diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:09:10 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:10:13 +0100 |
commit | f0238cfb6997c4acfc2bd200de7295f3fa36968f (patch) | |
tree | b215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/unsupported/Eigen/src/MatrixFunctions | |
parent | 543edd372a5193d04b3de9f23c176ab439e51b31 (diff) |
don't index Eigen
Diffstat (limited to 'eigen/unsupported/Eigen/src/MatrixFunctions')
6 files changed, 0 insertions, 2587 deletions
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h deleted file mode 100644 index e5ebbcf..0000000 --- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +++ /dev/null @@ -1,442 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> -// Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATRIX_EXPONENTIAL -#define EIGEN_MATRIX_EXPONENTIAL - -#include "StemFunction.h" - -namespace Eigen { -namespace internal { - -/** \brief Scaling operator. - * - * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$. - */ -template <typename RealScalar> -struct MatrixExponentialScalingOp -{ - /** \brief Constructor. - * - * \param[in] squarings The integer \f$ s \f$ in this document. - */ - MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { } - - - /** \brief Scale a matrix coefficient. - * - * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$. - */ - inline const RealScalar operator() (const RealScalar& x) const - { - using std::ldexp; - return ldexp(x, -m_squarings); - } - - typedef std::complex<RealScalar> ComplexScalar; - - /** \brief Scale a matrix coefficient. - * - * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$. - */ - inline const ComplexScalar operator() (const ComplexScalar& x) const - { - using std::ldexp; - return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings)); - } - - private: - int m_squarings; -}; - -/** \brief Compute the (3,3)-Padé approximant to the exponential. - * - * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé - * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. - */ -template <typename MatA, typename MatU, typename MatV> -void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V) -{ - typedef typename MatA::PlainObject MatrixType; - typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar; - const RealScalar b[] = {120.L, 60.L, 12.L, 1.L}; - const MatrixType A2 = A * A; - const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); - U.noalias() = A * tmp; - V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); -} - -/** \brief Compute the (5,5)-Padé approximant to the exponential. - * - * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé - * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. - */ -template <typename MatA, typename MatU, typename MatV> -void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V) -{ - typedef typename MatA::PlainObject MatrixType; - typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; - const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L}; - const MatrixType A2 = A * A; - const MatrixType A4 = A2 * A2; - const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); - U.noalias() = A * tmp; - V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); -} - -/** \brief Compute the (7,7)-Padé approximant to the exponential. - * - * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé - * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. - */ -template <typename MatA, typename MatU, typename MatV> -void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V) -{ - typedef typename MatA::PlainObject MatrixType; - typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; - const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L}; - const MatrixType A2 = A * A; - const MatrixType A4 = A2 * A2; - const MatrixType A6 = A4 * A2; - const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2 - + b[1] * MatrixType::Identity(A.rows(), A.cols()); - U.noalias() = A * tmp; - V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); - -} - -/** \brief Compute the (9,9)-Padé approximant to the exponential. - * - * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé - * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. - */ -template <typename MatA, typename MatU, typename MatV> -void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V) -{ - typedef typename MatA::PlainObject MatrixType; - typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; - const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L, - 2162160.L, 110880.L, 3960.L, 90.L, 1.L}; - const MatrixType A2 = A * A; - const MatrixType A4 = A2 * A2; - const MatrixType A6 = A4 * A2; - const MatrixType A8 = A6 * A2; - const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 - + b[1] * MatrixType::Identity(A.rows(), A.cols()); - U.noalias() = A * tmp; - V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); -} - -/** \brief Compute the (13,13)-Padé approximant to the exponential. - * - * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé - * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. - */ -template <typename MatA, typename MatU, typename MatV> -void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V) -{ - typedef typename MatA::PlainObject MatrixType; - typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; - const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L, - 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L, - 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L}; - const MatrixType A2 = A * A; - const MatrixType A4 = A2 * A2; - const MatrixType A6 = A4 * A2; - V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage - MatrixType tmp = A6 * V; - tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); - U.noalias() = A * tmp; - tmp = b[12] * A6 + b[10] * A4 + b[8] * A2; - V.noalias() = A6 * tmp; - V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); -} - -/** \brief Compute the (17,17)-Padé approximant to the exponential. - * - * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé - * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. - * - * This function activates only if your long double is double-double or quadruple. - */ -#if LDBL_MANT_DIG > 64 -template <typename MatA, typename MatU, typename MatV> -void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V) -{ - typedef typename MatA::PlainObject MatrixType; - typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; - const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L, - 100610229646136770560000.L, 15720348382208870400000.L, - 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L, - 595373117923584000.L, 27563570274240000.L, 1060137318240000.L, - 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L, - 46512.L, 306.L, 1.L}; - const MatrixType A2 = A * A; - const MatrixType A4 = A2 * A2; - const MatrixType A6 = A4 * A2; - const MatrixType A8 = A4 * A4; - V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage - MatrixType tmp = A8 * V; - tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 - + b[1] * MatrixType::Identity(A.rows(), A.cols()); - U.noalias() = A * tmp; - tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2; - V.noalias() = tmp * A8; - V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 - + b[0] * MatrixType::Identity(A.rows(), A.cols()); -} -#endif - -template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real> -struct matrix_exp_computeUV -{ - /** \brief Compute Padé approximant to the exponential. - * - * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Padé - * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$ - * denotes the matrix \c arg. The degree of the Padé approximant and the value of squarings - * are chosen such that the approximation error is no more than the round-off error. - */ - static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings); -}; - -template <typename MatrixType> -struct matrix_exp_computeUV<MatrixType, float> -{ - template <typename ArgType> - static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) - { - using std::frexp; - using std::pow; - const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); - squarings = 0; - if (l1norm < 4.258730016922831e-001f) { - matrix_exp_pade3(arg, U, V); - } else if (l1norm < 1.880152677804762e+000f) { - matrix_exp_pade5(arg, U, V); - } else { - const float maxnorm = 3.925724783138660f; - frexp(l1norm / maxnorm, &squarings); - if (squarings < 0) squarings = 0; - MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings)); - matrix_exp_pade7(A, U, V); - } - } -}; - -template <typename MatrixType> -struct matrix_exp_computeUV<MatrixType, double> -{ - typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; - template <typename ArgType> - static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) - { - using std::frexp; - using std::pow; - const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); - squarings = 0; - if (l1norm < 1.495585217958292e-002) { - matrix_exp_pade3(arg, U, V); - } else if (l1norm < 2.539398330063230e-001) { - matrix_exp_pade5(arg, U, V); - } else if (l1norm < 9.504178996162932e-001) { - matrix_exp_pade7(arg, U, V); - } else if (l1norm < 2.097847961257068e+000) { - matrix_exp_pade9(arg, U, V); - } else { - const RealScalar maxnorm = 5.371920351148152; - frexp(l1norm / maxnorm, &squarings); - if (squarings < 0) squarings = 0; - MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<RealScalar>(squarings)); - matrix_exp_pade13(A, U, V); - } - } -}; - -template <typename MatrixType> -struct matrix_exp_computeUV<MatrixType, long double> -{ - template <typename ArgType> - static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) - { -#if LDBL_MANT_DIG == 53 // double precision - matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings); - -#else - - using std::frexp; - using std::pow; - const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); - squarings = 0; - -#if LDBL_MANT_DIG <= 64 // extended precision - - if (l1norm < 4.1968497232266989671e-003L) { - matrix_exp_pade3(arg, U, V); - } else if (l1norm < 1.1848116734693823091e-001L) { - matrix_exp_pade5(arg, U, V); - } else if (l1norm < 5.5170388480686700274e-001L) { - matrix_exp_pade7(arg, U, V); - } else if (l1norm < 1.3759868875587845383e+000L) { - matrix_exp_pade9(arg, U, V); - } else { - const long double maxnorm = 4.0246098906697353063L; - frexp(l1norm / maxnorm, &squarings); - if (squarings < 0) squarings = 0; - MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); - matrix_exp_pade13(A, U, V); - } - -#elif LDBL_MANT_DIG <= 106 // double-double - - if (l1norm < 3.2787892205607026992947488108213e-005L) { - matrix_exp_pade3(arg, U, V); - } else if (l1norm < 6.4467025060072760084130906076332e-003L) { - matrix_exp_pade5(arg, U, V); - } else if (l1norm < 6.8988028496595374751374122881143e-002L) { - matrix_exp_pade7(arg, U, V); - } else if (l1norm < 2.7339737518502231741495857201670e-001L) { - matrix_exp_pade9(arg, U, V); - } else if (l1norm < 1.3203382096514474905666448850278e+000L) { - matrix_exp_pade13(arg, U, V); - } else { - const long double maxnorm = 3.2579440895405400856599663723517L; - frexp(l1norm / maxnorm, &squarings); - if (squarings < 0) squarings = 0; - MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); - matrix_exp_pade17(A, U, V); - } - -#elif LDBL_MANT_DIG <= 112 // quadruple precison - - if (l1norm < 1.639394610288918690547467954466970e-005L) { - matrix_exp_pade3(arg, U, V); - } else if (l1norm < 4.253237712165275566025884344433009e-003L) { - matrix_exp_pade5(arg, U, V); - } else if (l1norm < 5.125804063165764409885122032933142e-002L) { - matrix_exp_pade7(arg, U, V); - } else if (l1norm < 2.170000765161155195453205651889853e-001L) { - matrix_exp_pade9(arg, U, V); - } else if (l1norm < 1.125358383453143065081397882891878e+000L) { - matrix_exp_pade13(arg, U, V); - } else { - const long double maxnorm = 2.884233277829519311757165057717815L; - frexp(l1norm / maxnorm, &squarings); - if (squarings < 0) squarings = 0; - MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); - matrix_exp_pade17(A, U, V); - } - -#else - - // this case should be handled in compute() - eigen_assert(false && "Bug in MatrixExponential"); - -#endif -#endif // LDBL_MANT_DIG - } -}; - -template<typename T> struct is_exp_known_type : false_type {}; -template<> struct is_exp_known_type<float> : true_type {}; -template<> struct is_exp_known_type<double> : true_type {}; -#if LDBL_MANT_DIG <= 112 -template<> struct is_exp_known_type<long double> : true_type {}; -#endif - -template <typename ArgType, typename ResultType> -void matrix_exp_compute(const ArgType& arg, ResultType &result, true_type) // natively supported scalar type -{ - typedef typename ArgType::PlainObject MatrixType; - MatrixType U, V; - int squarings; - matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V) - MatrixType numer = U + V; - MatrixType denom = -U + V; - result = denom.partialPivLu().solve(numer); - for (int i=0; i<squarings; i++) - result *= result; // undo scaling by repeated squaring -} - - -/* Computes the matrix exponential - * - * \param arg argument of matrix exponential (should be plain object) - * \param result variable in which result will be stored - */ -template <typename ArgType, typename ResultType> -void matrix_exp_compute(const ArgType& arg, ResultType &result, false_type) // default -{ - typedef typename ArgType::PlainObject MatrixType; - typedef typename traits<MatrixType>::Scalar Scalar; - typedef typename NumTraits<Scalar>::Real RealScalar; - typedef typename std::complex<RealScalar> ComplexScalar; - result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>); -} - -} // end namespace Eigen::internal - -/** \ingroup MatrixFunctions_Module - * - * \brief Proxy for the matrix exponential of some matrix (expression). - * - * \tparam Derived Type of the argument to the matrix exponential. - * - * This class holds the argument to the matrix exponential until it is assigned or evaluated for - * some other reason (so the argument should not be changed in the meantime). It is the return type - * of MatrixBase::exp() and most of the time this is the only way it is used. - */ -template<typename Derived> struct MatrixExponentialReturnValue -: public ReturnByValue<MatrixExponentialReturnValue<Derived> > -{ - typedef typename Derived::Index Index; - public: - /** \brief Constructor. - * - * \param src %Matrix (expression) forming the argument of the matrix exponential. - */ - MatrixExponentialReturnValue(const Derived& src) : m_src(src) { } - - /** \brief Compute the matrix exponential. - * - * \param result the matrix exponential of \p src in the constructor. - */ - template <typename ResultType> - inline void evalTo(ResultType& result) const - { - const typename internal::nested_eval<Derived, 10>::type tmp(m_src); - internal::matrix_exp_compute(tmp, result, internal::is_exp_known_type<typename Derived::Scalar>()); - } - - Index rows() const { return m_src.rows(); } - Index cols() const { return m_src.cols(); } - - protected: - const typename internal::ref_selector<Derived>::type m_src; -}; - -namespace internal { -template<typename Derived> -struct traits<MatrixExponentialReturnValue<Derived> > -{ - typedef typename Derived::PlainObject ReturnType; -}; -} - -template <typename Derived> -const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const -{ - eigen_assert(rows() == cols()); - return MatrixExponentialReturnValue<Derived>(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_MATRIX_EXPONENTIAL diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h deleted file mode 100644 index 3df8239..0000000 --- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +++ /dev/null @@ -1,580 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATRIX_FUNCTION_H -#define EIGEN_MATRIX_FUNCTION_H - -#include "StemFunction.h" - - -namespace Eigen { - -namespace internal { - -/** \brief Maximum distance allowed between eigenvalues to be considered "close". */ -static const float matrix_function_separation = 0.1f; - -/** \ingroup MatrixFunctions_Module - * \class MatrixFunctionAtomic - * \brief Helper class for computing matrix functions of atomic matrices. - * - * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other. - */ -template <typename MatrixType> -class MatrixFunctionAtomic -{ - public: - - typedef typename MatrixType::Scalar Scalar; - typedef typename stem_function<Scalar>::type StemFunction; - - /** \brief Constructor - * \param[in] f matrix function to compute. - */ - MatrixFunctionAtomic(StemFunction f) : m_f(f) { } - - /** \brief Compute matrix function of atomic matrix - * \param[in] A argument of matrix function, should be upper triangular and atomic - * \returns f(A), the matrix function evaluated at the given matrix - */ - MatrixType compute(const MatrixType& A); - - private: - StemFunction* m_f; -}; - -template <typename MatrixType> -typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A) -{ - typedef typename plain_col_type<MatrixType>::type VectorType; - typename MatrixType::Index rows = A.rows(); - const MatrixType N = MatrixType::Identity(rows, rows) - A; - VectorType e = VectorType::Ones(rows); - N.template triangularView<Upper>().solveInPlace(e); - return e.cwiseAbs().maxCoeff(); -} - -template <typename MatrixType> -MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A) -{ - // TODO: Use that A is upper triangular - typedef typename NumTraits<Scalar>::Real RealScalar; - typedef typename MatrixType::Index Index; - Index rows = A.rows(); - Scalar avgEival = A.trace() / Scalar(RealScalar(rows)); - MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows); - RealScalar mu = matrix_function_compute_mu(Ashifted); - MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows); - MatrixType P = Ashifted; - MatrixType Fincr; - for (Index s = 1; s < 1.1 * rows + 10; s++) { // upper limit is fairly arbitrary - Fincr = m_f(avgEival, static_cast<int>(s)) * P; - F += Fincr; - P = Scalar(RealScalar(1.0/(s + 1))) * P * Ashifted; - - // test whether Taylor series converged - const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff(); - const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff(); - if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) { - RealScalar delta = 0; - RealScalar rfactorial = 1; - for (Index r = 0; r < rows; r++) { - RealScalar mx = 0; - for (Index i = 0; i < rows; i++) - mx = (std::max)(mx, std::abs(m_f(Ashifted(i, i) + avgEival, static_cast<int>(s+r)))); - if (r != 0) - rfactorial *= RealScalar(r); - delta = (std::max)(delta, mx / rfactorial); - } - const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff(); - if (mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) // series converged - break; - } - } - return F; -} - -/** \brief Find cluster in \p clusters containing some value - * \param[in] key Value to find - * \returns Iterator to cluster containing \p key, or \c clusters.end() if no cluster in \p m_clusters - * contains \p key. - */ -template <typename Index, typename ListOfClusters> -typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOfClusters& clusters) -{ - typename std::list<Index>::iterator j; - for (typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) { - j = std::find(i->begin(), i->end(), key); - if (j != i->end()) - return i; - } - return clusters.end(); -} - -/** \brief Partition eigenvalues in clusters of ei'vals close to each other - * - * \param[in] eivals Eigenvalues - * \param[out] clusters Resulting partition of eigenvalues - * - * The partition satisfies the following two properties: - * # Any eigenvalue in a certain cluster is at most matrix_function_separation() away from another eigenvalue - * in the same cluster. - * # The distance between two eigenvalues in different clusters is more than matrix_function_separation(). - * The implementation follows Algorithm 4.1 in the paper of Davies and Higham. - */ -template <typename EivalsType, typename Cluster> -void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters) -{ - typedef typename EivalsType::Index Index; - typedef typename EivalsType::RealScalar RealScalar; - for (Index i=0; i<eivals.rows(); ++i) { - // Find cluster containing i-th ei'val, adding a new cluster if necessary - typename std::list<Cluster>::iterator qi = matrix_function_find_cluster(i, clusters); - if (qi == clusters.end()) { - Cluster l; - l.push_back(i); - clusters.push_back(l); - qi = clusters.end(); - --qi; - } - - // Look for other element to add to the set - for (Index j=i+1; j<eivals.rows(); ++j) { - if (abs(eivals(j) - eivals(i)) <= RealScalar(matrix_function_separation) - && std::find(qi->begin(), qi->end(), j) == qi->end()) { - typename std::list<Cluster>::iterator qj = matrix_function_find_cluster(j, clusters); - if (qj == clusters.end()) { - qi->push_back(j); - } else { - qi->insert(qi->end(), qj->begin(), qj->end()); - clusters.erase(qj); - } - } - } - } -} - -/** \brief Compute size of each cluster given a partitioning */ -template <typename ListOfClusters, typename Index> -void matrix_function_compute_cluster_size(const ListOfClusters& clusters, Matrix<Index, Dynamic, 1>& clusterSize) -{ - const Index numClusters = static_cast<Index>(clusters.size()); - clusterSize.setZero(numClusters); - Index clusterIndex = 0; - for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) { - clusterSize[clusterIndex] = cluster->size(); - ++clusterIndex; - } -} - -/** \brief Compute start of each block using clusterSize */ -template <typename VectorType> -void matrix_function_compute_block_start(const