diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2016-09-18 12:42:15 +0200 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2016-11-02 15:12:04 +0100 |
commit | 44861dcbfeee041223c4aac1ee075e92fa4daa01 (patch) | |
tree | 6dfdfd9637846a7aedd71ace97d7d2ad366496d7 /eigen/test/adjoint.cpp | |
parent | f3fe458b9e0a29a99a39d47d9a76dc18964b6fec (diff) |
update
Diffstat (limited to 'eigen/test/adjoint.cpp')
-rw-r--r-- | eigen/test/adjoint.cpp | 160 |
1 files changed, 160 insertions, 0 deletions
diff --git a/eigen/test/adjoint.cpp b/eigen/test/adjoint.cpp new file mode 100644 index 0000000..ea36f78 --- /dev/null +++ b/eigen/test/adjoint.cpp @@ -0,0 +1,160 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#define EIGEN_NO_STATIC_ASSERT + +#include "main.h" + +template<bool IsInteger> struct adjoint_specific; + +template<> struct adjoint_specific<true> { + template<typename Vec, typename Mat, typename Scalar> + static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { + VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0)); + VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), 0)); + + // check compatibility of dot and adjoint + VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0)); + } +}; + +template<> struct adjoint_specific<false> { + template<typename Vec, typename Mat, typename Scalar> + static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { + typedef typename NumTraits<Scalar>::Real RealScalar; + using std::abs; + + RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm()); + VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref)); + VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref)); + + VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); + // check normalized() and normalize() + VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized()); + v3 = v1; + v3.normalize(); + VERIFY_IS_APPROX(v1, v1.norm() * v3); + VERIFY_IS_APPROX(v3, v1.normalized()); + VERIFY_IS_APPROX(v3.norm(), RealScalar(1)); + + // check compatibility of dot and adjoint + ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm())); + VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>())); + + // check that Random().normalized() works: tricky as the random xpr must be evaluated by + // normalized() in order to produce a consistent result. + VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1)); + } +}; + +template<typename MatrixType> void adjoint(const MatrixType& m) +{ + /* this test covers the following files: + Transpose.h Conjugate.h Dot.h + */ + using std::abs; + typedef typename MatrixType::Index Index; + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; + typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; + + Index rows = m.rows(); + Index cols = m.cols(); + + MatrixType m1 = MatrixType::Random(rows, cols), + m2 = MatrixType::Random(rows, cols), + m3(rows, cols), + square = SquareMatrixType::Random(rows, rows); + VectorType v1 = VectorType::Random(rows), + v2 = VectorType::Random(rows), + v3 = VectorType::Random(rows), + vzero = VectorType::Zero(rows); + + Scalar s1 = internal::random<Scalar>(), + s2 = internal::random<Scalar>(); + + // check basic compatibility of adjoint, transpose, conjugate + VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); + VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); + + // check multiplicative behavior + VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); + VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint()); + + // check basic properties of dot, squaredNorm + VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1)); + VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm()); + + adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2); + + VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1)); + + // like in testBasicStuff, test operator() to check const-qualification + Index r = internal::random<Index>(0, rows-1), + c = internal::random<Index>(0, cols-1); + VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c))); + VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c))); + + // check inplace transpose + m3 = m1; + m3.transposeInPlace(); + VERIFY_IS_APPROX(m3,m1.transpose()); + m3.transposeInPlace(); + VERIFY_IS_APPROX(m3,m1); + + // check inplace adjoint + m3 = m1; + m3.adjointInPlace(); + VERIFY_IS_APPROX(m3,m1.adjoint()); + m3.transposeInPlace(); + VERIFY_IS_APPROX(m3,m1.conjugate()); + + // check mixed dot product + typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; + RealVectorType rv1 = RealVectorType::Random(rows); + VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1)); + VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1)); +} + +void test_adjoint() +{ + for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) ); + CALL_SUBTEST_2( adjoint(Matrix3d()) ); + CALL_SUBTEST_3( adjoint(Matrix4f()) ); + CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); + CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); + CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); + } + // test a large static matrix only once + CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) ); + +#ifdef EIGEN_TEST_PART_4 + { + MatrixXcf a(10,10), b(10,10); + VERIFY_RAISES_ASSERT(a = a.transpose()); + VERIFY_RAISES_ASSERT(a = a.transpose() + b); + VERIFY_RAISES_ASSERT(a = b + a.transpose()); + VERIFY_RAISES_ASSERT(a = a.conjugate().transpose()); + VERIFY_RAISES_ASSERT(a = a.adjoint()); + VERIFY_RAISES_ASSERT(a = a.adjoint() + b); + VERIFY_RAISES_ASSERT(a = b + a.adjoint()); + + // no assertion should be triggered for these cases: + a.transpose() = a.transpose(); + a.transpose() += a.transpose(); + a.transpose() += a.transpose() + b; + a.transpose() = a.adjoint(); + a.transpose() += a.adjoint(); + a.transpose() += a.adjoint() + b; + } +#endif +} + |