summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/MatrixFunctions
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2019-03-03 21:09:10 +0100
committerStanislaw Halik <sthalik@misaki.pl>2019-03-03 21:10:13 +0100
commitf0238cfb6997c4acfc2bd200de7295f3fa36968f (patch)
treeb215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/unsupported/Eigen/src/MatrixFunctions
parent543edd372a5193d04b3de9f23c176ab439e51b31 (diff)
don't index Eigen
Diffstat (limited to 'eigen/unsupported/Eigen/src/MatrixFunctions')
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h442
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h580
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h373
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h709
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h366
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h117
6 files changed, 0 insertions, 2587 deletions
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
deleted file mode 100644
index e5ebbcf..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
+++ /dev/null
@@ -1,442 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-// Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_EXPONENTIAL
-#define EIGEN_MATRIX_EXPONENTIAL
-
-#include "StemFunction.h"
-
-namespace Eigen {
-namespace internal {
-
-/** \brief Scaling operator.
- *
- * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$.
- */
-template <typename RealScalar>
-struct MatrixExponentialScalingOp
-{
- /** \brief Constructor.
- *
- * \param[in] squarings The integer \f$ s \f$ in this document.
- */
- MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { }
-
-
- /** \brief Scale a matrix coefficient.
- *
- * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
- */
- inline const RealScalar operator() (const RealScalar& x) const
- {
- using std::ldexp;
- return ldexp(x, -m_squarings);
- }
-
- typedef std::complex<RealScalar> ComplexScalar;
-
- /** \brief Scale a matrix coefficient.
- *
- * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
- */
- inline const ComplexScalar operator() (const ComplexScalar& x) const
- {
- using std::ldexp;
- return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings));
- }
-
- private:
- int m_squarings;
-};
-
-/** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar;
- const RealScalar b[] = {120.L, 60.L, 12.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-
-/** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-
-/** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType A6 = A4 * A2;
- const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2
- + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-
-}
-
-/** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
- 2162160.L, 110880.L, 3960.L, 90.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType A6 = A4 * A2;
- const MatrixType A8 = A6 * A2;
- const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
- + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-
-/** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
- 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
- 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType A6 = A4 * A2;
- V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage
- MatrixType tmp = A6 * V;
- tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- tmp = b[12] * A6 + b[10] * A4 + b[8] * A2;
- V.noalias() = A6 * tmp;
- V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-
-/** \brief Compute the (17,17)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- *
- * This function activates only if your long double is double-double or quadruple.
- */
-#if LDBL_MANT_DIG > 64
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
- 100610229646136770560000.L, 15720348382208870400000.L,
- 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
- 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
- 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
- 46512.L, 306.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType A6 = A4 * A2;
- const MatrixType A8 = A4 * A4;
- V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage
- MatrixType tmp = A8 * V;
- tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
- + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2;
- V.noalias() = tmp * A8;
- V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2
- + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-#endif
-
-template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
-struct matrix_exp_computeUV
-{
- /** \brief Compute Pad&eacute; approximant to the exponential.
- *
- * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute;
- * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$
- * denotes the matrix \c arg. The degree of the Pad&eacute; approximant and the value of squarings
- * are chosen such that the approximation error is no more than the round-off error.
