summaryrefslogtreecommitdiffhomepage
path: root/eigen/doc/QuickReference.dox
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2019-03-03 21:09:10 +0100
committerStanislaw Halik <sthalik@misaki.pl>2019-03-03 21:10:13 +0100
commitf0238cfb6997c4acfc2bd200de7295f3fa36968f (patch)
treeb215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/doc/QuickReference.dox
parent543edd372a5193d04b3de9f23c176ab439e51b31 (diff)
don't index Eigen
Diffstat (limited to 'eigen/doc/QuickReference.dox')
-rw-r--r--eigen/doc/QuickReference.dox785
1 files changed, 0 insertions, 785 deletions
diff --git a/eigen/doc/QuickReference.dox b/eigen/doc/QuickReference.dox
deleted file mode 100644
index 44f5410..0000000
--- a/eigen/doc/QuickReference.dox
+++ /dev/null
@@ -1,785 +0,0 @@
-namespace Eigen {
-
-/** \eigenManualPage QuickRefPage Quick reference guide
-
-\eigenAutoToc
-
-<hr>
-
-<a href="#" class="top">top</a>
-\section QuickRef_Headers Modules and Header files
-
-The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once.
-
-<table class="manual">
-<tr><th>Module</th><th>Header file</th><th>Contents</th></tr>
-<tr ><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr>
-<tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr>
-<tr ><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr>
-<tr class="alt"><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr>
-<tr ><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr>
-<tr class="alt"><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decompositions with least-squares solver (JacobiSVD, BDCSVD)</td></tr>
-<tr ><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr>
-<tr class="alt"><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr>
-<tr ><td>\link Sparse_Module Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, SparseVector) \n (see \ref SparseQuickRefPage for details on sparse modules)</td></tr>
-<tr class="alt"><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr>
-<tr ><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr>
-</table>
-
-<a href="#" class="top">top</a>
-\section QuickRef_Types Array, matrix and vector types
-
-
-\b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array:
-\code
-typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType;
-typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType;
-\endcode
-
-\li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.).
-\li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic.
-\li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options)
-
-All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid:
-\code
-Matrix<double, 6, Dynamic> // Dynamic number of columns (heap allocation)
-Matrix<double, Dynamic, 2> // Dynamic number of rows (heap allocation)
-Matrix<double, Dynamic, Dynamic, RowMajor> // Fully dynamic, row major (heap allocation)
-Matrix<double, 13, 3> // Fully fixed (usually allocated on stack)
-\endcode
-
-In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples:
-<table class="example">
-<tr><th>Matrices</th><th>Arrays</th></tr>
-<tr><td>\code
-Matrix<float,Dynamic,Dynamic> <=> MatrixXf
-Matrix<double,Dynamic,1> <=> VectorXd
-Matrix<int,1,Dynamic> <=> RowVectorXi
-Matrix<float,3,3> <=> Matrix3f
-Matrix<float,4,1> <=> Vector4f
-\endcode</td><td>\code
-Array<float,Dynamic,Dynamic> <=> ArrayXXf
-Array<double,Dynamic,1> <=> ArrayXd
-Array<int,1,Dynamic> <=> RowArrayXi
-Array<float,3,3> <=> Array33f
-Array<float,4,1> <=> Array4f
-\endcode</td></tr>
-</table>
-
-Conversion between the matrix and array worlds:
-\code
-Array44f a1, a1;
-Matrix4f m1, m2;
-m1 = a1 * a2; // coeffwise product, implicit conversion from array to matrix.
-a1 = m1 * m2; // matrix product, implicit conversion from matrix to array.
-a2 = a1 + m1.array(); // mixing array and matrix is forbidden
-m2 = a1.matrix() + m1; // and explicit conversion is required.
