diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2016-09-18 12:42:15 +0200 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2016-11-02 15:12:04 +0100 |
commit | 44861dcbfeee041223c4aac1ee075e92fa4daa01 (patch) | |
tree | 6dfdfd9637846a7aedd71ace97d7d2ad366496d7 /eigen/test/sparse_basic.cpp | |
parent | f3fe458b9e0a29a99a39d47d9a76dc18964b6fec (diff) |
update
Diffstat (limited to 'eigen/test/sparse_basic.cpp')
-rw-r--r-- | eigen/test/sparse_basic.cpp | 566 |
1 files changed, 566 insertions, 0 deletions
diff --git a/eigen/test/sparse_basic.cpp b/eigen/test/sparse_basic.cpp new file mode 100644 index 0000000..abe6a9d --- /dev/null +++ b/eigen/test/sparse_basic.cpp @@ -0,0 +1,566 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> +// Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "sparse.h" + +template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) +{ + typedef typename SparseMatrixType::Index Index; + typedef Matrix<Index,2,1> Vector2; + + const Index rows = ref.rows(); + const Index cols = ref.cols(); + typedef typename SparseMatrixType::Scalar Scalar; + enum { Flags = SparseMatrixType::Flags }; + + double density = (std::max)(8./(rows*cols), 0.01); + typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; + typedef Matrix<Scalar,Dynamic,1> DenseVector; + typedef Matrix<Scalar,1,Dynamic> RowDenseVector; + Scalar eps = 1e-6; + + Scalar s1 = internal::random<Scalar>(); + { + SparseMatrixType m(rows, cols); + DenseMatrix refMat = DenseMatrix::Zero(rows, cols); + DenseVector vec1 = DenseVector::Random(rows); + + std::vector<Vector2> zeroCoords; + std::vector<Vector2> nonzeroCoords; + initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); + + if (zeroCoords.size()==0 || nonzeroCoords.size()==0) + return; + + // test coeff and coeffRef + for (int i=0; i<(int)zeroCoords.size(); ++i) + { + VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); + if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) + VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); + } + VERIFY_IS_APPROX(m, refMat); + + m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); + refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); + + VERIFY_IS_APPROX(m, refMat); + + // test InnerIterators and Block expressions + for (int t=0; t<10; ++t) + { + int j = internal::random<int>(0,cols-1); + int i = internal::random<int>(0,rows-1); + int w = internal::random<int>(1,cols-j-1); + int h = internal::random<int>(1,rows-i-1); + + VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); + for(int c=0; c<w; c++) + { + VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); + for(int r=0; r<h; r++) + { + VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); + VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); + } + } + for(int r=0; r<h; r++) + { + VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); + for(int c=0; c<w; c++) + { + VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); + VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); + } + } + + VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w)); + VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h)); + for(int r=0; r<h; r++) + { + VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r)); + VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r)); + for(int c=0; c<w; c++) + { + VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r)); + VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c)); + + VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c)); + VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); + if(m.middleCols(j,w).coeff(r,c) != Scalar(0)) + { + VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c)); + } + if(m.middleRows(i,h).coeff(r,c) != Scalar(0)) + { + VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); + } + } + } + for(int c=0; c<w; c++) + { + VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c)); + VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c)); + } + } + + for(int c=0; c<cols; c++) + { + VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); + VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); + } + + for(int r=0; r<rows; r++) + { + VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); + VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); + } + + + // test assertion + VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 ); + VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 ); + } + + // test insert (inner random) + { + DenseMatrix