diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/test/geo_transformations.cpp | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/test/geo_transformations.cpp')
-rw-r--r-- | eigen/test/geo_transformations.cpp | 170 |
1 files changed, 147 insertions, 23 deletions
diff --git a/eigen/test/geo_transformations.cpp b/eigen/test/geo_transformations.cpp index 5477657..278e527 100644 --- a/eigen/test/geo_transformations.cpp +++ b/eigen/test/geo_transformations.cpp @@ -12,6 +12,17 @@ #include <Eigen/LU> #include <Eigen/SVD> +template<typename T> +Matrix<T,2,1> angleToVec(T a) +{ + return Matrix<T,2,1>(std::cos(a), std::sin(a)); +} + +// This permits to workaround a bug in clang/llvm code generation. +template<typename T> +EIGEN_DONT_INLINE +void dont_over_optimize(T& x) { volatile typename T::Scalar tmp = x(0); x(0) = tmp; } + template<typename Scalar, int Mode, int Options> void non_projective_only() { /* this test covers the following files: @@ -29,7 +40,7 @@ template<typename Scalar, int Mode, int Options> void non_projective_only() Transform3 t0, t1, t2; - Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); + Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); Quaternionx q1, q2; @@ -97,16 +108,14 @@ template<typename Scalar, int Mode, int Options> void transformations() v1 = Vector3::Random(); Matrix3 matrot1, m; - Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); - Scalar s0 = internal::random<Scalar>(), - s1 = internal::random<Scalar>(); + Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); + Scalar s0 = internal::random<Scalar>(), s1 = internal::random<Scalar>(); while(v0.norm() < test_precision<Scalar>()) v0 = Vector3::Random(); while(v1.norm() < test_precision<Scalar>()) v1 = Vector3::Random(); - VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); - VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0); + VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(EIGEN_PI), v0.unitOrthogonal()) * v0); if(abs(cos(a)) > test_precision<Scalar>()) { VERIFY_IS_APPROX(cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); @@ -132,14 +141,16 @@ template<typename Scalar, int Mode, int Options> void transformations() AngleAxisx aa = AngleAxisx(q1); VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); - if(abs(aa.angle()) > NumTraits<Scalar>::dummy_precision()) + // The following test is stable only if 2*angle != angle and v1 is not colinear with axis + if( (abs(aa.angle()) > test_precision<Scalar>()) && (abs(aa.axis().dot(v1.normalized()))<(Scalar(1)-Scalar(4)*test_precision<Scalar>())) ) { VERIFY( !(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1) ); } aa.fromRotationMatrix(aa.toRotationMatrix()); VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); - if(abs(aa.angle()) > NumTraits<Scalar>::dummy_precision()) + // The following test is stable only if 2*angle != angle and v1 is not colinear with axis + if( (abs(aa.angle()) > test_precision<Scalar>()) && (abs(aa.axis().dot(v1.normalized()))<(Scalar(1)-Scalar(4)*test_precision<Scalar>())) ) { VERIFY( !(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1) ); } @@ -158,7 +169,7 @@ template<typename Scalar, int Mode, int Options> void transformations() // TODO complete the tests ! a = 0; while (abs(a)<Scalar(0.1)) - a = internal::random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI)); + a = internal::random<Scalar>(-Scalar(0.4)*Scalar(EIGEN_PI), Scalar(0.4)*Scalar(EIGEN_PI)); q1 = AngleAxisx(a, v0.normalized()); Transform3 t0, t1, t2; @@ -204,7 +215,7 @@ template<typename Scalar, int Mode, int Options> void transformations() tmat4.matrix()(3,3) = Scalar(1); VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); - Scalar a3 = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); + Scalar a3 = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); Vector3 v3 = Vector3::Random().normalized(); AngleAxisx aa3(a3, v3); Transform3 t3(aa3); @@ -216,12 +227,15 @@ template<typename Scalar, int Mode, int Options> void transformations() t4 *= aa3; VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); - v3 = Vector3::Random(); + do { + v3 = Vector3::Random(); + dont_over_optimize(v3); + } while (v3.cwiseAbs().minCoeff()<NumTraits<Scalar>::epsilon()); Translation3 tv3(v3); Transform3 t5(tv3); t4 = tv3; VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); - t4.translate(-v3); + t4.translate((-v3).eval()); VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); t4 *= tv3; VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); @@ -320,6 +334,9 @@ template<typename Scalar, int Mode, int Options> void transformations() t0.scale(v0); t1 *= AlignedScaling3(v0); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); + t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1)); + t1 = t1 * v0.asDiagonal(); + VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // transformation * translation t0.translate(v0); t1 = t1 * Translation3(v0); @@ -410,12 +427,28 @@ template<typename Scalar, int Mode, int Options> void transformations() VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1); Rotation2D<double> r2d1d = r2d1.template cast<double>(); VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1); - - t20 = Translation2(v20) * (Rotation2D<Scalar>(s0) * Eigen::Scaling(s0)); - t21 = Translation2(v20) * Rotation2D<Scalar>(s0) * Eigen::Scaling(s0); - VERIFY_IS_APPROX(t20,t21); + for(int k=0; k<100; ++k) + { + Scalar angle = internal::random<Scalar>(-100,100); + Rotation2D<Scalar> rot2(angle); + VERIFY( rot2.smallestPositiveAngle() >= 0 ); + VERIFY( rot2.smallestPositiveAngle() <= Scalar(2)*Scalar(EIGEN_PI) ); + VERIFY_IS_APPROX( angleToVec(rot2.smallestPositiveAngle()), angleToVec(rot2.angle()) ); + + VERIFY( rot2.smallestAngle() >= -Scalar(EIGEN_PI) ); + VERIFY( rot2.smallestAngle() <= Scalar(EIGEN_PI) ); + VERIFY_IS_APPROX( angleToVec(rot2.smallestAngle()), angleToVec(rot2.angle()) ); + + Matrix<Scalar,2,2> rot2_as_mat(rot2); + Rotation2D<Scalar> rot3(rot2_as_mat); + VERIFY_IS_APPROX( angleToVec(rot2.smallestAngle()), angleToVec(rot3.angle()) ); + } + + s0 = internal::random<Scalar>(-100,100); + s1 = internal::random<Scalar>(-100,100); Rotation2D<Scalar> R0(s0), R1(s1); + t20 = Translation2(v20) * (R0 * Eigen::Scaling(s0)); t21 = Translation2(v20) * R0 * Eigen::Scaling(s0); VERIFY_IS_APPROX(t20,t21); @@ -425,9 +458,24 @@ template<typename Scalar, int Mode, int Options> void transformations() VERIFY_IS_APPROX(t20,t21); VERIFY_IS_APPROX(s0, (R0.slerp(0, R1)).angle()); - VERIFY_IS_APPROX(s1, (R0.slerp(1, R1)).angle()); - VERIFY_IS_APPROX(s0, (R0.slerp(0.5, R0)).angle()); - VERIFY_IS_APPROX(Scalar(0), (R0.slerp(0.5, R0.inverse())).angle()); + VERIFY_IS_APPROX( angleToVec(R1.smallestPositiveAngle()), angleToVec((R0.slerp(1, R1)).smallestPositiveAngle()) ); + VERIFY_IS_APPROX(R0.smallestPositiveAngle(), (R0.slerp(0.5, R0)).smallestPositiveAngle()); + + if(std::cos(s0)>0) + VERIFY_IS_MUCH_SMALLER_THAN((R0.slerp(0.5, R0.inverse())).smallestAngle(), Scalar(1)); + else + VERIFY_IS_APPROX(Scalar(EIGEN_PI), (R0.slerp(0.5, R0.inverse())).smallestPositiveAngle()); + + // Check path length + Scalar l = 0; + int path_steps = 100; + for(int k=0; k<path_steps; ++k) + { + Scalar a1 = R0.slerp(Scalar(k)/Scalar(path_steps), R1).angle(); + Scalar a2 = R0.slerp(Scalar(k+1)/Scalar(path_steps), R1).angle(); + l += std::abs(a2-a1); + } + VERIFY(l<=Scalar(EIGEN_PI)*(Scalar(1)+NumTraits<Scalar>::epsilon()*Scalar(path_steps/2))); // check basic features { @@ -437,6 +485,79 @@ template<typename Scalar, int Mode, int Options> void transformations() Rotation2D<Scalar> r2(r1); // copy ctor VERIFY_IS_APPROX(r2.angle(),s0); } + + { + Transform3 t32(Matrix4::Random()), t33, t34; + t34 = t33 = t32; + t32.scale(v0); + t33*=AlignedScaling3(v0); + VERIFY_IS_APPROX(t32.matrix(), t33.matrix()); + t33 = t34 * AlignedScaling3(v0); + VERIFY_IS_APPROX(t32.matrix(), t33.matrix()); + } + +} + +template<typename A1, typename A2, typename P, typename Q, typename V, typename H> +void