diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:09:10 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:10:13 +0100 |
commit | f0238cfb6997c4acfc2bd200de7295f3fa36968f (patch) | |
tree | b215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/doc/QuickReference.dox | |
parent | 543edd372a5193d04b3de9f23c176ab439e51b31 (diff) |
don't index Eigen
Diffstat (limited to 'eigen/doc/QuickReference.dox')
-rw-r--r-- | eigen/doc/QuickReference.dox | 785 |
1 files changed, 0 insertions, 785 deletions
diff --git a/eigen/doc/QuickReference.dox b/eigen/doc/QuickReference.dox deleted file mode 100644 index 44f5410..0000000 --- a/eigen/doc/QuickReference.dox +++ /dev/null @@ -1,785 +0,0 @@ -namespace Eigen { - -/** \eigenManualPage QuickRefPage Quick reference guide - -\eigenAutoToc - -<hr> - -<a href="#" class="top">top</a> -\section QuickRef_Headers Modules and Header files - -The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once. - -<table class="manual"> -<tr><th>Module</th><th>Header file</th><th>Contents</th></tr> -<tr ><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr> -<tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr> -<tr ><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr> -<tr class="alt"><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr> -<tr ><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr> -<tr class="alt"><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decompositions with least-squares solver (JacobiSVD, BDCSVD)</td></tr> -<tr ><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr> -<tr class="alt"><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr> -<tr ><td>\link Sparse_Module Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, SparseVector) \n (see \ref SparseQuickRefPage for details on sparse modules)</td></tr> -<tr class="alt"><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr> -<tr ><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr> -</table> - -<a href="#" class="top">top</a> -\section QuickRef_Types Array, matrix and vector types - - -\b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array: -\code -typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType; -typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType; -\endcode - -\li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.). -\li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic. -\li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options) - -All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid: -\code -Matrix<double, 6, Dynamic> // Dynamic number of columns (heap allocation) -Matrix<double, Dynamic, 2> // Dynamic number of rows (heap allocation) -Matrix<double, Dynamic, Dynamic, RowMajor> // Fully dynamic, row major (heap allocation) -Matrix<double, 13, 3> // Fully fixed (usually allocated on stack) -\endcode - -In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples: -<table class="example"> -<tr><th>Matrices</th><th>Arrays</th></tr> -<tr><td>\code -Matrix<float,Dynamic,Dynamic> <=> MatrixXf -Matrix<double,Dynamic,1> <=> VectorXd -Matrix<int,1,Dynamic> <=> RowVectorXi -Matrix<float,3,3> <=> Matrix3f -Matrix<float,4,1> <=> Vector4f -\endcode</td><td>\code -Array<float,Dynamic,Dynamic> <=> ArrayXXf -Array<double,Dynamic,1> <=> ArrayXd -Array<int,1,Dynamic> <=> RowArrayXi -Array<float,3,3> <=> Array33f -Array<float,4,1> <=> Array4f -\endcode</td></tr> -</table> - -Conversion between the matrix and array worlds: -\code -Array44f a1, a1; -Matrix4f m1, m2; -m1 = a1 * a2; // coeffwise product, implicit conversion from array to matrix. -a1 = m1 * m2; // matrix product, implicit conversion from matrix to array. -a2 = a1 + m1.array(); // mixing array and matrix is forbidden -m2 = a1.matrix() + m1; // and explicit conversion is required. -ArrayWrapper<Matrix4f> m1a(m1); // m1a is an alias for m1.array(), they share the same coefficients -MatrixWrapper<Array44f> a1m(a1); -\endcode - -In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object: -\li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only -\li <a name="arrayonly"></a>\arrayworld array objects only - -\subsection QuickRef_Basics Basic matrix