- */
- static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings);
-};
-
-template <typename MatrixType>
-struct matrix_exp_computeUV<MatrixType, float>
-{
- template <typename ArgType>
- static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
- {
- using std::frexp;
- using std::pow;
- const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
- squarings = 0;
- if (l1norm < 4.258730016922831e-001f) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 1.880152677804762e+000f) {
- matrix_exp_pade5(arg, U, V);
- } else {
- const float maxnorm = 3.925724783138660f;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings));
- matrix_exp_pade7(A, U, V);
- }
- }
-};
-
-template <typename MatrixType>
-struct matrix_exp_computeUV<MatrixType, double>
-{
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- template <typename ArgType>
- static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
- {
- using std::frexp;
- using std::pow;
- const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
- squarings = 0;
- if (l1norm < 1.495585217958292e-002) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 2.539398330063230e-001) {
- matrix_exp_pade5(arg, U, V);
- } else if (l1norm < 9.504178996162932e-001) {
- matrix_exp_pade7(arg, U, V);
- } else if (l1norm < 2.097847961257068e+000) {
- matrix_exp_pade9(arg, U, V);
- } else {
- const RealScalar maxnorm = 5.371920351148152;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<RealScalar>(squarings));
- matrix_exp_pade13(A, U, V);
- }
- }
-};
-
-template <typename MatrixType>
-struct matrix_exp_computeUV<MatrixType, long double>
-{
- template <typename ArgType>
- static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
- {
-#if LDBL_MANT_DIG == 53 // double precision
- matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings);
-
-#else
-
- using std::frexp;
- using std::pow;
- const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
- squarings = 0;
-
-#if LDBL_MANT_DIG <= 64 // extended precision
-
- if (l1norm < 4.1968497232266989671e-003L) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 1.1848116734693823091e-001L) {
- matrix_exp_pade5(arg, U, V);
- } else if (l1norm < 5.5170388480686700274e-001L) {
- matrix_exp_pade7(arg, U, V);
- } else if (l1norm < 1.3759868875587845383e+000L) {
- matrix_exp_pade9(arg, U, V);
- } else {
- const long double maxnorm = 4.0246098906697353063L;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
- matrix_exp_pade13(A, U, V);
- }
-
-#elif LDBL_MANT_DIG <= 106 // double-double
-
- if (l1norm < 3.2787892205607026992947488108213e-005L) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 6.4467025060072760084130906076332e-003L) {
- matrix_exp_pade5(arg, U, V);
- } else if (l1norm < 6.8988028496595374751374122881143e-002L) {
- matrix_exp_pade7(arg, U, V);
- } else if (l1norm < 2.7339737518502231741495857201670e-001L) {
- matrix_exp_pade9(arg, U, V);
- } else if (l1norm < 1.3203382096514474905666448850278e+000L) {
- matrix_exp_pade13(arg, U, V);
- } else {
- const long double maxnorm = 3.2579440895405400856599663723517L;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
- matrix_exp_pade17(A, U, V);
- }
-
-#elif LDBL_MANT_DIG <= 112 // quadruple precison
-
- if (l1norm < 1.639394610288918690547467954466970e-005L) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 4.253237712165275566025884344433009e-003L) {
- matrix_exp_pade5(arg, U, V);
- } else if (l1norm < 5.125804063165764409885122032933142e-002L) {
- matrix_exp_pade7(arg, U, V);
- } else if (l1norm < 2.170000765161155195453205651889853e-001L) {
- matrix_exp_pade9(arg, U, V);
- } else if (l1norm < 1.125358383453143065081397882891878e+000L) {
- matrix_exp_pade13(arg, U, V);
- } else {
- const long double maxnorm = 2.884233277829519311757165057717815L;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
- matrix_exp_pade17(A, U, V);
- }
-
-#else
-
- // this case should be handled in compute()
- eigen_assert(false && "Bug in MatrixExponential");
-
-#endif
-#endif // LDBL_MANT_DIG
- }
-};
-
-template<typename T> struct is_exp_known_type : false_type {};
-template<> struct is_exp_known_type<float> : true_type {};
-template<> struct is_exp_known_type<double> : true_type {};
-#if LDBL_MANT_DIG <= 112
-template<> struct is_exp_known_type<long double> : true_type {};
-#endif
-
-template <typename ArgType, typename ResultType>
-void matrix_exp_compute(const ArgType& arg, ResultType &result, true_type) // natively supported scalar type
-{
- typedef typename ArgType::PlainObject MatrixType;
- MatrixType U, V;
- int squarings;
- matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
- MatrixType numer = U + V;
- MatrixType denom = -U + V;
- result = denom.partialPivLu().solve(numer);
- for (int i=0; i<squarings; i++)
- result *= result; // undo scaling by repeated squaring
-}
-
-
-/* Computes the matrix exponential
- *
- * \param arg argument of matrix exponential (should be plain object)
- * \param result variable in which result will be stored
- */
-template <typename ArgType, typename ResultType>
-void matrix_exp_compute(const ArgType& arg, ResultType &result, false_type) // default
-{
- typedef typename ArgType::PlainObject MatrixType;
- typedef typename traits<MatrixType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename std::complex<RealScalar> ComplexScalar;
- result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
-}
-
-} // end namespace Eigen::internal
-
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix exponential of some matrix (expression).