VectorType& clusterSize, VectorType& blockStart) -{ - blockStart.resize(clusterSize.rows()); - blockStart(0) = 0; - for (typename VectorType::Index i = 1; i < clusterSize.rows(); i++) { - blockStart(i) = blockStart(i-1) + clusterSize(i-1); - } -} - -/** \brief Compute mapping of eigenvalue indices to cluster indices */ -template <typename EivalsType, typename ListOfClusters, typename VectorType> -void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster) -{ - typedef typename EivalsType::Index Index; - eivalToCluster.resize(eivals.rows()); - Index clusterIndex = 0; - for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) { - for (Index i = 0; i < eivals.rows(); ++i) { - if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) { - eivalToCluster[i] = clusterIndex; - } - } - ++clusterIndex; - } -} - -/** \brief Compute permutation which groups ei'vals in same cluster together */ -template <typename DynVectorType, typename VectorType> -void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation) -{ - typedef typename VectorType::Index Index; - DynVectorType indexNextEntry = blockStart; - permutation.resize(eivalToCluster.rows()); - for (Index i = 0; i < eivalToCluster.rows(); i++) { - Index cluster = eivalToCluster[i]; - permutation[i] = indexNextEntry[cluster]; - ++indexNextEntry[cluster]; - } -} - -/** \brief Permute Schur decomposition in U and T according to permutation */ -template <typename VectorType, typename MatrixType> -void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T) -{ - typedef typename VectorType::Index Index; - for (Index i = 0; i < permutation.rows() - 1; i++) { - Index j; - for (j = i; j < permutation.rows(); j++) { - if (permutation(j) == i) break; - } - eigen_assert(permutation(j) == i); - for (Index k = j-1; k >= i; k--) { - JacobiRotation<typename MatrixType::Scalar> rotation; - rotation.makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k)); - T.applyOnTheLeft(k, k+1, rotation.adjoint()); - T.applyOnTheRight(k, k+1, rotation); - U.applyOnTheRight(k, k+1, rotation); - std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1)); - } - } -} - -/** \brief Compute block diagonal part of matrix function. - * - * This routine computes the matrix function applied to the block diagonal part of \p T (which should be - * upper triangular), with the blocking given by \p blockStart and \p clusterSize. The matrix function of - * each diagonal block is computed by \p atomic. The off-diagonal parts of \p fT are set to zero. - */ -template <typename MatrixType, typename AtomicType, typename VectorType> -void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT) -{ - fT.setZero(T.rows(), T.cols()); - for (typename VectorType::Index i = 0; i < clusterSize.rows(); ++i) { - fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)) - = atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))); - } -} - -/** \brief Solve a triangular Sylvester equation AX + XB = C - * - * \param[in] A the matrix A; should be square and upper triangular - * \param[in] B the matrix B; should be square and upper triangular - * \param[in] C the matrix C; should have correct size. - * - * \returns the solution X. - * - * If A is m-by-m and B is n-by-n, then both C and X are m-by-n. The (i,j)-th component of the Sylvester - * equation is - * \f[ - * \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}. - * \f] - * This can be re-arranged to yield: - * \f[ - * X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij} - * - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr). - * \f] - * It is assumed that A and B are such that the numerator is never zero (otherwise the Sylvester equation - * does not have a unique solution). In that case, these equations can be evaluated in the order - * \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$. - */ -template <typename MatrixType> -MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C) -{ - eigen_assert(A.rows() == A.cols()); - eigen_assert(A.isUpperTriangular()); - eigen_assert(B.rows() == B.cols()); - eigen_assert(B.isUpperTriangular()); - eigen_assert(C.rows() == A.rows()); - eigen_assert(C.cols() == B.rows()); - - typedef typename MatrixType::Index Index; - typedef typename MatrixType::Scalar Scalar; - - Index m = A.rows(); - Index n = B.rows(); - MatrixType X(m, n); - - for (Index i = m - 1; i >= 0; --i) { - for (Index j = 0; j < n; ++j) { - - // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj} - Scalar AX; - if (i == m - 1) { - AX = 0; - } else { - Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i); - AX = AXmatrix(0,0); - } - - // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj} - Scalar XB; - if (j == 0) { - XB = 0; - } else { - Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j); - XB = XBmatrix(0,0); - } - - X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j)); - } - } - return X; -} - -/** \brief Compute part of matrix function above block diagonal. - * - * This routine completes the computation of \p fT, denoting a matrix function applied to the triangular - * matrix \p T. It assumes that the block diagonal part of \p fT has already been computed. The part below - * the diagonal is zero, because \p T is upper triangular. - */ -template <typename MatrixType, typename VectorType> -void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT) -{ - typedef internal::traits<MatrixType> Traits; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::Index Index; - static const int RowsAtCompileTime = Traits::RowsAtCompileTime; - static const int ColsAtCompileTime = Traits::ColsAtCompileTime; - static const int Options = MatrixType::Options; - typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; - - for (Index k = 1; k < clusterSize.rows(); k++) { - for (Index i = 0; i < clusterSize.rows() - k; i++) { - // compute (i, i+k) block - DynMatrixType A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)); - DynMatrixType B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k)); - DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)) - * T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k)); - C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k)) - * fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k)); - for (Index m = i + 1; m < i + k; m++) { - C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m)) - * T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k)); - C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m)) - * fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k)); - } - fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k)) - = matrix_function_solve_triangular_sylvester(A, B, C); - } - } -} - -/** \ingroup MatrixFunctions_Module - * \brief Class for computing matrix functions. - * \tparam MatrixType type of the argument of the matrix function, - * expected to be an instantiation of the Matrix class template. - * \tparam AtomicType type for computing matrix function of atomic blocks. - * \tparam IsComplex used internally to select correct specialization. - * - * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the - * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the - * computation of the matrix function on every block corresponding to these clusters to an object of type - * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class - * \p AtomicType should have a \p compute() member function for computing the matrix function of a block. - * - * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic - */ -template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> -struct matrix_function_compute -{ - /** \brief Compute the matrix function. - * - * \param[in] A argument of matrix function, should be a square matrix. - * \param[in] atomic class for computing matrix function of atomic blocks. - * \param[out] result the function \p f applied to \p A, as - * specified in the constructor. - * - * See MatrixBase::matrixFunction() for details on how this computation - * is implemented. - */ - template <typename AtomicType, typename ResultType> - static void run(const MatrixType& A, AtomicType& atomic, ResultType &result); -}; - -/** \internal \ingroup MatrixFunctions_Module - * \brief Partial specialization of MatrixFunction for real matrices - * - * This converts the real matrix to a complex matrix, compute the matrix function of that matrix, and then - * converts the result back to a real matrix. - */ -template <typename MatrixType> -struct matrix_function_compute<MatrixType, 0> -{ - template <typename MatA, typename AtomicType, typename ResultType> - static void run(const MatA& A, AtomicType& atomic, ResultType &result) - { - typedef internal::traits<MatrixType> Traits; - typedef typename Traits::Scalar Scalar; - static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime; - static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime; - - typedef std::complex<Scalar> ComplexScalar; - typedef Matrix<ComplexScalar, Rows, Cols, 0, MaxRows, MaxCols> ComplexMatrix; - - ComplexMatrix CA = A.template cast<ComplexScalar>(); - ComplexMatrix Cresult; - matrix_function_compute<ComplexMatrix>::run(CA, atomic, Cresult); - result = Cresult.real(); - } -}; - -/** \internal \ingroup MatrixFunctions_Module - * \brief Partial specialization of MatrixFunction for complex matrices - */ -template <typename MatrixType> -struct matrix_function_compute<MatrixType, 1> -{ - template <typename MatA, typename AtomicType, typename ResultType> - static void run(const MatA& A, AtomicType& atomic, ResultType &result) - { - typedef internal::traits<MatrixType> Traits; - - // compute Schur decomposition of A - const ComplexSchur<MatrixType> schurOfA(A); - MatrixType T = schurOfA.matrixT(); - MatrixType U = schurOfA.matrixU(); - - // partition eigenvalues into clusters of ei'vals "close" to each other - std::list<std::list<Index> > clusters; - matrix_function_partition_eigenvalues(T.diagonal(), clusters); - - // compute size of each cluster - Matrix<Index, Dynamic, 1> clusterSize; - matrix_function_compute_cluster_size(clusters, clusterSize); - - // blockStart[i] is row index at which block corresponding to i-th cluster starts - Matrix<Index, Dynamic, 1> blockStart; - matrix_function_compute_block_start(clusterSize, blockStart); - - // compute map so that eivalToCluster[i] = j means that i-th ei'val is in j-th cluster - Matrix<Index, Dynamic, 1> eivalToCluster; - matrix_function_compute_map(T.diagonal(), clusters, eivalToCluster); - - // compute permutation which groups ei'vals in same cluster together - Matrix<Index, Traits::RowsAtCompileTime, 1> permutation; - matrix_function_compute_permutation(blockStart, eivalToCluster, permutation); - - // permute Schur decomposition - matrix_function_permute_schur(permutation, U, T); - - // compute result - MatrixType fT; // matrix function applied to T - matrix_function_compute_block_atomic(T, atomic, blockStart, clusterSize, fT); - matrix_function_compute_above_diagonal(T, blockStart, clusterSize, fT); - result = U * (fT.template triangularView<Upper>() * U.adjoint()); - } -}; - -} // end of namespace internal - -/** \ingroup MatrixFunctions_Module - * - * \brief Proxy for the matrix function of some matrix (expression). - * - * \tparam Derived Type of the argument to the matrix function. - * - * This class holds the argument to the matrix function until it is assigned or evaluated for some other - * reason (so the argument should not be changed in the meantime). It is the return type of - * matrixBase::matrixFunction() and related functions and most of the time this is the only way it is used. - */ -template<typename Derived> class MatrixFunctionReturnValue -: public ReturnByValue<MatrixFunctionReturnValue<Derived> > -{ - public: - typedef typename Derived::Scalar Scalar; - typedef typename Derived::Index Index; - typedef typename internal::stem_function<Scalar>::type StemFunction; - - protected: - typedef typename internal::ref_selector<Derived>::type DerivedNested; - - public: - - /** \brief Constructor. - * - * \param[in] A %Matrix (expression) forming the argument of the matrix function. - * \param[in] f Stem function for matrix function under consideration. - */ - MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { } - - /** \brief Compute the matrix function. - * - * \param[out] result \p f applied to \p A, where \p f and \p A are as in the constructor. - */ - template <typename ResultType> - inline void evalTo(ResultType& result) const - { - typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType; - typedef typename internal::remove_all<NestedEvalType>::type NestedEvalTypeClean; - typedef internal::traits<NestedEvalTypeClean> Traits; - static const int RowsAtCompileTime = Traits::RowsAtCompileTime; - static const int ColsAtCompileTime = Traits::ColsAtCompileTime; - typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; - typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; - - typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType; - AtomicType atomic(m_f); - - internal::matrix_function_compute<typename NestedEvalTypeClean::PlainObject>::run(m_A, atomic, result); - } - - Index rows() const { return m_A.rows(); } - Index cols() const { return m_A.cols(); } - - private: - const DerivedNested m_A; - StemFunction *m_f; -}; - -namespace internal { -template<typename Derived> -struct traits<MatrixFunctionReturnValue<Derived> > -{ - typedef typename Derived::PlainObject ReturnType; -}; -} - - -/********** MatrixBase methods **********/ - - -template <typename Derived> -const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const -{ - eigen_assert(rows() == cols()); - return MatrixFunctionReturnValue<Derived>(derived(), f); -} - -template <typename Derived> -const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const -{ - eigen_assert(rows() == cols()); - typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; - return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sin<ComplexScalar>); -} - -template <typename Derived> -const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const -{ - eigen_assert(rows() == cols()); - typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; - return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>); -} - -template <typename Derived> -const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const -{ - eigen_assert(rows() == cols()); - typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; - return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>); -} - -template <typename Derived> -const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const -{ - eigen_assert(rows() == cols()); - typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; - return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>); -} - -} // end namespace Eigen - -#endif // EIGEN_MATRIX_FUNCTION_H diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h deleted file mode 100644 index cf5fffa..0000000 --- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +++ /dev/null @@ -1,373 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> -// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATRIX_LOGARITHM -#define EIGEN_MATRIX_LOGARITHM - -namespace Eigen { - -namespace internal { - -template <typename Scalar> -struct matrix_log_min_pade_degree -{ - static const int value = 3; -}; - -template <typename Scalar> -struct matrix_log_max_pade_degree -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - static const int value = std::numeric_limits<RealScalar>::digits<= 24? 5: // single precision - std::numeric_limits<RealScalar>::digits<= 53? 7: // double precision - std::numeric_limits<RealScalar>::digits<= 64? 8: // extended precision - std::numeric_limits<RealScalar>::digits<=106? 10: // double-double - 11; // quadruple precision -}; - -/** \brief Compute logarithm of 2x2 triangular matrix. */ -template <typename MatrixType> -void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result) -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - using std::abs; - using std::ceil; - using std::imag; - using std::log; - - Scalar logA00 = log(A(0,0)); - Scalar logA11 = log(A(1,1)); - - result(0,0) = logA00; - result(1,0) = Scalar(0); - result(1,1) = logA11; - - Scalar y = A(1,1) - A(0,0); - if (y==Scalar(0)) - { - result(0,1) = A(0,1) / A(0,0); - } - else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) - { - result(0,1) = A(0,1) * (logA11 - logA00) / y; - } - else - { - // computation in previous branch is inaccurate if A(1,1) \approx A(0,0) - int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI))); - result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,2*EIGEN_PI*unwindingNumber)) / y; - } -} - -/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */ -inline int matrix_log_get_pade_degree(float normTminusI) -{ - const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1, - 5.3149729967117310e-1 }; - const int minPadeDegree = matrix_log_min_pade_degree<float>::value; - const int maxPadeDegree = matrix_log_max_pade_degree<float>::value; - int degree = minPadeDegree; - for (; degree <= maxPadeDegree; ++degree) - if (normTminusI <= maxNormForPade[degree - minPadeDegree]) - break; - return degree; -} - -/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */ -inline int matrix_log_get_pade_degree(double normTminusI) -{ - const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2, - 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 }; - const int minPadeDegree = matrix_log_min_pade_degree<double>::value; - const int maxPadeDegree = matrix_log_max_pade_degree<double>::value; - int degree = minPadeDegree; - for (; degree <= maxPadeDegree; ++degree) - if (normTminusI <= maxNormForPade[degree - minPadeDegree]) - break; - return degree; -} - -/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */ -inline int matrix_log_get_pade_degree(long double normTminusI) -{ -#if LDBL_MANT_DIG == 53 // double precision - const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L, - 1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L }; -#elif LDBL_MANT_DIG <= 64 // extended precision - const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L, - 5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L, - 2.32777776523703892094e-1L }; -#elif LDBL_MANT_DIG <= 106 // double-double - const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */, - 9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L, - 1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L, - 4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L, - 1.05026503471351080481093652651105e-1L }; -#else // quadruple precision - const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */, - 5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L, - 8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L, - 3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L, - 8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L }; -#endif - const int minPadeDegree = matrix_log_min_pade_degree<long double>::value; - const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value; - int degree = minPadeDegree; - for (; degree <= maxPadeDegree; ++degree) - if (normTminusI <= maxNormForPade[degree - minPadeDegree]) - break; - return degree; -} - -/* \brief Compute Pade approximation to matrix logarithm */ -template <typename MatrixType> -void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree) -{ - typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; - const int minPadeDegree = 3; - const int maxPadeDegree = 11; - assert(degree >= minPadeDegree && degree <= maxPadeDegree); - - const RealScalar nodes[][maxPadeDegree] = { - { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L, // degree 3 - 0.8872983346207416885179265399782400L }, - { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L, // degree 4 - 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L }, - { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L, // degree 5 - 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L, - 0.9530899229693319963988134391496965L }, - { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L, // degree 6 - 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L, - 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L }, - { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L, // degree 7 - 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L, - 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L, - 0.9745539561713792622630948420239256L }, - { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L, // degree 8 - 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L, - 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L, - 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L }, - { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L, // degree 9 - 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L, - 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L, - 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L, - 0.9840801197538130449177881014518364L }, - { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L, // degree 10 - 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L, - 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L, - 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L, - 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L }, - { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L, // degree 11 - 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L, - 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L, - 