manipulation - -<table class="manual"> -<tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr> -<tr><td>Constructors</td> -<td>\code -Vector4d v4; -Vector2f v1(x, y); -Array3i v2(x, y, z); -Vector4d v3(x, y, z, w); - -VectorXf v5; // empty object -ArrayXf v6(size); -\endcode</td><td>\code -Matrix4f m1; - - - - -MatrixXf m5; // empty object -MatrixXf m6(nb_rows, nb_columns); -\endcode</td><td class="note"> -By default, the coefficients \n are left uninitialized</td></tr> -<tr class="alt"><td>Comma initializer</td> -<td>\code -Vector3f v1; v1 << x, y, z; -ArrayXf v2(4); v2 << 1, 2, 3, 4; - -\endcode</td><td>\code -Matrix3f m1; m1 << 1, 2, 3, - 4, 5, 6, - 7, 8, 9; -\endcode</td><td></td></tr> - -<tr><td>Comma initializer (bis)</td> -<td colspan="2"> -\include Tutorial_commainit_02.cpp -</td> -<td> -output: -\verbinclude Tutorial_commainit_02.out -</td> -</tr> - -<tr class="alt"><td>Runtime info</td> -<td>\code -vector.size(); - -vector.innerStride(); -vector.data(); -\endcode</td><td>\code -matrix.rows(); matrix.cols(); -matrix.innerSize(); matrix.outerSize(); -matrix.innerStride(); matrix.outerStride(); -matrix.data(); -\endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr> -<tr><td>Compile-time info</td> -<td colspan="2">\code -ObjectType::Scalar ObjectType::RowsAtCompileTime -ObjectType::RealScalar ObjectType::ColsAtCompileTime -ObjectType::Index ObjectType::SizeAtCompileTime -\endcode</td><td></td></tr> -<tr class="alt"><td>Resizing</td> -<td>\code -vector.resize(size); - - -vector.resizeLike(other_vector); -vector.conservativeResize(size); -\endcode</td><td>\code -matrix.resize(nb_rows, nb_cols); -matrix.resize(Eigen::NoChange, nb_cols); -matrix.resize(nb_rows, Eigen::NoChange); -matrix.resizeLike(other_matrix); -matrix.conservativeResize(nb_rows, nb_cols); -\endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr> - -<tr><td>Coeff access with \n range checking</td> -<td>\code -vector(i) vector.x() -vector[i] vector.y() - vector.z() - vector.w() -\endcode</td><td>\code -matrix(i,j) -\endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr> - -<tr class="alt"><td>Coeff access without \n range checking</td> -<td>\code -vector.coeff(i) -vector.coeffRef(i) -\endcode</td><td>\code -matrix.coeff(i,j) -matrix.coeffRef(i,j) -\endcode</td><td></td></tr> - -<tr><td>Assignment/copy</td> -<td colspan="2">\code -object = expression; -object_of_float = expression_of_double.cast<float>(); -\endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr> - -</table> - -\subsection QuickRef_PredefMat Predefined Matrices - -<table class="manual"> -<tr> - <th>Fixed-size matrix or vector</th> - <th>Dynamic-size matrix</th> - <th>Dynamic-size vector</th> -</tr> -<tr style="border-bottom-style: none;"> - <td> -\code -typedef {Matrix3f|Array33f} FixedXD; -FixedXD x; - -x = FixedXD::Zero(); -x = FixedXD::Ones(); -x = FixedXD::Constant(value); -x = FixedXD::Random(); -x = FixedXD::LinSpaced(size, low, high); - -x.setZero(); -x.setOnes(); -x.setConstant(value); -x.setRandom(); -x.setLinSpaced(size, low, high); -\endcode - </td> - <td> -\code -typedef {MatrixXf|ArrayXXf} Dynamic2D; -Dynamic2D x; - -x = Dynamic2D::Zero(rows, cols); -x = Dynamic2D::Ones(rows, cols); -x = Dynamic2D::Constant(rows, cols, value); -x = Dynamic2D::Random(rows, cols); -N/A - -x.setZero(rows, cols); -x.setOnes(rows, cols); -x.setConstant(rows, cols, value); -x.setRandom(rows, cols); -N/A -\endcode - </td> - <td> -\code -typedef {VectorXf|ArrayXf} Dynamic1D; -Dynamic1D x; - -x = Dynamic1D::Zero(size); -x = Dynamic1D::Ones(size); -x = Dynamic1D::Constant(size, value); -x = Dynamic1D::Random(size); -x = Dynamic1D::LinSpaced(size, low, high); - -x.setZero(size); -x.setOnes(size); -x.setConstant(size, value); -x.setRandom(size); -x.setLinSpaced(size, low, high); -\endcode - </td> -</tr> - -<tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr> -<tr style="border-bottom-style: none;"> - <td> -\code -x = FixedXD::Identity(); -x.setIdentity(); - -Vector3f::UnitX() // 1 0 0 -Vector3f::UnitY() // 0 1 0 -Vector3f::UnitZ() // 0 0 1 -\endcode - </td> - <td> -\code -x = Dynamic2D::Identity(rows, cols); -x.setIdentity(rows, cols); - - - -N/A -\endcode - </td> - <td>\code -N/A - - -VectorXf::Unit(size,i) -VectorXf::Unit(4,1) == Vector4f(0,1,0,0) - == Vector4f::UnitY() -\endcode - </td> -</tr> -</table> - - - -\subsection QuickRef_Map Mapping external arrays - -<table class="manual"> -<tr> -<td>Contiguous \n memory</td> -<td>\code -float data[] = {1,2,3,4}; -Map<Vector3f> v1(data); // uses v1 as a Vector3f object -Map<ArrayXf> v2(data,3); // uses v2 as a ArrayXf object -Map<Array22f> m1(data); // uses m1 as a Array22f object -Map<MatrixXf> m2(data,2,2); // uses m2 as a MatrixXf object -\endcode</td> -</tr> -<tr> -<td>Typical usage \n of strides</td> -<td>\code -float data[] = {1,2,3,4,5,6,7,8,9}; -Map<VectorXf,0,InnerStride<2> > v1(data,3); // = [1,3,5] -Map<VectorXf,0,InnerStride<> > v2(data,3,InnerStride<>(3)); // = [1,4,7] -Map<MatrixXf,0,OuterStride<3> > m2(data,2,3); // both lines |1,4,7| -Map<MatrixXf,0,OuterStride<> > m1(data,2,3,OuterStride<>(3)); // are equal to: |2,5,8| -\endcode</td> -</tr> -</table> - - -<a href="#" class="top">top</a> -\section QuickRef_ArithmeticOperators Arithmetic Operators - -<table class="manual"> -<tr><td> -add \n subtract</td><td>\code -mat3 = mat1 + mat2; mat3 += mat1; -mat3 = mat1 - mat2; mat3 -= mat1;\endcode -</td></tr> -<tr class="alt"><td> -scalar product</td><td>\code -mat3 = mat1 * s1; mat3 *= s1; mat3 = s1 * mat1; -mat3 = mat1 / s1; mat3 /= s1;\endcode -</td></tr> -<tr><td> -matrix/vector \n products \matrixworld</td><td>\code -col2 = mat1 * col1; -row2 = row1 * mat1; row1 *= mat1; -mat3 = mat1 * mat2; mat3 *= mat1; \endcode -</td></tr> -<tr class="alt"><td> -transposition \n adjoint \matrixworld</td><td>\code -mat1 = mat2.transpose(); mat1.transposeInPlace(); -mat1 = mat2.adjoint(); mat1.adjointInPlace(); -\endcode -</td></tr> -<tr><td> -\link MatrixBase::dot dot \endlink product \n inner product \matrixworld</td><td>\code -scalar = vec1.dot(vec2); -scalar = col1.adjoint() * col2; -scalar = (col1.adjoint() * col2).value();\endcode -</td></tr> -<tr class="alt"><td> -outer product \matrixworld</td><td>\code -mat = col1 * col2.transpose();\endcode -</td></tr> - -<tr><td> -\link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code -scalar = vec1.norm(); scalar = vec1.squaredNorm() -vec2 = vec1.normalized(); vec1.normalize(); // inplace \endcode -</td></tr> - -<tr class="alt"><td> -\link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code -#include <Eigen/Geometry> -vec3 = vec1.cross(vec2);\endcode</td></tr> -</table> - -<a href="#" class="top">top</a> -\section QuickRef_Coeffwise Coefficient-wise \& Array operators - -In addition to the aforementioned operators, Eigen supports numerous coefficient-wise operator and functions. -Most of them unambiguously makes sense in array-world\arrayworld. The following operators are readily available for arrays, -or available through .array() for vectors and matrices: - -<table class="manual"> -<tr><td>Arithmetic operators</td><td>\code -array1 * array2 array1 / array2 array1 *= array2 array1 /= array2 -array1 + scalar array1 - scalar array1 += scalar array1 -= scalar -\endcode</td></tr> -<tr><td>Comparisons</td><td>\code -array1 < array2 array1 > array2 array1 < scalar array1 > scalar -array1 <= array2 array1 >= array2 array1 <= scalar array1 >= scalar -array1 == array2 array1 != array2 array1 == scalar array1 != scalar -array1.min(array2) array1.max(array2) array1.min(scalar) array1.max(scalar) -\endcode</td></tr> -<tr><td>Trigo, power, and \n misc functions \n and the STL-like variants</td><td>\code -array1.abs2() -array1.abs() abs(array1) -array1.sqrt() sqrt(array1) -array1.log() log(array1) -array1.log10() log10(array1) -array1.exp() exp(array1) -array1.pow(array2) pow(array1,array2) -array1.pow(scalar) pow(array1,scalar) - pow(scalar,array2) -array1.square() -array1.cube() -array1.inverse() - -array1.sin() sin(array1) -array1.cos() cos(array1) -array1.tan() tan(array1) -array1.asin() asin(array1) -array1.acos() acos(array1) -array1.atan() atan(array1) -array1.sinh() sinh(array1) -array1.cosh() cosh(array1) -array1.tanh() tanh(array1) -array1.arg() arg(array1) - -array1.floor() floor(array1) -array1.ceil() ceil(array1) -array1.round() round(aray1) - -array1.isFinite() isfinite(array1) -array1.isInf() isinf(array1) -array1.isNaN() isnan(array1) -\endcode -</td></tr> -</table> - - -The following coefficient-wise operators are available for all kind of expressions (matrices, vectors, and arrays), and for both real or complex scalar types: - -<table class="manual"> -<tr><th>Eigen's API</th><th>STL-like APIs\arrayworld </th><th>Comments</th></tr> -<tr><td>\code -mat1.real() -mat1.imag() -mat1.conjugate() -\endcode -</td><td>\code -real(array1) -imag(array1) -conj(array1) -\endcode -</td><td> -\code - // read-write, no-op for real expressions - // read-only for real, read-write for complexes - // no-op for real expressions -\endcode -</td></tr> -</table> - -Some coefficient-wise operators are readily available for for matrices and vectors through the following cwise* methods: -<table class="manual"> -<tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr> -<tr><td>\code -mat1.cwiseMin(mat2) mat1.cwiseMin(scalar) -mat1.cwiseMax(mat2) mat1.cwiseMax(scalar) -mat1.cwiseAbs2() -mat1.cwiseAbs() -mat1.cwiseSqrt() -mat1.cwiseInverse() -mat1.cwiseProduct(mat2) -mat1.cwiseQuotient(mat2) -mat1.cwiseEqual(mat2) mat1.cwiseEqual(scalar) -mat1.cwiseNotEqual(mat2) -\endcode -</td><td>\code -mat1.array().min(mat2.array()) mat1.array().min(scalar) -mat1.array().max(mat2.array()) mat1.array().max(scalar) -mat1.array().abs2() -mat1.array().abs() -mat1.array().sqrt() -mat1.array().inverse() -mat1.array() * mat2.array() -mat1.array() / mat2.array() -mat1.array() == mat2.array() mat1.array() == scalar -mat1.array() != mat2.array() -\endcode</td></tr> -</table> -The main difference between the two API is that the one based on cwise* methods returns an expression in the matrix world, -while the second one (based on .array()) returns an array expression. -Recall that .array() has no cost, it only changes the available API and interpretation of the data. - -It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with <a href="http://en.cppreference.com/w/cpp/utility/functional/ptr_fun">std::ptr_fun</a> (c++03), <a href="http://en.cppreference.com/w/cpp/utility/functional/ref">std::ref</a> (c++11), or <a href="http://en.cppreference.com/w/cpp/language/lambda">lambdas</a> (c++11): -\code -mat1.unaryExpr(std::ptr_fun(foo)); -mat1.unaryExpr(std::ref(foo)); -mat1.unaryExpr([](double x) { return foo(x); }); -\endcode - - -<a href="#" class="top">top</a> -\section QuickRef_Reductions Reductions - -Eigen provides several reduction methods such as: -\link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink, -\link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink, -\link MatrixBase::trace() trace() \endlink \matrixworld, -\link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld, -\link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink. -All reduction operations can be done matrix-wise, -\link DenseBase::colwise() column-wise \endlink or -\link DenseBase::rowwise() row-wise \endlink. Usage example: -<table class="manual"> -<tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code - 5 3 1 -mat = 2 7 8 - 9 4 6 \endcode -</td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr> -<tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr> -<tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code -1 -2 -4 -\endcode</td></tr> -</table> - -Special versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink: -\code -int i, j; -s = vector.minCoeff(&i); // s == vector[i] -s = matrix.maxCoeff(&i, &j); // s == matrix(i,j) -\endcode -Typical use cases of all() and any(): -\code -if((array1 > 0).all()) ... // if all coefficients of array1 are greater than 0 ... -if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ... -\endcode - - -<a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices - -Read-write access to a \link DenseBase::col(Index) column \endlink -or a \link DenseBase::row(Index) row \endlink of a matrix (or array): -\code -mat1.row(i) = mat2.col(j); -mat1.col(j1).swap(mat1.col(j2)); -\endcode - -Read-write access to sub-vectors: -<table class="manual"> -<tr> -<th>Default versions</th> -<th>Optimized versions when the size \n is known at compile time</th></tr> -<th></th> - -<tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr> -<tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr> -<tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td> - <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr> -<tr class="alt"><td colspan="3"> - -Read-write access to sub-matrices:</td></tr> -<tr> - <td>\code mat1.block(i,j,rows,cols)\endcode - \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td> - <td>\code mat1.block<rows,cols>(i,j)\endcode - \link DenseBase::block(Index,Index) (more) \endlink</td> - <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr> -<tr><td>\code - mat1.topLeftCorner(rows,cols) - mat1.topRightCorner(rows,cols) - mat1.bottomLeftCorner(rows,cols) - mat1.bottomRightCorner(rows,cols)\endcode - <td>\code - mat1.topLeftCorner<rows,cols>() - mat1.topRightCorner<rows,cols>() - mat1.bottomLeftCorner<rows,cols>() - mat1.bottomRightCorner<rows,cols>()\endcode - <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr> - <tr><td>\code - mat1.topRows(rows) - mat1.bottomRows(rows) - mat1.leftCols(cols) - mat1.rightCols(cols)\endcode - <td>\code - mat1.topRows<rows>() - mat1.bottomRows<rows>() - mat1.leftCols<cols>() - mat1.rightCols<cols>()\endcode - <td>specialized versions of block() \n when the block fit two corners</td></tr> -</table> - - - -<a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations - -\subsection QuickRef_Reverse Reverse -Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()). -\code -vec.reverse() mat.colwise().reverse() mat.rowwise().reverse() -vec.reverseInPlace() -\endcode - -\subsection QuickRef_Replicate Replicate -Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate()) -\code -vec.replicate(times) vec.replicate<Times> -mat.replicate(vertical_times, horizontal_times) mat.replicate<VerticalTimes, HorizontalTimes>() -mat.colwise().replicate(vertical_times, horizontal_times) mat.colwise().replicate<VerticalTimes, HorizontalTimes>() -mat.rowwise().replicate(vertical_times, horizontal_times) mat.rowwise().replicate<VerticalTimes, HorizontalTimes>() -\endcode - - -<a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices -(matrix world \matrixworld) - -\subsection QuickRef_Diagonal Diagonal matrices - -<table class="example"> -<tr><th>Operation</th><th>Code</th></tr> -<tr><td> -view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code -mat1 = vec1.asDiagonal();\endcode -</td></tr> -<tr><td> -Declare a diagonal matrix</td><td>\code -DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); -diag1.diagonal() = vector;\endcode -</td></tr> -<tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td> - <td>\code -vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal -vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal -vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal -vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal -vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal -\endcode</td> -</tr> - -<tr><td>Optimized products and inverse</td> - <td>\code -mat3 = scalar * diag1 * mat1; -mat3 += scalar * mat1 * vec1.asDiagonal(); -mat3 = vec1.asDiagonal().inverse() * mat1 -mat3 = mat1 * diag1.inverse() -\endcode</td> -</tr> - -</table> - -\subsection QuickRef_TriangularView Triangular views - -TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information. - -\note The .triangularView() template member function requires the \c template keyword if it is used on an -object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. - -<table class="example"> -<tr><th>Operation</th><th>Code</th></tr> -<tr><td> -Reference to a triangular with optional \n -unit or null diagonal (read/write): -</td><td>\code -m.triangularView<Xxx>() -\endcode \n -\c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower -</td></tr> -<tr><td> -Writing to a specific triangular part:\n (only the referenced triangular part is evaluated) -</td><td>\code -m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode -</td></tr> -<tr><td> -Conversion to a dense matrix setting the opposite triangular part to zero: -</td><td>\code -m2 = m1.triangularView<Eigen::UnitUpper>()\endcode -</td></tr> -<tr><td> -Products: -</td><td>\code -m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2 -m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode -</td></tr> -<tr><td> -Solving linear equations:\n -\f$ M_2 := L_1^{-1} M_2 \f$ \n -\f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n -\f$ M_4 := M_4 U_1^{-1} \f$ -</td><td>\n \code -L1.triangularView<Eigen::UnitLower>().solveInPlace(M2) -L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3) -U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode -</td></tr> -</table> - -\subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views - -Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint -matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be -used to store other information. - -\note The .selfadjointView() template member function requires the \c template keyword if it is used on an -object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. - -<table class="example"> -<tr><th>Operation</th><th>Code</th></tr> -<tr><td> -Conversion to a dense matrix: -</td><td>\code -m2 = m.selfadjointView<Eigen::Lower>();\endcode -</td></tr> -<tr><td> -Product with another general matrix or vector: -</td><td>\code -m3 = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3; -m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode -</td></tr> -<tr><td> -Rank 1 and rank K update: \n -\f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n -\f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$ -</td><td>\n \code -M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1); -M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode -</td></tr> -<tr><td> -Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$) -</td><td>\code -M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s); -\endcode -</td></tr> -<tr><td> -Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$) -</td><td>\code -// via a standard Cholesky factorization -m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2); -// via a Cholesky factorization with pivoting -m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2); -\endcode -</td></tr> -</table> - -*/ - -/* -<table class="tutorial_code"> -<tr><td> -\link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code -mat1 = vec1.asDiagonal();\endcode -</td></tr> -<tr><td> -Declare a diagonal matrix</td><td>\code -DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); -diag1.diagonal() = vector;\endcode -</td></tr> -<tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td> - <td>\code -vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal -vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal -vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal -vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal -vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal -\endcode</td> -</tr> - -<tr><td>View on a triangular part of a matrix (read/write)</td> - <td>\code -mat2 = mat1.triangularView<Xxx>(); -// Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower -mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced -\endcode</td></tr> - -<tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td> - <td>\code -mat2 = mat1.selfadjointView<Xxx>(); // Xxx = Upper or Lower -mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint(); // evaluated and write to the upper triangular part only -\endcode</td></tr> - -</table> - -Optimized products: -\code -mat3 += scalar * vec1.asDiagonal() * mat1 -mat3 += scalar * mat1 * vec1.asDiagonal() -mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2 -mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>() -mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2 -mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>() -mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2); -mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar); -\endcode - -Inverse products: (all are optimized) -\code -mat3 = vec1.asDiagonal().inverse() * mat1 -mat3 = mat1 * diag1.inverse() -mat1.triangularView<Xxx>().solveInPlace(mat2) -mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2) -mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2) -\endcode - -*/ -} |