diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:09:10 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:10:13 +0100 |
commit | f0238cfb6997c4acfc2bd200de7295f3fa36968f (patch) | |
tree | b215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/test/eigensolver_generalized_real.cpp | |
parent | 543edd372a5193d04b3de9f23c176ab439e51b31 (diff) |
don't index Eigen
Diffstat (limited to 'eigen/test/eigensolver_generalized_real.cpp')
-rw-r--r-- | eigen/test/eigensolver_generalized_real.cpp | 103 |
1 files changed, 0 insertions, 103 deletions
diff --git a/eigen/test/eigensolver_generalized_real.cpp b/eigen/test/eigensolver_generalized_real.cpp deleted file mode 100644 index 9dd44c8..0000000 --- a/eigen/test/eigensolver_generalized_real.cpp +++ /dev/null @@ -1,103 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#define EIGEN_RUNTIME_NO_MALLOC -#include "main.h" -#include <limits> -#include <Eigen/Eigenvalues> -#include <Eigen/LU> - -template<typename MatrixType> void generalized_eigensolver_real(const MatrixType& m) -{ - /* this test covers the following files: - GeneralizedEigenSolver.h - */ - Index rows = m.rows(); - Index cols = m.cols(); - - typedef typename MatrixType::Scalar Scalar; - typedef std::complex<Scalar> ComplexScalar; - typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; - - MatrixType a = MatrixType::Random(rows,cols); - MatrixType b = MatrixType::Random(rows,cols); - MatrixType a1 = MatrixType::Random(rows,cols); - MatrixType b1 = MatrixType::Random(rows,cols); - MatrixType spdA = a.adjoint() * a + a1.adjoint() * a1; - MatrixType spdB = b.adjoint() * b + b1.adjoint() * b1; - - // lets compare to GeneralizedSelfAdjointEigenSolver - { - GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB); - GeneralizedEigenSolver<MatrixType> eig(spdA, spdB); - - VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0); - - VectorType realEigenvalues = eig.eigenvalues().real(); - std::sort(realEigenvalues.data(), realEigenvalues.data()+realEigenvalues.size()); - VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues()); - - // check eigenvectors - typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal(); - typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors(); - VERIFY_IS_APPROX(spdA*V, spdB*V*D); - } - - // non symmetric case: - { - GeneralizedEigenSolver<MatrixType> eig(rows); - // TODO enable full-prealocation of required memory, this probably requires an in-place mode for HessenbergDecomposition - //Eigen::internal::set_is_malloc_allowed(false); - eig.compute(a,b); - //Eigen::internal::set_is_malloc_allowed(true); - for(Index k=0; k<cols; ++k) - { - Matrix<ComplexScalar,Dynamic,Dynamic> tmp = (eig.betas()(k)*a).template cast<ComplexScalar>() - eig.alphas()(k)*b; - if(tmp.size()>1 && tmp.norm()>(std::numeric_limits<Scalar>::min)()) - tmp /= tmp.norm(); - VERIFY_IS_MUCH_SMALLER_THAN( std::abs(tmp.determinant()), Scalar(1) ); - } - // check eigenvectors - typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal(); - typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors(); - VERIFY_IS_APPROX(a*V, b*V*D); - } - - // regression test for bug 1098 - { - GeneralizedSelfAdjointEigenSolver<MatrixType> eig1(a.adjoint() * a,b.adjoint() * b); - eig1.compute(a.adjoint() * a,b.adjoint() * b); - GeneralizedEigenSolver<MatrixType> eig2(a.adjoint() * a,b.adjoint() * b); - eig2.compute(a.adjoint() * a,b.adjoint() * b); - } - - // check without eigenvectors - { - GeneralizedEigenSolver<MatrixType> eig1(spdA, spdB, true); - GeneralizedEigenSolver<MatrixType> eig2(spdA, spdB, false); - VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues()); - } -} - -void test_eigensolver_generalized_real() -{ - for(int i = 0; i < g_repeat; i++) { - int s = 0; - CALL_SUBTEST_1( generalized_eigensolver_real(Matrix4f()) ); - s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); - CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(s,s)) ); - - // some trivial but implementation-wise special cases - CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(1,1)) ); - CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(2,2)) ); - CALL_SUBTEST_3( generalized_eigensolver_real(Matrix<double,1,1>()) ); - CALL_SUBTEST_4( generalized_eigensolver_real(Matrix2d()) ); - TEST_SET_BUT_UNUSED_VARIABLE(s) - } -} |