m1(rows,cols); + m1.setZero(); + SparseMatrixType m2(rows,cols); + if(internal::random<int>()%2) + m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); + for (Index j=0; j<cols; ++j) + { + for (Index k=0; k<rows/2; ++k) + { + Index i = internal::random<Index>(0,rows-1); + if (m1.coeff(i,j)==Scalar(0)) + m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); + } + } + m2.finalize(); + VERIFY_IS_APPROX(m2,m1); + } + + // test insert (fully random) + { + DenseMatrix m1(rows,cols); + m1.setZero(); + SparseMatrixType m2(rows,cols); + if(internal::random<int>()%2) + m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); + for (int k=0; k<rows*cols; ++k) + { + Index i = internal::random<Index>(0,rows-1); + Index j = internal::random<Index>(0,cols-1); + if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2)) + m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); + else + { + Scalar v = internal::random<Scalar>(); + m2.coeffRef(i,j) += v; + m1(i,j) += v; + } + } + VERIFY_IS_APPROX(m2,m1); + } + + // test insert (un-compressed) + for(int mode=0;mode<4;++mode) + { + DenseMatrix m1(rows,cols); + m1.setZero(); + SparseMatrixType m2(rows,cols); + VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? m2.innerSize() : std::max<int>(1,m2.innerSize()/8))); + m2.reserve(r); + for (int k=0; k<rows*cols; ++k) + { + Index i = internal::random<Index>(0,rows-1); + Index j = internal::random<Index>(0,cols-1); + if (m1.coeff(i,j)==Scalar(0)) + m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); + if(mode==3) + m2.reserve(r); + } + if(internal::random<int>()%2) + m2.makeCompressed(); + VERIFY_IS_APPROX(m2,m1); + } + + // test innerVector() + { + DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); + SparseMatrixType m2(rows, rows); + initSparse<Scalar>(density, refMat2, m2); + Index j0 = internal::random<Index>(0,rows-1); + Index j1 = internal::random<Index>(0,rows-1); + if(SparseMatrixType::IsRowMajor) + VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.row(j0)); + else + VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); + + if(SparseMatrixType::IsRowMajor) + VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.row(j0)+refMat2.row(j1)); + else + VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); + + SparseMatrixType m3(rows,rows); + m3.reserve(VectorXi::Constant(rows,rows/2)); + for(Index j=0; j<rows; ++j) + for(Index k=0; k<j; ++k) + m3.insertByOuterInner(j,k) = k+1; + for(Index j=0; j<rows; ++j) + { + VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); + if(j>0) + VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); + } + m3.makeCompressed(); + for(Index j=0; j<rows; ++j) + { + VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); + if(j>0) + VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); + } + + //m2.innerVector(j0) = 2*m2.innerVector(j1); + //refMat2.col(j0) = 2*refMat2.col(j1); + //VERIFY_IS_APPROX(m2, refMat2); + } + + // test innerVectors() + { + DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); + SparseMatrixType m2(rows, rows); + initSparse<Scalar>(density, refMat2, m2); + if(internal::random<float>(0,1)>0.5) m2.makeCompressed(); + + Index j0 = internal::random<Index>(0,rows-2); + Index j1 = internal::random<Index>(0,rows-2); + Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1)); + if(SparseMatrixType::IsRowMajor) + VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols)); + else + VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); + if(SparseMatrixType::IsRowMajor) + VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), + refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0)); + else + VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), + refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); + + VERIFY_IS_APPROX(m2, refMat2); + + m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); + if(SparseMatrixType::IsRowMajor) + refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval(); + else + refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval(); + + VERIFY_IS_APPROX(m2, refMat2); + + } + + // test basic computations + { + DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); + DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); + DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); + DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); + SparseMatrixType m1(rows, rows); + SparseMatrixType m2(rows, rows); + SparseMatrixType m3(rows, rows); + SparseMatrixType