-ArrayWrapper<Matrix4f> m1a(m1); // m1a is an alias for m1.array(), they share the same coefficients
-MatrixWrapper<Array44f> a1m(a1);
-\endcode
-
-In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object:
-\li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only
-\li <a name="arrayonly"></a>\arrayworld array objects only
-
-\subsection QuickRef_Basics Basic matrix manipulation
-
-<table class="manual">
-<tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr>
-<tr><td>Constructors</td>
-<td>\code
-Vector4d v4;
-Vector2f v1(x, y);
-Array3i v2(x, y, z);
-Vector4d v3(x, y, z, w);
-
-VectorXf v5; // empty object
-ArrayXf v6(size);
-\endcode</td><td>\code
-Matrix4f m1;
-
-
-
-
-MatrixXf m5; // empty object
-MatrixXf m6(nb_rows, nb_columns);
-\endcode</td><td class="note">
-By default, the coefficients \n are left uninitialized</td></tr>
-<tr class="alt"><td>Comma initializer</td>
-<td>\code
-Vector3f v1; v1 << x, y, z;
-ArrayXf v2(4); v2 << 1, 2, 3, 4;
-
-\endcode</td><td>\code
-Matrix3f m1; m1 << 1, 2, 3,
- 4, 5, 6,
- 7, 8, 9;
-\endcode</td><td></td></tr>
-
-<tr><td>Comma initializer (bis)</td>
-<td colspan="2">
-\include Tutorial_commainit_02.cpp
-</td>
-<td>
-output:
-\verbinclude Tutorial_commainit_02.out
-</td>
-</tr>
-
-<tr class="alt"><td>Runtime info</td>
-<td>\code
-vector.size();
-
-vector.innerStride();
-vector.data();
-\endcode</td><td>\code
-matrix.rows(); matrix.cols();
-matrix.innerSize(); matrix.outerSize();
-matrix.innerStride(); matrix.outerStride();
-matrix.data();
-\endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr>
-<tr><td>Compile-time info</td>
-<td colspan="2">\code
-ObjectType::Scalar ObjectType::RowsAtCompileTime
-ObjectType::RealScalar ObjectType::ColsAtCompileTime
-ObjectType::Index ObjectType::SizeAtCompileTime
-\endcode</td><td></td></tr>
-<tr class="alt"><td>Resizing</td>
-<td>\code
-vector.resize(size);
-
-
-vector.resizeLike(other_vector);
-vector.conservativeResize(size);
-\endcode</td><td>\code
-matrix.resize(nb_rows, nb_cols);
-matrix.resize(Eigen::NoChange, nb_cols);
-matrix.resize(nb_rows, Eigen::NoChange);
-matrix.resizeLike(other_matrix);
-matrix.conservativeResize(nb_rows, nb_cols);
-\endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr>
-
-<tr><td>Coeff access with \n range checking</td>
-<td>\code
-vector(i) vector.x()
-vector[i] vector.y()
- vector.z()
- vector.w()
-\endcode</td><td>\code
-matrix(i,j)
-\endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr>
-
-<tr class="alt"><td>Coeff access without \n range checking</td>
-<td>\code
-vector.coeff(i)
-vector.coeffRef(i)
-\endcode</td><td>\code
-matrix.coeff(i,j)
-matrix.coeffRef(i,j)
-\endcode</td><td></td></tr>
-
-<tr><td>Assignment/copy</td>
-<td colspan="2">\code
-object = expression;
-object_of_float = expression_of_double.cast<float>();
-\endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr>
-
-</table>
-
-\subsection QuickRef_PredefMat Predefined Matrices
-
-<table class="manual">
-<tr>
- <th>Fixed-size matrix or vector</th>
- <th>Dynamic-size matrix</th>
- <th>Dynamic-size vector</th>
-</tr>
-<tr style="border-bottom-style: none;">
- <td>
-\code
-typedef {Matrix3f|Array33f} FixedXD;
-FixedXD x;
-
-x = FixedXD::Zero();
-x = FixedXD::Ones();
-x = FixedXD::Constant(value);
-x = FixedXD::Random();
-x = FixedXD::LinSpaced(size, low, high);
-
-x.setZero();
-x.setOnes();
-x.setConstant(value);
-x.setRandom();
-x.setLinSpaced(size, low, high);
-\endcode
- </td>
- <td>
-\code
-typedef {MatrixXf|ArrayXXf} Dynamic2D;
-Dynamic2D x;
-
-x = Dynamic2D::Zero(rows, cols);
-x = Dynamic2D::Ones(rows, cols);
-x = Dynamic2D::Constant(rows, cols, value);
