diff options
| author | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:09:10 +0100 |
|---|---|---|
| committer | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:10:13 +0100 |
| commit | f0238cfb6997c4acfc2bd200de7295f3fa36968f (patch) | |
| tree | b215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/test/sparse_vector.cpp | |
| parent | 543edd372a5193d04b3de9f23c176ab439e51b31 (diff) | |
don't index Eigen
Diffstat (limited to 'eigen/test/sparse_vector.cpp')
| -rw-r--r-- | eigen/test/sparse_vector.cpp | 163 |
1 files changed, 0 insertions, 163 deletions
diff --git a/eigen/test/sparse_vector.cpp b/eigen/test/sparse_vector.cpp deleted file mode 100644 index b3e1dda..0000000 --- a/eigen/test/sparse_vector.cpp +++ /dev/null @@ -1,163 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "sparse.h" - -template<typename Scalar,typename StorageIndex> void sparse_vector(int rows, int cols) -{ - double densityMat = (std::max)(8./(rows*cols), 0.01); - double densityVec = (std::max)(8./(rows), 0.1); - typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; - typedef Matrix<Scalar,Dynamic,1> DenseVector; - typedef SparseVector<Scalar,0,StorageIndex> SparseVectorType; - typedef SparseMatrix<Scalar,0,StorageIndex> SparseMatrixType; - Scalar eps = 1e-6; - - SparseMatrixType m1(rows,rows); - SparseVectorType v1(rows), v2(rows), v3(rows); - DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); - DenseVector refV1 = DenseVector::Random(rows), - refV2 = DenseVector::Random(rows), - refV3 = DenseVector::Random(rows); - - std::vector<int> zerocoords, nonzerocoords; - initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords); - initSparse<Scalar>(densityMat, refM1, m1); - - initSparse<Scalar>(densityVec, refV2, v2); - initSparse<Scalar>(densityVec, refV3, v3); - - Scalar s1 = internal::random<Scalar>(); - - // test coeff and coeffRef - for (unsigned int i=0; i<zerocoords.size(); ++i) - { - VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps ); - //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 ); - } - { - VERIFY(int(nonzerocoords.size()) == v1.nonZeros()); - int j=0; - for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j) - { - VERIFY(nonzerocoords[j]==it.index()); - VERIFY(it.value()==v1.coeff(it.index())); - VERIFY(it.value()==refV1.coeff(it.index())); - } - } - VERIFY_IS_APPROX(v1, refV1); - - // test coeffRef with reallocation - { - SparseVectorType v4(rows); - DenseVector v5 = DenseVector::Zero(rows); - for(int k=0; k<rows; ++k) - { - int i = internal::random<int>(0,rows-1); - Scalar v = internal::random<Scalar>(); - v4.coeffRef(i) += v; - v5.coeffRef(i) += v; - } - VERIFY_IS_APPROX(v4,v5); - } - - v1.coeffRef(nonzerocoords[0]) = Scalar(5); - refV1.coeffRef(nonzerocoords[0]) = Scalar(5); - VERIFY_IS_APPROX(v1, refV1); - - VERIFY_IS_APPROX(v1+v2, refV1+refV2); - VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3); - - VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2); - - VERIFY_IS_APPROX(v1*=s1, refV1*=s1); - VERIFY_IS_APPROX(v1/=s1, refV1/=s1); - - VERIFY_IS_APPROX(v1+=v2, refV1+=refV2); - VERIFY_IS_APPROX(v1-=v2, refV1-=refV2); - - VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2)); - VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2)); - - VERIFY_IS_APPROX(m1*v2, refM1*refV2); - VERIFY_IS_APPROX(v1.dot(m1*v2), refV1.dot(refM1*refV2)); - { - int i = internal::random<int>(0,rows-1); - VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i))); - } - - - VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm()); - - VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm()); - - // test aliasing - VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1)); - VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval())); - VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1)); - - // sparse matrix to sparse vector - SparseMatrixType mv1; - VERIFY_IS_APPROX((mv1=v1),v1); - VERIFY_IS_APPROX(mv1,(v1=mv1)); - VERIFY_IS_APPROX(mv1,(v1=mv1.transpose())); - - // check copy to dense vector with transpose - refV3.resize(0); - VERIFY_IS_APPROX(refV3 = v1.transpose(),v1.toDense()); - VERIFY_IS_APPROX(DenseVector(v1),v1.toDense()); - - // test conservative resize - { - std::vector<StorageIndex> inc; - if(rows > 3) - inc.push_back(-3); - inc.push_back(0); - inc.push_back(3); - inc.push_back(1); - inc.push_back(10); - - for(std::size_t i = 0; i< inc.size(); i++) { - StorageIndex incRows = inc[i]; - SparseVectorType vec1(rows); - DenseVector refVec1 = DenseVector::Zero(rows); - initSparse<Scalar>(densityVec, refVec1, vec1); - - vec1.conservativeResize(rows+incRows); - refVec1.conservativeResize(rows+incRows); - if (incRows > 0) refVec1.tail(incRows).setZero(); - - VERIFY_IS_APPROX(vec1, refVec1); - - // Insert new values - if (incRows > 0) - vec1.insert(vec1.rows()-1) = refVec1(refVec1.rows()-1) = 1; - - VERIFY_IS_APPROX(vec1, refVec1); - } - } - -} - -void test_sparse_vector() -{ - for(int i = 0; i < g_repeat; i++) { - int r = Eigen::internal::random<int>(1,500), c = Eigen::internal::random<int>(1,500); - if(Eigen::internal::random<int>(0,4) == 0) { - r = c; // check square matrices in 25% of tries - } - EIGEN_UNUSED_VARIABLE(r+c); - - CALL_SUBTEST_1(( sparse_vector<double,int>(8, 8) )); - CALL_SUBTEST_2(( sparse_vector<std::complex<double>, int>(r, c) )); - CALL_SUBTEST_1(( sparse_vector<double,long int>(r, c) )); - CALL_SUBTEST_1(( sparse_vector<double,short>(r, c) )); - } -} - |