m4(rows, rows); + initSparse<Scalar>(density, refM1, m1); + initSparse<Scalar>(density, refM2, m2); + initSparse<Scalar>(density, refM3, m3); + initSparse<Scalar>(density, refM4, m4); + + VERIFY_IS_APPROX(m1+m2, refM1+refM2); + VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); + VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); + VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); + + VERIFY_IS_APPROX(m1*=s1, refM1*=s1); + VERIFY_IS_APPROX(m1/=s1, refM1/=s1); + + VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); + VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); + + if(SparseMatrixType::IsRowMajor) + VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0))); + else + VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0))); + + VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate()); + VERIFY_IS_APPROX(m1.real(), refM1.real()); + + refM4.setRandom(); + // sparse cwise* dense + VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); + // dense cwise* sparse + VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3)); +// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); + + // test aliasing + VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1)); + VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval())); + VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval())); + VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1)); + } + + // test transpose + { + DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); + SparseMatrixType m2(rows, rows); + initSparse<Scalar>(density, refMat2, m2); + VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); + VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); + + VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); + } + + + + // test generic blocks + { + DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); + SparseMatrixType m2(rows, rows); + initSparse<Scalar>(density, refMat2, m2); + Index j0 = internal::random<Index>(0,rows-2); + Index j1 = internal::random<Index>(0,rows-2); + Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1)); + if(SparseMatrixType::IsRowMajor) + VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols)); + else + VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0)); + + if(SparseMatrixType::IsRowMajor) + VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols), + refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols)); + else + VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0), + refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); + + Index i = internal::random<Index>(0,m2.outerSize()-1); + if(SparseMatrixType::IsRowMajor) { + m2.innerVector(i) = m2.innerVector(i) * s1; + refMat2.row(i) = refMat2.row(i) * s1; + VERIFY_IS_APPROX(m2,refMat2); + } else { + m2.innerVector(i) = m2.innerVector(i) * s1; + refMat2.col(i) = refMat2.col(i) * s1; + VERIFY_IS_APPROX(m2,refMat2); + } + + VERIFY_IS_APPROX(DenseVector(m2.col(j0)), refMat2.col(j0)); + VERIFY_IS_APPROX(m2.col(j0), refMat2.col(j0)); + + VERIFY_IS_APPROX(RowDenseVector(m2.row(j0)), refMat2.row(j0)); + VERIFY_IS_APPROX(m2.row(j0), refMat2.row(j0)); + + VERIFY_IS_APPROX(m2.block(j0,j1,n0,n0), refMat2.block(j0,j1,n0,n0)); + VERIFY_IS_APPROX((2*m2).block(j0,j1,n0,n0), (2*refMat2).block(j0,j1,n0,n0)); + } + + // test prune + { + SparseMatrixType m2(rows, rows); + DenseMatrix refM2(rows, rows); + refM2.setZero(); + int countFalseNonZero = 0; + int countTrueNonZero = 0; + for (Index j=0; j<m2.outerSize(); ++j) + { + m2.startVec(j); + for (Index i=0; i<m2.innerSize(); ++i) + { + float x = internal::random<float>(0,1); + if (x<0.1) + { + // do nothing + } + else if (x<0.5) + { + countFalseNonZero++; + m2.insertBackByOuterInner(j,i) = Scalar(0); + } + else + { + countTrueNonZero++; + m2.insertBackByOuterInner(j,i) = Scalar(1); + if(SparseMatrixType::IsRowMajor) + refM2(j,i) = Scalar(1); + else + refM2(i,j) = Scalar(1); + } + } + } + m2.finalize(); + VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); + VERIFY_IS_APPROX(m2, refM2); + m2.prune(Scalar(1)); + VERIFY(countTrueNonZero==m2.nonZeros()); + VERIFY_IS_APPROX(m2, refM2); + } + + // test setFromTriplets + { + typedef Triplet<Scalar,Index> TripletType; + std::vector<TripletType> triplets; + int ntriplets = rows*cols; + triplets.reserve(ntriplets); + DenseMatrix refMat(rows,cols); + refMat.setZero(); + for(int i=0;i<ntriplets;++i) + { + Index r = internal::random<Index>(0,rows-1); + Index c = internal::random<Index>(0,cols-1); + Scalar