-x = Dynamic2D::Random(rows, cols);
-N/A
-
-x.setZero(rows, cols);
-x.setOnes(rows, cols);
-x.setConstant(rows, cols, value);
-x.setRandom(rows, cols);
-N/A
-\endcode
- </td>
- <td>
-\code
-typedef {VectorXf|ArrayXf} Dynamic1D;
-Dynamic1D x;
-
-x = Dynamic1D::Zero(size);
-x = Dynamic1D::Ones(size);
-x = Dynamic1D::Constant(size, value);
-x = Dynamic1D::Random(size);
-x = Dynamic1D::LinSpaced(size, low, high);
-
-x.setZero(size);
-x.setOnes(size);
-x.setConstant(size, value);
-x.setRandom(size);
-x.setLinSpaced(size, low, high);
-\endcode
- </td>
-</tr>
-
-<tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr>
-<tr style="border-bottom-style: none;">
- <td>
-\code
-x = FixedXD::Identity();
-x.setIdentity();
-
-Vector3f::UnitX() // 1 0 0
-Vector3f::UnitY() // 0 1 0
-Vector3f::UnitZ() // 0 0 1
-\endcode
- </td>
- <td>
-\code
-x = Dynamic2D::Identity(rows, cols);
-x.setIdentity(rows, cols);
-
-
-
-N/A
-\endcode
- </td>
- <td>\code
-N/A
-
-
-VectorXf::Unit(size,i)
-VectorXf::Unit(4,1) == Vector4f(0,1,0,0)
- == Vector4f::UnitY()
-\endcode
- </td>
-</tr>
-</table>
-
-
-
-\subsection QuickRef_Map Mapping external arrays
-
-<table class="manual">
-<tr>
-<td>Contiguous \n memory</td>
-<td>\code
-float data[] = {1,2,3,4};
-Map<Vector3f> v1(data); // uses v1 as a Vector3f object
-Map<ArrayXf> v2(data,3); // uses v2 as a ArrayXf object
-Map<Array22f> m1(data); // uses m1 as a Array22f object
-Map<MatrixXf> m2(data,2,2); // uses m2 as a MatrixXf object
-\endcode</td>
-</tr>
-<tr>
-<td>Typical usage \n of strides</td>
-<td>\code
-float data[] = {1,2,3,4,5,6,7,8,9};
-Map<VectorXf,0,InnerStride<2> > v1(data,3); // = [1,3,5]
-Map<VectorXf,0,InnerStride<> > v2(data,3,InnerStride<>(3)); // = [1,4,7]
-Map<MatrixXf,0,OuterStride<3> > m2(data,2,3); // both lines |1,4,7|
-Map<MatrixXf,0,OuterStride<> > m1(data,2,3,OuterStride<>(3)); // are equal to: |2,5,8|
-\endcode</td>
-</tr>
-</table>
-
-
-<a href="#" class="top">top</a>
-\section QuickRef_ArithmeticOperators Arithmetic Operators
-
-<table class="manual">
-<tr><td>
-add \n subtract</td><td>\code
-mat3 = mat1 + mat2; mat3 += mat1;
-mat3 = mat1 - mat2; mat3 -= mat1;\endcode
-</td></tr>
-<tr class="alt"><td>
-scalar product</td><td>\code
-mat3 = mat1 * s1; mat3 *= s1; mat3 = s1 * mat1;
-mat3 = mat1 / s1; mat3 /= s1;\endcode
-</td></tr>
-<tr><td>
-matrix/vector \n products \matrixworld</td><td>\code
-col2 = mat1 * col1;
-row2 = row1 * mat1; row1 *= mat1;
-mat3 = mat1 * mat2; mat3 *= mat1; \endcode
-</td></tr>
-<tr class="alt"><td>
-transposition \n adjoint \matrixworld</td><td>\code
-mat1 = mat2.transpose(); mat1.transposeInPlace();
-mat1 = mat2.adjoint(); mat1.adjointInPlace();
-\endcode
-</td></tr>
-<tr><td>
-\link MatrixBase::dot dot \endlink product \n inner product \matrixworld</td><td>\code
-scalar = vec1.dot(vec2);
-scalar = col1.adjoint() * col2;
-scalar = (col1.adjoint() * col2).value();\endcode
-</td></tr>
-<tr class="alt"><td>
-outer product \matrixworld</td><td>\code
-mat = col1 * col2.transpose();\endcode
-</td></tr>
-
-<tr><td>
-\link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code
-scalar = vec1.norm(); scalar = vec1.squaredNorm()
-vec2 = vec1.normalized(); vec1.normalize(); // inplace \endcode
-</td></tr>
-
-<tr class="alt"><td>
-\link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code
-#include <Eigen/Geometry>
-vec3 = vec1.cross(vec2);\endcode</td></tr>
-</table>
-
-<a href="#" class="top">top</a>
-\section QuickRef_Coeffwise Coefficient-wise \& Array operators
-
-In addition to the aforementioned operators, Eigen supports numerous coefficient-wise operator and functions.