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L, - 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L, - 0.9891143290730284964019690005614287L } }; - - const RealScalar weights[][maxPadeDegree] = { - { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L, // degree 3 - 0.2777777777777777777777777777777778L }, - { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L, // degree 4 - 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L }, - { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L, // degree 5 - 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L, - 0.1184634425280945437571320203599587L }, - { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, // degree 6 - 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L, - 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L }, - { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L, // degree 7 - 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L, - 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L, - 0.0647424830844348466353057163395410L }, - { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L, // degree 8 - 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L, - 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L, - 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L }, - { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L, // degree 9 - 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L, - 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L, - 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L, - 0.0406371941807872059859460790552618L }, - { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L, // degree 10 - 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L, - 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L, - 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L, - 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L }, - { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L, // degree 11 - 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L, - 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L, - 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L, - 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L, - 0.0278342835580868332413768602212743L } }; - - MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); - result.setZero(T.rows(), T.rows()); - for (int k = 0; k < degree; ++k) { - RealScalar weight = weights[degree-minPadeDegree][k]; - RealScalar node = nodes[degree-minPadeDegree][k]; - result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI) - .template triangularView<Upper>().solve(TminusI); - } -} - -/** \brief Compute logarithm of triangular matrices with size > 2. - * \details This uses a inverse scale-and-square algorithm. */ -template <typename MatrixType> -void matrix_log_compute_big(const MatrixType& A, MatrixType& result) -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits<Scalar>::Real RealScalar; - using std::pow; - - int numberOfSquareRoots = 0; - int numberOfExtraSquareRoots = 0; - int degree; - MatrixType T = A, sqrtT; - - int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value; - const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1L: // single precision - maxPadeDegree<= 7? 2.6429608311114350e-1L: // double precision - maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision - maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double - 1.1880960220216759245467951592883642e-1L; // quadruple precision - - while (true) { - RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff(); - if (normTminusI < maxNormForPade) { - degree = matrix_log_get_pade_degree(normTminusI); - int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2)); - if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1)) - break; - ++numberOfExtraSquareRoots; - } - matrix_sqrt_triangular(T, sqrtT); - T = sqrtT.template triangularView<Upper>(); - ++numberOfSquareRoots; - } - - matrix_log_compute_pade(result, T, degree); - result *= pow(RealScalar(2), numberOfSquareRoots); -} - -/** \ingroup MatrixFunctions_Module - * \class MatrixLogarithmAtomic - * \brief Helper class for computing matrix logarithm of atomic matrices. - * - * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other. - * - * \sa class MatrixFunctionAtomic, MatrixBase::log() - */ -template <typename MatrixType> -class MatrixLogarithmAtomic -{ -public: - /** \brief Compute matrix logarithm of atomic matrix - * \param[in] A argument of matrix logarithm, should be upper triangular and atomic - * \returns The logarithm of \p A. - */ - MatrixType compute(const MatrixType& A); -}; - -template <typename MatrixType> -MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A) -{ - using std::log; - MatrixType result(A.rows(), A.rows()); - if (A.rows() == 1) - result(0,0) = log(A(0,0)); - else if (A.rows() == 2) - matrix_log_compute_2x2(A, result); - else - matrix_log_compute_big(A, result); - return result; -} - -} // end of namespace internal - -/** \ingroup MatrixFunctions_Module - * - * \brief Proxy for the matrix logarithm of some matrix (expression). - * - * \tparam Derived Type of the argument to the matrix function. - * - * This class holds the argument to the matrix function until it is - * assigned or evaluated for some other reason (so the argument - * should not be changed in the meantime). It is the return type of - * MatrixBase::log() and most of the time this is the only way it - * is used. - */ -template<typename Derived> class MatrixLogarithmReturnValue -: public ReturnByValue<MatrixLogarithmReturnValue<Derived> > -{ -public: - typedef typename Derived::Scalar Scalar; - typedef typename Derived::Index Index; - -protected: - typedef typename internal::ref_selector<Derived>::type DerivedNested; - -public: - - /** \brief Constructor. - * - * \param[in] A %Matrix (expression) forming the argument of the matrix logarithm. - */ - explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { } - - /** \brief Compute the matrix logarithm. - * - * \param[out] result Logarithm of \c A, where \c A is as specified in the constructor. - */ - template <typename ResultType> - inline void evalTo(ResultType& result) const - { - typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType; - typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean; - typedef internal::traits<DerivedEvalTypeClean> Traits; - static const int RowsAtCompileTime = Traits::RowsAtCompileTime; - static const int ColsAtCompileTime = Traits::ColsAtCompileTime; - typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; - typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; - typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType; - AtomicType atomic; - - internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result); - } - - Index rows() const { return m_A.rows(); } - Index cols() const { return m_A.cols(); } - -private: - const DerivedNested m_A; -}; - -namespace internal { - template<typename Derived> - struct traits<MatrixLogarithmReturnValue<Derived> > - { - typedef typename Derived::PlainObject ReturnType; - }; -} - - -/********** MatrixBase method **********/ - - -template <typename Derived> -const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const -{ - eigen_assert(rows() == cols()); - return MatrixLogarithmReturnValue<Derived>(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_MATRIX_LOGARITHM diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h deleted file mode 100644 index a3273da..0000000 --- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +++ /dev/null @@ -1,709 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATRIX_POWER -#define EIGEN_MATRIX_POWER - -namespace Eigen { - -template<typename MatrixType> class MatrixPower; - -/** - * \ingroup MatrixFunctions_Module - * - * \brief Proxy for the matrix power of some matrix. - * - * \tparam MatrixType type of the base, a matrix. - * - * This class holds the arguments to the matrix power until it is - * assigned or evaluated for some other reason (so the argument - * should not be changed in the meantime). It is the return type of - * MatrixPower::operator() and related functions and most of the - * time this is the only way it is used. - */ -/* TODO This class is only used by MatrixPower, so it should be nested - * into MatrixPower, like MatrixPower::ReturnValue. However, my - * compiler complained about unused template parameter in the - * following declaration in namespace internal. - * - * template<typename MatrixType> - * struct traits<MatrixPower<MatrixType>::ReturnValue>; - */ -template<typename MatrixType> -class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParenthesesReturnValue<MatrixType> > -{ - public: - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::Index Index; - - /** - * \brief Constructor. - * - * \param[in] pow %MatrixPower storing the base. - * \param[in] p scalar, the exponent of the matrix power. - */ - MatrixPowerParenthesesReturnValue(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p) - { } - - /** - * \brief Compute the matrix power. - * - * \param[out] result - */ - template<typename ResultType> - inline void evalTo(ResultType& result) const - { m_pow.compute(result, m_p); } - - Index rows() const { return m_pow.rows(); } - Index cols() const { return m_pow.cols(); } - - private: - MatrixPower<MatrixType>& m_pow; - const RealScalar m_p; -}; - -/** - * \ingroup MatrixFunctions_Module - * - * \brief Class for computing matrix powers. - * - * \tparam MatrixType type of the base, expected to be an instantiation - * of the Matrix class template. - * - * This class is capable of computing triangular real/complex matrices - * raised to a power in the interval \f$ (-1, 1) \f$. - * - * \note Currently this class is only used by MatrixPower. One may - * insist that this be nested into MatrixPower. This class is here to - * faciliate future development of triangular matrix functions. - */ -template<typename MatrixType> -class MatrixPowerAtomic : internal::noncopyable -{ - private: - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime - }; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef std::complex<RealScalar> ComplexScalar; - typedef typename MatrixType::Index Index; - typedef Block<MatrixType,Dynamic,Dynamic> ResultType; - - const MatrixType& m_A; - RealScalar m_p; - - void computePade(int degree, const MatrixType& IminusT, ResultType& res) const; - void compute2x2(ResultType& res, RealScalar p) const; - void computeBig(ResultType& res) const; - static int getPadeDegree(float normIminusT); - static int getPadeDegree(double normIminusT); - static int getPadeDegree(long double normIminusT); - static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p); - static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p); - - public: - /** - * \brief Constructor. - * - * \param[in] T the base of the matrix power. - * \param[in] p the exponent of the matrix power, should be in - * \f$ (-1, 1) \f$. - * - * The class stores a reference to T, so it should not be changed - * (or destroyed) before evaluation. Only the upper triangular - * part of T is read. - */ - MatrixPowerAtomic(const MatrixType& T, RealScalar p); - - /** - * \brief Compute the matrix power. - * - * \param[out] res \f$ A^p \f$ where A and p are specified in the - * constructor. - */ - void compute(ResultType& res) const; -}; - -template<typename MatrixType> -MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) : - m_A(T), m_p(p) -{ - eigen_assert(T.rows() == T.cols()); - eigen_assert(p > -1 && p < 1); -} - -template<typename MatrixType> -void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const -{ - using std::pow; - switch (m_A.rows()) { - case 0: - break; - case 1: - res(0,0) = pow(m_A(0,0), m_p); - break; - case 2: - compute2x2(res, m_p); - break; - default: - computeBig(res); - } -} - -template<typename MatrixType> -void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, ResultType& res) const -{ - int i = 2*degree; - res = (m_p-degree) / (2*i-2) * IminusT; - - for (--i; i; --i) { - res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>() - .solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval(); - } - res += MatrixType::Identity(IminusT.rows(), IminusT.cols()); -} - -// This function assumes that res has the correct size (see bug 614) -template<typename MatrixType> -void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) const -{ - using std::abs; - using std::pow; - res.coeffRef(0,0) = pow(m_A.coeff(0,0), p); - - for (Index i=1; i < m_A.cols(); ++i) { - res.coeffRef(i,i) = pow(m_A.coeff(i,i), p); - if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i)) - res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1); - else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1))) - res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1)); - else - res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p); - res.coeffRef(i-1,i) *= m_A.coeff(i-1,i); - } -} - -template<typename MatrixType> -void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const -{ - using std::ldexp; - const int digits = std::numeric_limits<RealScalar>::digits; - const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1L // single precision - : digits <= 53? 2.789358995219730e-1L // double precision - : digits <= 64? 2.4471944416607995472e-1L // extended precision - : digits <= 106? 1.1016843812851143391275867258512e-1L // double-double - : 9.134603732914548552537150753385375e-2L; // quadruple precision - MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>(); - RealScalar normIminusT; - int degree, degree2, numberOfSquareRoots = 0; - bool hasExtraSquareRoot = false; - - for (Index i=0; i < m_A.cols(); ++i) - eigen_assert(m_A(i,i) != RealScalar(0)); - - while (true) { - IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T; - normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff(); - if (normIminusT < maxNormForPade) { - degree = getPadeDegree(normIminusT); - degree2 = getPadeDegree(normIminusT/2); - if (degree - degree2 <= 1 || hasExtraSquareRoot) - break; - hasExtraSquareRoot = true; - } - matrix_sqrt_triangular(T, sqrtT); - T = sqrtT.template triangularView<Upper>(); - ++numberOfSquareRoots; - } - computePade(degree, IminusT, res); - - for (; numberOfSquareRoots; --numberOfSquareRoots) { - compute2x2(res, ldexp(m_p, -numberOfSquareRoots)); - res = res.template triangularView<Upper>() * res; - } - compute2x2(res, m_p); -} - -template<typename MatrixType> -inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT) -{ - const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f }; - int degree = 3; - for (; degree <= 4; ++degree) - if (normIminusT <= maxNormForPade[degree - 3]) - break; - return degree; -} - -template<typename MatrixType> -inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT) -{ - const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1, - 1.999045567181744e-1, 2.789358995219730e-1 }; - int degree = 3; - for (; degree <= 7; ++degree) - if (normIminusT <= maxNormForPade[degree - 3]) - break; - return degree; -} - -template<typename MatrixType> -inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT) -{ -#if LDBL_MANT_DIG == 53 - const int maxPadeDegree = 7; - const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L, - 1.999045567181744e-1L, 2.789358995219730e-1L }; -#elif LDBL_MANT_DIG <= 64 - const int maxPadeDegree = 8; - const long double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L, - 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L }; -#elif LDBL_MANT_DIG <= 106 - const int maxPadeDegree = 10; - const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ , - 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L, - 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L, - 1.1016843812851143391275867258512e-1L }; -#else - const int maxPadeDegree = 10; - const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ , - 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L, - 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L, - 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L, - 9.134603732914548552537150753385375e-2L }; -#endif - int degree = 3; - for (; degree <= maxPadeDegree; ++degree) - if (normIminusT <= maxNormForPade[degree - 3]) - break; - return degree; -} - -template<typename MatrixType> -inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar -MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p) -{ - using std::ceil; - using std::exp; - using std::log; - using std::sinh; - - ComplexScalar logCurr = log(curr); - ComplexScalar logPrev = log(prev); - int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)); - ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, EIGEN_PI*unwindingNumber); - return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev); -} - -template<typename MatrixType> -inline typename MatrixPowerAtomic<MatrixType>::RealScalar -MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p) -{ - using std::exp; - using std::log; - using std::sinh; - - RealScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2); - return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev); -} - -/** - * \ingroup MatrixFunctions_Module - * - * \brief Class for computing matrix powers. - * - * \tparam MatrixType type of the base, expected to be an instantiation - * of the Matrix class template. - * - * This class is capable of computing real/complex matrices raised to - * an arbitrary real power. Meanwhile, it saves the result of Schur - * decomposition if an non-integral power has even been calculated. - * Therefore, if you want to compute multiple (>= 2) matrix powers - * for the same matrix, using the class directly is more efficient than - * calling MatrixBase::pow(). - * - * Example: - * \include MatrixPower_optimal.cpp - * Output: \verbinclude MatrixPower_optimal.out - */ -template<typename MatrixType> -class MatrixPower : internal::noncopyable -{ - private: - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::Index Index; - - public: - /** - * \brief Constructor. - * - * \param[in] A the base of the matrix power. - * - * The class stores a reference to A, so it should not be changed - * (or destroyed) before evaluation. - */ - explicit MatrixPower(const MatrixType& A) : - m_A(A), - m_conditionNumber(0), - m_rank(A.cols()), - m_nulls(0) - { eigen_assert(A.rows() == A.cols()); } - - /** - * \brief Returns the matrix power. - * - * \param[in] p exponent, a real scalar. - * \return The expression \f$ A^p \f$, where A is specified in the - * constructor. - */ - const MatrixPowerParenthesesReturnValue<MatrixType> operator()(RealScalar p) - { return MatrixPowerParenthesesReturnValue<MatrixType>(*this, p); } - - /** - * \brief Compute the matrix power. - * - * \param[in] p exponent, a real scalar. - * \param[out] res \f$ A^p \f$ where A is specified in the - * constructor. - */ - template<typename ResultType> - void compute(ResultType& res, RealScalar p); - - Index rows() const { return m_A.rows(); } - Index cols() const { return m_A.cols(); } - - private: - typedef std::complex<RealScalar> ComplexScalar; - typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, - MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> ComplexMatrix; - - /** \brief Reference to the base of matrix power. */ - typename MatrixType::Nested m_A; - - /** \brief Temporary storage. */ - MatrixType m_tmp; - - /** \brief Store the result of Schur decomposition. */ - ComplexMatrix m_T, m_U; - - /** \brief Store fractional power of m_T. */ - ComplexMatrix m_fT; - - /** - * \brief Condition number of m_A. - * - * It is initialized as 0 to avoid performing unnecessary Schur - * decomposition, which is the bottleneck. - */ - RealScalar m_conditionNumber; - - /** \brief Rank of m_A. */ - Index m_rank; - - /** \brief Rank deficiency of m_A. */ - Index m_nulls; - - /** - * \brief Split p into integral part and fractional part. - * - * \param[in] p The exponent. - * \param[out] p The fractional part ranging in \f$ (-1, 1) \f$. - * \param[out] intpart The integral part. - * - * Only if the fractional part is nonzero, it calls initialize(). - */ - void split(RealScalar& p, RealScalar& intpart); - - /** \brief Perform Schur decomposition for fractional power. */ - void initialize(); - - template<typename ResultType> - void computeIntPower(ResultType& res, RealScalar p); - - template<typename ResultType> - void computeFracPower(ResultType& res, RealScalar p); - - template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> - static void revertSchur( - Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, - const ComplexMatrix& T, - const ComplexMatrix& U); - - template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> - static void revertSchur( - Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, - const ComplexMatrix& T, - const ComplexMatrix& U); -}; - -template<typename MatrixType> -template<typename ResultType> -void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p) -{ - using std::pow; - switch (cols()) { - case 0: - break; - case 1: - res(0,0) = pow(m_A.coeff(0,0), p); - break; - default: - RealScalar intpart; - split(p, intpart); - - res = MatrixType::Identity(rows(), cols()); - computeIntPower(res, intpart); - if (p) computeFracPower(res, p); - } -} - -template<typename MatrixType> -void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart) -{ - using std::floor; - using std::pow; - - intpart = floor(p); - p -= intpart; - - // Perform Schur decomposition if it is not