transform_associativity_left(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h) +{ + VERIFY_IS_APPROX( q*(a1*v), (q*a1)*v ); + VERIFY_IS_APPROX( q*(a2*v), (q*a2)*v ); + VERIFY_IS_APPROX( q*(p*h).hnormalized(), ((q*p)*h).hnormalized() ); +} + +template<typename A1, typename A2, typename P, typename Q, typename V, typename H> +void transform_associativity2(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h) +{ + VERIFY_IS_APPROX( a1*(q*v), (a1*q)*v ); + VERIFY_IS_APPROX( a2*(q*v), (a2*q)*v ); + VERIFY_IS_APPROX( p *(q*v).homogeneous(), (p *q)*v.homogeneous() ); + + transform_associativity_left(a1, a2,p, q, v, h); +} + +template<typename Scalar, int Dim, int Options,typename RotationType> +void transform_associativity(const RotationType& R) +{ + typedef Matrix<Scalar,Dim,1> VectorType; + typedef Matrix<Scalar,Dim+1,1> HVectorType; + typedef Matrix<Scalar,Dim,Dim> LinearType; + typedef Matrix<Scalar,Dim+1,Dim+1> MatrixType; + typedef Transform<Scalar,Dim,AffineCompact,Options> AffineCompactType; + typedef Transform<Scalar,Dim,Affine,Options> AffineType; + typedef Transform<Scalar,Dim,Projective,Options> ProjectiveType; + typedef DiagonalMatrix<Scalar,Dim> ScalingType; + typedef Translation<Scalar,Dim> TranslationType; + + AffineCompactType A1c; A1c.matrix().setRandom(); + AffineCompactType A2c; A2c.matrix().setRandom(); + AffineType A1(A1c); + AffineType A2(A2c); + ProjectiveType P1; P1.matrix().setRandom(); + VectorType v1 = VectorType::Random(); + VectorType v2 = VectorType::Random(); + HVectorType h1 = HVectorType::Random(); + Scalar s1 = internal::random<Scalar>(); + LinearType L = LinearType::Random(); + MatrixType M = MatrixType::Random(); + + CALL_SUBTEST( transform_associativity2(A1c, A1, P1, A2, v2, h1) ); + CALL_SUBTEST( transform_associativity2(A1c, A1, P1, A2c, v2, h1) ); + CALL_SUBTEST( transform_associativity2(A1c, A1, P1, v1.asDiagonal(), v2, h1) ); + CALL_SUBTEST( transform_associativity2(A1c, A1, P1, ScalingType(v1), v2, h1) ); + CALL_SUBTEST( transform_associativity2(A1c, A1, P1, Scaling(v1), v2, h1) ); + CALL_SUBTEST( transform_associativity2(A1c, A1, P1, Scaling(s1), v2, h1) ); + CALL_SUBTEST( transform_associativity2(A1c, A1, P1, TranslationType(v1), v2, h1) ); + CALL_SUBTEST( transform_associativity_left(A1c, A1, P1, L, v2, h1) ); + CALL_SUBTEST( transform_associativity2(A1c, A1, P1, R, v2, h1) ); + + VERIFY_IS_APPROX( A1*(M*h1), (A1*M)*h1 ); + VERIFY_IS_APPROX( A1c*(M*h1), (A1c*M)*h1 ); + VERIFY_IS_APPROX( P1*(M*h1), (P1*M)*h1 ); + + VERIFY_IS_APPROX( M*(A1*h1), (M*A1)*h1 ); + VERIFY_IS_APPROX( M*(A1c*h1), (M*A1c)*h1 ); + VERIFY_IS_APPROX( M*(P1*h1), ((M*P1)*h1) ); } template<typename Scalar> void transform_alignment() @@ -444,9 +565,9 @@ template<typename Scalar> void transform_alignment() typedef Transform<Scalar,3,Projective,AutoAlign> Projective3a; typedef Transform<Scalar,3,Projective,DontAlign> Projective3u; - EIGEN_ALIGN16 Scalar array1[16]; - EIGEN_ALIGN16 Scalar array2[16]; - EIGEN_ALIGN16 Scalar array3[16+1]; + EIGEN_ALIGN_MAX Scalar array1[16]; + EIGEN_ALIGN_MAX Scalar array2[16]; + EIGEN_ALIGN_MAX Scalar array3[16+1]; Scalar* array3u = array3+1; Projective3a *p1 = ::new(reinterpret_cast<void*>(array1)) Projective3a; @@ -462,7 +583,7 @@ template<typename Scalar> void transform_alignment() VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3)); - #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY + #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0 if(internal::packet_traits<Scalar>::Vectorizable) VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a)); #endif @@ -517,5 +638,8 @@ void test_geo_transformations() CALL_SUBTEST_7(( transform_products<double,3,RowMajor|AutoAlign>() )); CALL_SUBTEST_7(( transform_products<float,2,AutoAlign>() )); + + CALL_SUBTEST_8(( transform_associativity<double,2,ColMajor>(Rotation2D<double>(internal::random<double>()*double(EIGEN_PI))) )); + CALL_SUBTEST_8(( transform_associativity<double,3,ColMajor>(Quaterniond::UnitRandom()) )); } } |