-Most of them unambiguously makes sense in array-world\arrayworld. The following operators are readily available for arrays,
-or available through .array() for vectors and matrices:
-
-<table class="manual">
-<tr><td>Arithmetic operators</td><td>\code
-array1 * array2 array1 / array2 array1 *= array2 array1 /= array2
-array1 + scalar array1 - scalar array1 += scalar array1 -= scalar
-\endcode</td></tr>
-<tr><td>Comparisons</td><td>\code
-array1 < array2 array1 > array2 array1 < scalar array1 > scalar
-array1 <= array2 array1 >= array2 array1 <= scalar array1 >= scalar
-array1 == array2 array1 != array2 array1 == scalar array1 != scalar
-array1.min(array2) array1.max(array2) array1.min(scalar) array1.max(scalar)
-\endcode</td></tr>
-<tr><td>Trigo, power, and \n misc functions \n and the STL-like variants</td><td>\code
-array1.abs2()
-array1.abs() abs(array1)
-array1.sqrt() sqrt(array1)
-array1.log() log(array1)
-array1.log10() log10(array1)
-array1.exp() exp(array1)
-array1.pow(array2) pow(array1,array2)
-array1.pow(scalar) pow(array1,scalar)
- pow(scalar,array2)
-array1.square()
-array1.cube()
-array1.inverse()
-
-array1.sin() sin(array1)
-array1.cos() cos(array1)
-array1.tan() tan(array1)
-array1.asin() asin(array1)
-array1.acos() acos(array1)
-array1.atan() atan(array1)
-array1.sinh() sinh(array1)
-array1.cosh() cosh(array1)
-array1.tanh() tanh(array1)
-array1.arg() arg(array1)
-
-array1.floor() floor(array1)
-array1.ceil() ceil(array1)
-array1.round() round(aray1)
-
-array1.isFinite() isfinite(array1)
-array1.isInf() isinf(array1)
-array1.isNaN() isnan(array1)
-\endcode
-</td></tr>
-</table>
-
-
-The following coefficient-wise operators are available for all kind of expressions (matrices, vectors, and arrays), and for both real or complex scalar types:
-
-<table class="manual">
-<tr><th>Eigen's API</th><th>STL-like APIs\arrayworld </th><th>Comments</th></tr>
-<tr><td>\code
-mat1.real()
-mat1.imag()
-mat1.conjugate()
-\endcode
-</td><td>\code
-real(array1)
-imag(array1)
-conj(array1)
-\endcode
-</td><td>
-\code
- // read-write, no-op for real expressions
- // read-only for real, read-write for complexes
- // no-op for real expressions
-\endcode
-</td></tr>
-</table>
-
-Some coefficient-wise operators are readily available for for matrices and vectors through the following cwise* methods:
-<table class="manual">
-<tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr>
-<tr><td>\code
-mat1.cwiseMin(mat2) mat1.cwiseMin(scalar)
-mat1.cwiseMax(mat2) mat1.cwiseMax(scalar)
-mat1.cwiseAbs2()
-mat1.cwiseAbs()
-mat1.cwiseSqrt()
-mat1.cwiseInverse()
-mat1.cwiseProduct(mat2)
-mat1.cwiseQuotient(mat2)
-mat1.cwiseEqual(mat2) mat1.cwiseEqual(scalar)
-mat1.cwiseNotEqual(mat2)
-\endcode
-</td><td>\code
-mat1.array().min(mat2.array()) mat1.array().min(scalar)
-mat1.array().max(mat2.array()) mat1.array().max(scalar)
-mat1.array().abs2()
-mat1.array().abs()
-mat1.array().sqrt()
-mat1.array().inverse()
-mat1.array() * mat2.array()
-mat1.array() / mat2.array()
-mat1.array() == mat2.array() mat1.array() == scalar
-mat1.array() != mat2.array()
-\endcode</td></tr>
-</table>
-The main difference between the two API is that the one based on cwise* methods returns an expression in the matrix world,
-while the second one (based on .array()) returns an array expression.
-Recall that .array() has no cost, it only changes the available API and interpretation of the data.