yet performed and the power is - // not an integer. - if (!m_conditionNumber && p) - initialize(); - - // Choose the more stable of intpart = floor(p) and intpart = ceil(p). - if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) { - --p; - ++intpart; - } -} - -template<typename MatrixType> -void MatrixPower<MatrixType>::initialize() -{ - const ComplexSchur<MatrixType> schurOfA(m_A); - JacobiRotation<ComplexScalar> rot; - ComplexScalar eigenvalue; - - m_fT.resizeLike(m_A); - m_T = schurOfA.matrixT(); - m_U = schurOfA.matrixU(); - m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff(); - - // Move zero eigenvalues to the bottom right corner. - for (Index i = cols()-1; i>=0; --i) { - if (m_rank <= 2) - return; - if (m_T.coeff(i,i) == RealScalar(0)) { - for (Index j=i+1; j < m_rank; ++j) { - eigenvalue = m_T.coeff(j,j); - rot.makeGivens(m_T.coeff(j-1,j), eigenvalue); - m_T.applyOnTheRight(j-1, j, rot); - m_T.applyOnTheLeft(j-1, j, rot.adjoint()); - m_T.coeffRef(j-1,j-1) = eigenvalue; - m_T.coeffRef(j,j) = RealScalar(0); - m_U.applyOnTheRight(j-1, j, rot); - } - --m_rank; - } - } - - m_nulls = rows() - m_rank; - if (m_nulls) { - eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero() - && "Base of matrix power should be invertible or with a semisimple zero eigenvalue."); - m_fT.bottomRows(m_nulls).fill(RealScalar(0)); - } -} - -template<typename MatrixType> -template<typename ResultType> -void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p) -{ - using std::abs; - using std::fmod; - RealScalar pp = abs(p); - - if (p<0) - m_tmp = m_A.inverse(); - else - m_tmp = m_A; - - while (true) { - if (fmod(pp, 2) >= 1) - res = m_tmp * res; - pp /= 2; - if (pp < 1) - break; - m_tmp *= m_tmp; - } -} - -template<typename MatrixType> -template<typename ResultType> -void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p) -{ - Block<ComplexMatrix,Dynamic,Dynamic> blockTp(m_fT, 0, 0, m_rank, m_rank); - eigen_assert(m_conditionNumber); - eigen_assert(m_rank + m_nulls == rows()); - - MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank), p).compute(blockTp); - if (m_nulls) { - m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>() - .solve(blockTp * m_T.topRightCorner(m_rank, m_nulls)); - } - revertSchur(m_tmp, m_fT, m_U); - res = m_tmp * res; -} - -template<typename MatrixType> -template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> -inline void MatrixPower<MatrixType>::revertSchur( - Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, - const ComplexMatrix& T, - const ComplexMatrix& U) -{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); } - -template<typename MatrixType> -template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> -inline void MatrixPower<MatrixType>::revertSchur( - Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, - const ComplexMatrix& T, - const ComplexMatrix& U) -{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); } - -/** - * \ingroup MatrixFunctions_Module - * - * \brief Proxy for the matrix power of some matrix (expression). - * - * \tparam Derived type of the base, a matrix (expression). - * - * This class holds the arguments to the matrix power until it is - * assigned or evaluated for some other reason (so the argument - * should not be changed in the meantime). It is the return type of - * MatrixBase::pow() and related functions and most of the - * time this is the only way it is used. - */ -template<typename Derived> -class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> > -{ - public: - typedef typename Derived::PlainObject PlainObject; - typedef typename Derived::RealScalar RealScalar; - typedef typename Derived::Index Index; - - /** - * \brief Constructor. - * - * \param[in] A %Matrix (expression), the base of the matrix power. - * \param[in] p real scalar, the exponent of the matrix power. - */ - MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p) - { } - - /** - * \brief Compute the matrix power. - * - * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the - * constructor. - */ - template<typename ResultType> - inline void evalTo(ResultType& result) const - { MatrixPower<PlainObject>(m_A.eval()).compute(result, m_p); } - - Index rows() const { return m_A.rows(); } - Index cols() const { return m_A.cols(); } - - private: - const Derived& m_A; - const RealScalar m_p; -}; - -/** - * \ingroup MatrixFunctions_Module - * - * \brief Proxy for the matrix power of some matrix (expression). - * - * \tparam Derived type of the base, a matrix (expression). - * - * This class holds the arguments to the matrix power until it is - * assigned or evaluated for some other reason (so the argument - * should not be changed in the meantime). It is the return type of - * MatrixBase::pow() and related functions and most of the - * time this is the only way it is used. - */ -template<typename Derived> -class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerReturnValue<Derived> > -{ - public: - typedef typename Derived::PlainObject PlainObject; - typedef typename std::complex<typename Derived::RealScalar> ComplexScalar; - typedef typename Derived::Index Index; - - /** - * \brief Constructor. - * - * \param[in] A %Matrix (expression), the base of the matrix power. - * \param[in] p complex scalar, the exponent of the matrix power. - */ - MatrixComplexPowerReturnValue(const Derived& A, const ComplexScalar& p) : m_A(A), m_p(p) - { } - - /** - * \brief Compute the matrix power. - * - * Because \p p is complex, \f$ A^p \f$ is simply evaluated as \f$ - * \exp(p \log(A)) \f$. - * - * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the - * constructor. - */ - template<typename ResultType> - inline void evalTo(ResultType& result) const - { result = (m_p * m_A.log()).exp(); } - - Index rows() const { return m_A.rows(); } - Index cols() const { return m_A.cols(); } - - private: - const Derived& m_A; - const ComplexScalar m_p; -}; - -namespace internal { - -template<typename MatrixPowerType> -struct traits< MatrixPowerParenthesesReturnValue<MatrixPowerType> > -{ typedef typename MatrixPowerType::PlainObject ReturnType; }; - -template<typename Derived> -struct traits< MatrixPowerReturnValue<Derived> > -{ typedef typename Derived::PlainObject ReturnType; }; - -template<typename Derived> -struct traits< MatrixComplexPowerReturnValue<Derived> > -{ typedef typename Derived::PlainObject ReturnType; }; - -} - -template<typename Derived> -const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const -{ return MatrixPowerReturnValue<Derived>(derived(), p); } - -template<typename Derived> -const MatrixComplexPowerReturnValue<Derived> MatrixBase<Derived>::pow(const std::complex<RealScalar>& p) const -{ return MatrixComplexPowerReturnValue<Derived>(derived(), p); } - -} // namespace Eigen - -#endif // EIGEN_MATRIX_POWER diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h deleted file mode 100644 index 2e5abda..0000000 --- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +++ /dev/null @@ -1,366 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATRIX_SQUARE_ROOT -#define EIGEN_MATRIX_SQUARE_ROOT - -namespace Eigen { - -namespace internal { - -// pre: T.block(i,i,2,2) has complex conjugate eigenvalues -// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2) -template <typename MatrixType, typename ResultType> -void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT) -{ - // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere - // in EigenSolver. If we expose it, we could call it directly from here. - typedef typename traits<MatrixType>::Scalar Scalar; - Matrix<Scalar,2,2> block = T.template block<2,2>(i,i); - EigenSolver<Matrix<Scalar,2,2> > es(block); - sqrtT.template block<2,2>(i,i) - = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real(); -} - -// pre: block structure of T is such that (i,j) is a 1x1 block, -// all blocks of sqrtT to left of and below (i,j) are correct -// post: sqrtT(i,j) has the correct value -template <typename MatrixType, typename ResultType> -void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT) -{ - typedef typename traits<MatrixType>::Scalar Scalar; - Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value(); - sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j)); -} - -// similar to compute1x1offDiagonalBlock() -template <typename MatrixType, typename ResultType> -void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT) -{ - typedef typename traits<MatrixType>::Scalar Scalar; - Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j); - if (j-i > 1) - rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2); - Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity(); - A += sqrtT.template block<2,2>(j,j).transpose(); - sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose()); -} - -// similar to compute1x1offDiagonalBlock() -template <typename MatrixType, typename ResultType> -void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT) -{ - typedef typename traits<MatrixType>::Scalar Scalar; - Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j); - if (j-i > 2) - rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1); - Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity(); - A += sqrtT.template block<2,2>(i,i); - sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs); -} - -// solves the equation A X + X B = C where all matrices are 2-by-2 -template <typename MatrixType> -void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C) -{ - typedef typename traits<MatrixType>::Scalar Scalar; - Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero(); - coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0); - coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1); - coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0); - coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1); - coeffMatrix.coeffRef(0,1) = B.coeff(1,0); - coeffMatrix.coeffRef(0,2) = A.coeff(0,1); - coeffMatrix.coeffRef(1,0) = B.coeff(0,1); - coeffMatrix.coeffRef(1,3) = A.coeff(0,1); - coeffMatrix.coeffRef(2,0) = A.coeff(1,0); - coeffMatrix.coeffRef(2,3) = B.coeff(1,0); - coeffMatrix.coeffRef(3,1) = A.coeff(1,0); - coeffMatrix.coeffRef(3,2) = B.coeff(0,1); - - Matrix<Scalar,4,1> rhs; - rhs.coeffRef(0) = C.coeff(0,0); - rhs.coeffRef(1) = C.coeff(0,1); - rhs.coeffRef(2) = C.coeff(1,0); - rhs.coeffRef(3) = C.coeff(1,1); - - Matrix<Scalar,4,1> result; - result = coeffMatrix.fullPivLu().solve(rhs); - - X.coeffRef(0,0) = result.coeff(0); - X.coeffRef(0,1) = result.coeff(1); - X.coeffRef(1,0) = result.coeff(2); - X.coeffRef(1,1) = result.coeff(3); -} - -// similar to compute1x1offDiagonalBlock() -template <typename MatrixType, typename ResultType> -void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT) -{ - typedef typename