = n_ - kernel_y + 1;
- TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, result_sizes);
- Eigen::array<TensorIndex, 2> dims;
- dims[0] = 0;
- dims[1] = 1;
-
- StartBenchmarkTiming();
- for (int iter = 0; iter < num_iters; ++iter) {
- C.device(device_) = A.convolve(B, dims);
- }
- // Record the number of FLOP executed per second (kernel_size
- // multiplications and additions for each value in the resulting tensor)
- finalizeBenchmark(static_cast<int64_t>(2) *
- (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * num_iters);
- }
-
- private:
- void initialize() {
- a_ = (T *) device_.allocate(m_ * k_ * sizeof(T));
- b_ = (T *) device_.allocate(k_ * n_ * sizeof(T));
- c_ = (T *) device_.allocate(m_ * n_ * sizeof(T));
-
- // Initialize the content of the memory pools to prevent asan from
- // complaining.
- device_.memset(a_, 12, m_ * k_ * sizeof(T));
- device_.memset(b_, 23, k_ * n_ * sizeof(T));
- device_.memset(c_, 31, m_ * n_ * sizeof(T));
-
- //BenchmarkUseRealTime();
- }
-
- inline void finalizeBenchmark(int64_t num_items) {
-#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
- if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) {
- device_.synchronize();
- }
-#endif
- StopBenchmarkTiming();
- SetBenchmarkFlopsProcessed(num_items);
- }
-
-
- TensorIndex m_;
- TensorIndex k_;
- TensorIndex n_;
- T* a_;
- T* b_;
- T* c_;
- Device device_;
-};
-#endif // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_