-
-It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with <a href="http://en.cppreference.com/w/cpp/utility/functional/ptr_fun">std::ptr_fun</a> (c++03), <a href="http://en.cppreference.com/w/cpp/utility/functional/ref">std::ref</a> (c++11), or <a href="http://en.cppreference.com/w/cpp/language/lambda">lambdas</a> (c++11):
-\code
-mat1.unaryExpr(std::ptr_fun(foo));
-mat1.unaryExpr(std::ref(foo));
-mat1.unaryExpr([](double x) { return foo(x); });
-\endcode
-
-
-<a href="#" class="top">top</a>
-\section QuickRef_Reductions Reductions
-
-Eigen provides several reduction methods such as:
-\link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink,
-\link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink,
-\link MatrixBase::trace() trace() \endlink \matrixworld,
-\link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld,
-\link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink.
-All reduction operations can be done matrix-wise,
-\link DenseBase::colwise() column-wise \endlink or
-\link DenseBase::rowwise() row-wise \endlink. Usage example:
-<table class="manual">
-<tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code
- 5 3 1
-mat = 2 7 8
- 9 4 6 \endcode
-</td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr>
-<tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr>
-<tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code
-1
-2
-4
-\endcode</td></tr>
-</table>
-
-Special versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink:
-\code
-int i, j;
-s = vector.minCoeff(&i); // s == vector[i]
-s = matrix.maxCoeff(&i, &j); // s == matrix(i,j)
-\endcode
-Typical use cases of all() and any():
-\code
-if((array1 > 0).all()) ... // if all coefficients of array1 are greater than 0 ...
-if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ...
-\endcode
-
-
-<a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices
-
-Read-write access to a \link DenseBase::col(Index) column \endlink
-or a \link DenseBase::row(Index) row \endlink of a matrix (or array):
-\code
-mat1.row(i) = mat2.col(j);
-mat1.col(j1).swap(mat1.col(j2));
-\endcode
-
-Read-write access to sub-vectors:
-<table class="manual">
-<tr>
-<th>Default versions</th>
-<th>Optimized versions when the size \n is known at compile time</th></tr>
-<th></th>
-
-<tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr>
-<tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr>
-<tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td>
- <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr>
-<tr class="alt"><td colspan="3">
-
-Read-write access to sub-matrices:</td></tr>
-<tr>
- <td>\code mat1.block(i,j,rows,cols)\endcode
- \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td>
- <td>\code mat1.block<rows,cols>(i,j)\endcode
- \link DenseBase::block(Index,Index) (more) \endlink</td>
- <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr>
-<tr><td>\code
- mat1.topLeftCorner(rows,cols)
- mat1.topRightCorner(rows,cols)
- mat1.bottomLeftCorner(rows,cols)
- mat1.bottomRightCorner(rows,cols)\endcode
- <td>\code
- mat1.topLeftCorner<rows,cols>()
- mat1.topRightCorner<rows,cols>()
- mat1.bottomLeftCorner<rows,cols>()
- mat1.bottomRightCorner<rows,cols>()\endcode
- <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr>
- <tr><td>\code
- mat1.topRows(rows)
- mat1.bottomRows(rows)
- mat1.leftCols(cols)
- mat1.rightCols(cols)\endcode
- <td>\code
- mat1.topRows<rows>()
- mat1.bottomRows<rows>()
- mat1.leftCols<cols>()
- mat1.rightCols<cols>()\endcode
- <td>specialized versions of block() \n when the block fit two corners</td></tr>
-</table>
-
-
-
-<a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations
-
-\subsection QuickRef_Reverse Reverse
-Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()).
-\code
-vec.reverse() mat.colwise().reverse() mat.rowwise().reverse()
-vec.reverseInPlace()
-\endcode
-
-\subsection QuickRef_Replicate Replicate
-Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate())
-\code
-vec.replicate(times) vec.replicate<Times>
-mat.replicate(vertical_times, horizontal_times) mat.replicate<VerticalTimes, HorizontalTimes>()
-mat.colwise().replicate(vertical_times, horizontal_times) mat.colwise().replicate<VerticalTimes, HorizontalTimes>()
-mat.rowwise().replicate(vertical_times, horizontal_times) mat.rowwise().replicate<VerticalTimes, HorizontalTimes>()
-\endcode
-
-
-<a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices
-(matrix world \matrixworld)
-
-\subsection QuickRef_Diagonal Diagonal matrices
-
-<table class="example">
-<tr><th>Operation</th><th>Code</th></tr>
-<tr><td>
-view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code
-mat1 = vec1.asDiagonal();\endcode
-</td></tr>
-<tr><td>
-Declare a diagonal matrix</td><td>\code
-DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
-diag1.diagonal() = vector;\endcode
-</td></tr>
-<tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td>
- <td>\code
-vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal
-vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal
-vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal
-vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal
-vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal
-\endcode</td>
-</tr>
-
-<tr><td>Optimized products and inverse</td>
- <td>\code
-mat3 = scalar * diag1 * mat1;
-mat3 += scalar * mat1 * vec1.asDiagonal();
-mat3 = vec1.asDiagonal().inverse() * mat1
-mat3 = mat1 * diag1.inverse()
-\endcode</td>
-</tr>
-
-</table>
-
-\subsection QuickRef_TriangularView Triangular views
-
-TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information.