traits<MatrixType>::Scalar Scalar; - Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i); - Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j); - Matrix<Scalar,2,2> C = T.template block<2,2>(i,j); - if (j-i > 2) - C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2); - Matrix<Scalar,2,2> X; - matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C); - sqrtT.template block<2,2>(i,j) = X; -} - -// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size -// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T -template <typename MatrixType, typename ResultType> -void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT) -{ - using std::sqrt; - const Index size = T.rows(); - for (Index i = 0; i < size; i++) { - if (i == size - 1 || T.coeff(i+1, i) == 0) { - eigen_assert(T(i,i) >= 0); - sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i)); - } - else { - matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT); - ++i; - } - } -} - -// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T. -// post: sqrtT is the square root of T. -template <typename MatrixType, typename ResultType> -void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT) -{ - const Index size = T.rows(); - for (Index j = 1; j < size; j++) { - if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block - continue; - for (Index i = j-1; i >= 0; i--) { - if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block - continue; - bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0); - bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0); - if (iBlockIs2x2 && jBlockIs2x2) - matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT); - else if (iBlockIs2x2 && !jBlockIs2x2) - matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT); - else if (!iBlockIs2x2 && jBlockIs2x2) - matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT); - else if (!iBlockIs2x2 && !jBlockIs2x2) - matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT); - } - } -} - -} // end of namespace internal - -/** \ingroup MatrixFunctions_Module - * \brief Compute matrix square root of quasi-triangular matrix. - * - * \tparam MatrixType type of \p arg, the argument of matrix square root, - * expected to be an instantiation of the Matrix class template. - * \tparam ResultType type of \p result, where result is to be stored. - * \param[in] arg argument of matrix square root. - * \param[out] result matrix square root of upper Hessenberg part of \p arg. - * - * This function computes the square root of the upper quasi-triangular matrix stored in the upper - * Hessenberg part of \p arg. Only the upper Hessenberg part of \p result is updated, the rest is - * not touched. See MatrixBase::sqrt() for details on how this computation is implemented. - * - * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular - */ -template <typename MatrixType, typename ResultType> -void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result) -{ - eigen_assert(arg.rows() == arg.cols()); - result.resize(arg.rows(), arg.cols()); - internal::matrix_sqrt_quasi_triangular_diagonal(arg, result); - internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result); -} - - -/** \ingroup MatrixFunctions_Module - * \brief Compute matrix square root of triangular matrix. - * - * \tparam MatrixType type of \p arg, the argument of matrix square root, - * expected to be an instantiation of the Matrix class template. - * \tparam ResultType type of \p result, where result is to be stored. - * \param[in] arg argument of matrix square root. - * \param[out] result matrix square root of upper triangular part of \p arg. - * - * Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not - * touched. See MatrixBase::sqrt() for details on how this computation is implemented. - * - * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular - */ -template <typename MatrixType, typename ResultType> -void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result) -{ - using std::sqrt; - typedef typename MatrixType::Scalar Scalar; - - eigen_assert(arg.rows() == arg.cols()); - - // Compute square root of arg and store it in upper triangular part of result - // This uses that the square root of triangular matrices can be computed directly. - result.resize(arg.rows(), arg.cols()); - for (Index i = 0; i < arg.rows(); i++) { - result.coeffRef(i,i) = sqrt(arg.coeff(i,i)); - } - for (Index j = 1; j < arg.cols(); j++) { - for (Index i = j-1; i >= 0; i--) { - // if i = j-1, then segment has length 0 so tmp = 0 - Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value(); - // denominator may be zero if original matrix is singular - result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j)); - } - } -} - - -namespace internal { - -/** \ingroup MatrixFunctions_Module - * \brief Helper struct for computing matrix square roots of general matrices. - * \tparam MatrixType type of the argument of the matrix square root, - * expected to be an instantiation of the Matrix class template. - * - * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt() - */ -template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> -struct matrix_sqrt_compute -{ - /** \brief Compute the matrix square root - * - * \param[in] arg matrix whose square root is to be computed. - * \param[out] result square root of \p arg. - * - * See MatrixBase::sqrt() for details on how this computation is implemented. - */ - template <typename ResultType> static void run(const MatrixType &arg, ResultType &result); -}; - - -// ********** Partial specialization for real matrices ********** - -template <typename MatrixType> -struct matrix_sqrt_compute<MatrixType, 0> -{ - template <typename ResultType> - static void run(const MatrixType &arg, ResultType &result) - { - eigen_assert(arg.rows() == arg.cols()); - - // Compute Schur decomposition of arg - const RealSchur<MatrixType> schurOfA(arg); - const MatrixType& T = schurOfA.matrixT(); - const MatrixType& U = schurOfA.matrixU(); - - // Compute square root of T - MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols()); - matrix_sqrt_quasi_triangular(T, sqrtT); - - // Compute square root of arg - result = U * sqrtT * U.adjoint(); - } -}; - - -// ********** Partial specialization for complex matrices ********** - -template <typename MatrixType> -struct matrix_sqrt_compute<MatrixType, 1> -{ - template <typename ResultType> - static void run(const MatrixType &arg, ResultType &result) - { - eigen_assert(arg.rows() == arg.cols()); - - // Compute Schur decomposition of arg - const ComplexSchur<MatrixType> schurOfA(arg); - const MatrixType& T = schurOfA.matrixT(); - const MatrixType& U = schurOfA.matrixU(); - - // Compute square root of T - MatrixType sqrtT; - matrix_sqrt_triangular(T, sqrtT); - - // Compute square root of arg - result = U * (sqrtT.template triangularView<Upper>() * U.adjoint()); - } -}; - -} // end namespace internal - -/** \ingroup MatrixFunctions_Module - * - * \brief Proxy for the matrix square root of some matrix (expression). - * - * \tparam Derived Type of the argument to the matrix square root. - * - * This class holds the argument to the matrix square root until it - * is assigned or evaluated for some other reason (so the argument - * should not be changed in the meantime). It is the return type of - * MatrixBase::sqrt() and most of the time this is the only way it is - * used. - */ -template<typename Derived> class MatrixSquareRootReturnValue -: public ReturnByValue<MatrixSquareRootReturnValue<Derived> > -{ - protected: - typedef typename internal::ref_selector<Derived>::type DerivedNested; - - public: - /** \brief Constructor. - * - * \param[in] src %Matrix (expression) forming the argument of the - * matrix square root. - */ - explicit MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { } - - /** \brief Compute the matrix square root. - * - * \param[out] result the matrix square root of \p src in the - * constructor. - */ - template <typename ResultType> - inline void evalTo(ResultType& result) const - { - typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType; - typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean; - DerivedEvalType tmp(m_src); - internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result); - } - - Index rows() const { return m_src.rows(); } - Index cols() const { return m_src.cols(); } - - protected: - const DerivedNested m_src; -}; - -namespace internal { -template<typename Derived> -struct traits<MatrixSquareRootReturnValue<Derived> > -{ - typedef typename Derived::PlainObject ReturnType; -}; -} - -template <typename Derived> -const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const -{ - eigen_assert(rows() == cols()); - return MatrixSquareRootReturnValue<Derived>(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_MATRIX_FUNCTION diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h deleted file mode 100644 index 7604df9..0000000 --- a/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +++ /dev/null @@ -1,117 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_STEM_FUNCTION -#define EIGEN_STEM_FUNCTION - -namespace Eigen { - -namespace internal { - -/** \brief The exponential function (and its derivatives). */ -template <typename Scalar> -Scalar stem_function_exp(Scalar x, int) -{ - using std::exp; - return exp(x); -} - -/** \brief Cosine (and its derivatives). */ -template <typename Scalar> -Scalar stem_function_cos(Scalar x, int n) -{ - using std::cos; - using std::sin; - Scalar res; - - switch (n % 4) { - case 0: - res = std::cos(x); - break; - case 1: - res = -std::sin(x); - break; - case 2: - res = -std::cos(x); - break; - case 3: - res = std::sin(x); - break; - } - return res; -} - -/** \brief Sine (and its derivatives). */ -template <typename Scalar> -Scalar stem_function_sin(Scalar x, int n) -{ - using std::cos; - using std::sin; - Scalar res; - - switch (n % 4) { - case 0: - res = std::sin(x); - break; - case 1: - res = std::cos(x); - break; - case 2: - res = -std::sin(x); - break; - case 3: - res = -std::cos(x); - break; - } - return res; -} - -/** \brief Hyperbolic cosine (and its derivatives). */ -template <typename Scalar> -Scalar stem_function_cosh(Scalar x, int n) -{ - using std::cosh; - using std::sinh; - Scalar res; - - switch (n % 2) { - case 0: - res = std::cosh(x); - break; - case 1: - res = std::sinh(x); - break; - } - return res; -} - -/** \brief Hyperbolic sine (and its derivatives). */ -template <typename Scalar> -Scalar stem_function_sinh(Scalar x, int n) -{ - using std::cosh; - using std::sinh; - Scalar res; - - switch (n % 2) { - case 0: - res = std::sinh(x); - break; - case 1: - res = std::cosh(x); - break; - } - return res; -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_STEM_FUNCTION |