v = internal::random<Scalar>(); + triplets.push_back(TripletType(r,c,v)); + refMat(r,c) += v; + } + SparseMatrixType m(rows,cols); + m.setFromTriplets(triplets.begin(), triplets.end()); + VERIFY_IS_APPROX(m, refMat); + } + + // test triangularView + { + DenseMatrix refMat2(rows, rows), refMat3(rows, rows); + SparseMatrixType m2(rows, rows), m3(rows, rows); + initSparse<Scalar>(density, refMat2, m2); + refMat3 = refMat2.template triangularView<Lower>(); + m3 = m2.template triangularView<Lower>(); + VERIFY_IS_APPROX(m3, refMat3); + + refMat3 = refMat2.template triangularView<Upper>(); + m3 = m2.template triangularView<Upper>(); + VERIFY_IS_APPROX(m3, refMat3); + + refMat3 = refMat2.template triangularView<UnitUpper>(); + m3 = m2.template triangularView<UnitUpper>(); + VERIFY_IS_APPROX(m3, refMat3); + + refMat3 = refMat2.template triangularView<UnitLower>(); + m3 = m2.template triangularView<UnitLower>(); + VERIFY_IS_APPROX(m3, refMat3); + + refMat3 = refMat2.template triangularView<StrictlyUpper>(); + m3 = m2.template triangularView<StrictlyUpper>(); + VERIFY_IS_APPROX(m3, refMat3); + + refMat3 = refMat2.template triangularView<StrictlyLower>(); + m3 = m2.template triangularView<StrictlyLower>(); + VERIFY_IS_APPROX(m3, refMat3); + } + + // test selfadjointView + if(!SparseMatrixType::IsRowMajor) + { + DenseMatrix refMat2(rows, rows), refMat3(rows, rows); + SparseMatrixType m2(rows, rows), m3(rows, rows); + initSparse<Scalar>(density, refMat2, m2); + refMat3 = refMat2.template selfadjointView<Lower>(); + m3 = m2.template selfadjointView<Lower>(); + VERIFY_IS_APPROX(m3, refMat3); + } + + // test sparseView + { + DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); + SparseMatrixType m2(rows, rows); + initSparse<Scalar>(density, refMat2, m2); + VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); + } + + // test diagonal + { + DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); + SparseMatrixType m2(rows, rows); + initSparse<Scalar>(density, refMat2, m2); + VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval()); + } + + // test conservative resize + { + std::vector< std::pair<Index,Index> > inc; + inc.push_back(std::pair<Index,Index>(-3,-2)); + inc.push_back(std::pair<Index,Index>(0,0)); + inc.push_back(std::pair<Index,Index>(3,2)); + inc.push_back(std::pair<Index,Index>(3,0)); + inc.push_back(std::pair<Index,Index>(0,3)); + + for(size_t i = 0; i< inc.size(); i++) { + Index incRows = inc[i].first; + Index incCols = inc[i].second; + SparseMatrixType m1(rows, cols); + DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols); + initSparse<Scalar>(density, refMat1, m1); + + m1.conservativeResize(rows+incRows, cols+incCols); + refMat1.conservativeResize(rows+incRows, cols+incCols); + if (incRows > 0) refMat1.bottomRows(incRows).setZero(); + if (incCols > 0) refMat1.rightCols(incCols).setZero(); + + VERIFY_IS_APPROX(m1, refMat1); + + // Insert new values + if (incRows > 0) + m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1; + if (incCols > 0) + m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1; + + VERIFY_IS_APPROX(m1, refMat1); + + + } + } + + // test Identity matrix + { + DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows); + SparseMatrixType m1(rows, rows); + m1.setIdentity(); + VERIFY_IS_APPROX(m1, refMat1); + for(int k=0; k<rows*rows/4; ++k) + { + Index i = internal::random<Index>(0,rows-1); + Index j = internal::random<Index>(0,rows-1); + Scalar v = internal::random<Scalar>(); + m1.coeffRef(i,j) = v; + refMat1.coeffRef(i,j) = v; + VERIFY_IS_APPROX(m1, refMat1); + if(internal::random<Index>(0,10)<2) + m1.makeCompressed(); + } + m1.setIdentity(); + refMat1.setIdentity(); + VERIFY_IS_APPROX(m1, refMat1); + } +} + +void test_sparse_basic() +{ + for(int i = 0; i < g_repeat; i++) { + int s = Eigen::internal::random<int>(1,50); + EIGEN_UNUSED_VARIABLE(s); + CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) )); + CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(s, s)) )); + CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(s, s)) )); + CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(s, s)) )); + CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,long int>(s, s)) )); + CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,long int>(s, s)) )); + + CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(s), short(s))) )); + CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(s), short(s))) )); + } +} |