-
-\note The .triangularView() template member function requires the \c template keyword if it is used on an
-object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.
-
-<table class="example">
-<tr><th>Operation</th><th>Code</th></tr>
-<tr><td>
-Reference to a triangular with optional \n
-unit or null diagonal (read/write):
-</td><td>\code
-m.triangularView<Xxx>()
-\endcode \n
-\c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower
-</td></tr>
-<tr><td>
-Writing to a specific triangular part:\n (only the referenced triangular part is evaluated)
-</td><td>\code
-m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode
-</td></tr>
-<tr><td>
-Conversion to a dense matrix setting the opposite triangular part to zero:
-</td><td>\code
-m2 = m1.triangularView<Eigen::UnitUpper>()\endcode
-</td></tr>
-<tr><td>
-Products:
-</td><td>\code
-m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2
-m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode
-</td></tr>
-<tr><td>
-Solving linear equations:\n
-\f$ M_2 := L_1^{-1} M_2 \f$ \n
-\f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n
-\f$ M_4 := M_4 U_1^{-1} \f$
-</td><td>\n \code
-L1.triangularView<Eigen::UnitLower>().solveInPlace(M2)
-L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3)
-U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode
-</td></tr>
-</table>
-
-\subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views
-
-Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint
-matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be
-used to store other information.
-
-\note The .selfadjointView() template member function requires the \c template keyword if it is used on an
-object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.
-
-<table class="example">
-<tr><th>Operation</th><th>Code</th></tr>
-<tr><td>
-Conversion to a dense matrix:
-</td><td>\code
-m2 = m.selfadjointView<Eigen::Lower>();\endcode
-</td></tr>
-<tr><td>
-Product with another general matrix or vector:
-</td><td>\code
-m3 = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3;
-m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode
-</td></tr>
-<tr><td>
-Rank 1 and rank K update: \n
-\f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n
-\f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$
-</td><td>\n \code
-M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1);
-M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode
-</td></tr>
-<tr><td>
-Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$)
-</td><td>\code
-M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s);
-\endcode
-</td></tr>
-<tr><td>
-Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$)
-</td><td>\code
-// via a standard Cholesky factorization
-m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2);
-// via a Cholesky factorization with pivoting
-m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2);
-\endcode
-</td></tr>
-</table>
-
-*/
-
-/*
-<table class="tutorial_code">
-<tr><td>
-\link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code
-mat1 = vec1.asDiagonal();\endcode
-</td></tr>
-<tr><td>
-Declare a diagonal matrix</td><td>\code
-DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
-diag1.diagonal() = vector;\endcode
-</td></tr>
-<tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td>
- <td>\code
-vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal
-vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal
-vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal
-vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal
-vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal
-\endcode</td>
-</tr>
-
-<tr><td>View on a triangular part of a matrix (read/write)</td>
- <td>\code
-mat2 = mat1.triangularView<Xxx>();
-// Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower
-mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced
-\endcode</td></tr>
-
-<tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td>
- <td>\code
-mat2 = mat1.selfadjointView<Xxx>(); // Xxx = Upper or Lower
-mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint(); // evaluated and write to the upper triangular part only
-\endcode</td></tr>
-
-</table>
-
-Optimized products:
-\code
-mat3 += scalar * vec1.asDiagonal() * mat1
-mat3 += scalar * mat1 * vec1.asDiagonal()
-mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2
-mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>()
-mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2
-mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>()
-mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2);
-mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar);
-\endcode
-
-Inverse products: (all are optimized)
-\code
-mat3 = vec1.asDiagonal().inverse() * mat1
-mat3 = mat1 * diag1.inverse()
-mat1.triangularView<Xxx>().solveInPlace(mat2)
-mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2)
-mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2)
-\endcode
-
-*/
-}