summaryrefslogtreecommitdiffhomepage
path: root/eigen/test/sparse_vector.cpp
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2019-03-03 21:09:10 +0100
committerStanislaw Halik <sthalik@misaki.pl>2019-03-03 21:10:13 +0100
commitf0238cfb6997c4acfc2bd200de7295f3fa36968f (patch)
treeb215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/test/sparse_vector.cpp
parent543edd372a5193d04b3de9f23c176ab439e51b31 (diff)
don't index Eigen
Diffstat (limited to 'eigen/test/sparse_vector.cpp')
-rw-r--r--eigen/test/sparse_vector.cpp163
1 files changed, 0 insertions, 163 deletions
diff --git a/eigen/test/sparse_vector.cpp b/eigen/test/sparse_vector.cpp
deleted file mode 100644
index b3e1dda..0000000
--- a/eigen/test/sparse_vector.cpp
+++ /dev/null
@@ -1,163 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#include "sparse.h"
-
-template<typename Scalar,typename StorageIndex> void sparse_vector(int rows, int cols)
-{
- double densityMat = (std::max)(8./(rows*cols), 0.01);
- double densityVec = (std::max)(8./(rows), 0.1);
- typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
- typedef Matrix<Scalar,Dynamic,1> DenseVector;
- typedef SparseVector<Scalar,0,StorageIndex> SparseVectorType;
- typedef SparseMatrix<Scalar,0,StorageIndex> SparseMatrixType;
- Scalar eps = 1e-6;
-
- SparseMatrixType m1(rows,rows);
- SparseVectorType v1(rows), v2(rows), v3(rows);
- DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
- DenseVector refV1 = DenseVector::Random(rows),
- refV2 = DenseVector::Random(rows),
- refV3 = DenseVector::Random(rows);
-
- std::vector<int> zerocoords, nonzerocoords;
- initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords);
- initSparse<Scalar>(densityMat, refM1, m1);
-
- initSparse<Scalar>(densityVec, refV2, v2);
- initSparse<Scalar>(densityVec, refV3, v3);
-
- Scalar s1 = internal::random<Scalar>();
-
- // test coeff and coeffRef
- for (unsigned int i=0; i<zerocoords.size(); ++i)
- {
- VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps );
- //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 );
- }
- {
- VERIFY(int(nonzerocoords.size()) == v1.nonZeros());
- int j=0;
- for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j)
- {
- VERIFY(nonzerocoords[j]==it.index());
- VERIFY(it.value()==v1.coeff(it.index()));
- VERIFY(it.value()==refV1.coeff(it.index()));
- }
- }
- VERIFY_IS_APPROX(v1, refV1);
-
- // test coeffRef with reallocation
- {
- SparseVectorType v4(rows);
- DenseVector v5 = DenseVector::Zero(rows);
- for(int k=0; k<rows; ++k)
- {
- int i = internal::random<int>(0,rows-1);
- Scalar v = internal::random<Scalar>();
- v4.coeffRef(i) += v;
- v5.coeffRef(i) += v;
- }
- VERIFY_IS_APPROX(v4,v5);
- }
-
- v1.coeffRef(nonzerocoords[0]) = Scalar(5);
- refV1.coeffRef(nonzerocoords[0]) = Scalar(5);
- VERIFY_IS_APPROX(v1, refV1);
-
- VERIFY_IS_APPROX(v1+v2, refV1+refV2);
- VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3);
-
- VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2);
-
- VERIFY_IS_APPROX(v1*=s1, refV1*=s1);
- VERIFY_IS_APPROX(v1/=s1, refV1/=s1);
-
- VERIFY_IS_APPROX(v1+=v2, refV1+=refV2);
- VERIFY_IS_APPROX(v1-=v2, refV1-=refV2);
-
- VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2));
- VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2));
-
- VERIFY_IS_APPROX(m1*v2, refM1*refV2);
- VERIFY_IS_APPROX(v1.dot(m1*v2), refV1.dot(refM1*refV2));
- {
- int i = internal::random<int>(0,rows-1);
- VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i)));
- }
-
-
- VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm());
-
- VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm());
-
- // test aliasing
- VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1));
- VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval()));
- VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1));
-
- // sparse matrix to sparse vector
- SparseMatrixType mv1;
- VERIFY_IS_APPROX((mv1=v1),v1);
- VERIFY_IS_APPROX(mv1,(v1=mv1));
- VERIFY_IS_APPROX(mv1,(v1=mv1.transpose()));
-
- // check copy to dense vector with transpose
- refV3.resize(0);
- VERIFY_IS_APPROX(refV3 = v1.transpose(),v1.toDense());
- VERIFY_IS_APPROX(DenseVector(v1),v1.toDense());
-
- // test conservative resize
- {
- std::vector<StorageIndex> inc;
- if(rows > 3)
- inc.push_back(-3);
- inc.push_back(0);
- inc.push_back(3);
- inc.push_back(1);
- inc.push_back(10);
-
- for(std::size_t i = 0; i< inc.size(); i++) {
- StorageIndex incRows = inc[i];
- SparseVectorType vec1(rows);
- DenseVector refVec1 = DenseVector::Zero(rows);
- initSparse<Scalar>(densityVec, refVec1, vec1);
-
- vec1.conservativeResize(rows+incRows);
- refVec1.conservativeResize(rows+incRows);
- if (incRows > 0) refVec1.tail(incRows).setZero();
-
- VERIFY_IS_APPROX(vec1, refVec1);
-
- // Insert new values
- if (incRows > 0)
- vec1.insert(vec1.rows()-1) = refVec1(refVec1.rows()-1) = 1;
-
- VERIFY_IS_APPROX(vec1, refVec1);
- }
- }
-
-}
-
-void test_sparse_vector()
-{
- for(int i = 0; i < g_repeat; i++) {
- int r = Eigen::internal::random<int>(1,500), c = Eigen::internal::random<int>(1,500);
- if(Eigen::internal::random<int>(0,4) == 0) {
- r = c; // check square matrices in 25% of tries
- }
- EIGEN_UNUSED_VARIABLE(r+c);
-
- CALL_SUBTEST_1(( sparse_vector<double,int>(8, 8) ));
- CALL_SUBTEST_2(( sparse_vector<std::complex<double>, int>(r, c) ));
- CALL_SUBTEST_1(( sparse_vector<double,long int>(r, c) ));
- CALL_SUBTEST_1(( sparse_vector<double,short>(r, c) ));
- }
-}
-