- *
- * \tparam Derived Type of the argument to the matrix exponential.
- *
- * This class holds the argument to the matrix exponential until it is assigned or evaluated for
- * some other reason (so the argument should not be changed in the meantime). It is the return type
- * of MatrixBase::exp() and most of the time this is the only way it is used.
- */
-template<typename Derived> struct MatrixExponentialReturnValue
-: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
-{
- typedef typename Derived::Index Index;
- public:
- /** \brief Constructor.
- *
- * \param src %Matrix (expression) forming the argument of the matrix exponential.
- */
- MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
-
- /** \brief Compute the matrix exponential.
- *
- * \param result the matrix exponential of \p src in the constructor.
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- const typename internal::nested_eval<Derived, 10>::type tmp(m_src);
- internal::matrix_exp_compute(tmp, result, internal::is_exp_known_type<typename Derived::Scalar>());
- }
-
- Index rows() const { return m_src.rows(); }
- Index cols() const { return m_src.cols(); }
-
- protected:
- const typename internal::ref_selector<Derived>::type m_src;
-};
-
-namespace internal {
-template<typename Derived>
-struct traits<MatrixExponentialReturnValue<Derived> >
-{
- typedef typename Derived::PlainObject ReturnType;
-};
-}
-
-template <typename Derived>
-const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
-{
- eigen_assert(rows() == cols());
- return MatrixExponentialReturnValue<Derived>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_EXPONENTIAL
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
deleted file mode 100644
index 3df8239..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
+++ /dev/null
@@ -1,580 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_FUNCTION_H
-#define EIGEN_MATRIX_FUNCTION_H
-
-#include "StemFunction.h"
-
-
-namespace Eigen {
-
-namespace internal {
-
-/** \brief Maximum distance allowed between eigenvalues to be considered "close". */
-static const float matrix_function_separation = 0.1f;
-
-/** \ingroup MatrixFunctions_Module
- * \class MatrixFunctionAtomic
- * \brief Helper class for computing matrix functions of atomic matrices.
- *
- * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
- */
-template <typename MatrixType>
-class MatrixFunctionAtomic
-{
- public:
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename stem_function<Scalar>::type StemFunction;
-
- /** \brief Constructor
- * \param[in] f matrix function to compute.
- */
- MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
-
- /** \brief Compute matrix function of atomic matrix
- * \param[in] A argument of matrix function, should be upper triangular and atomic
- * \returns f(A), the matrix function evaluated at the given matrix
- */
- MatrixType compute(const MatrixType& A);
-
- private:
- StemFunction* m_f;
-};
-
-template <typename MatrixType>
-typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A)
-{
- typedef typename plain_col_type<MatrixType>::type VectorType;
- typename MatrixType::Index rows = A.rows();
- const MatrixType N = MatrixType::Identity(rows, rows) - A;
- VectorType e = VectorType::Ones(rows);
- N.template triangularView<Upper>().solveInPlace(e);
- return e.cwiseAbs().maxCoeff();
-}
-
-template <typename MatrixType>
-MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
-{
- // TODO: Use that A is upper triangular
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
- Index rows = A.rows();
- Scalar avgEival = A.trace() / Scalar(RealScalar(rows));
- MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows);
- RealScalar mu = matrix_function_compute_mu(Ashifted);
- MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows);
- MatrixType P = Ashifted;
- MatrixType Fincr;
- for (Index s = 1; s < 1.1 * rows + 10; s++) { // upper limit is fairly arbitrary
- Fincr = m_f(avgEival, static_cast<int>(s)) * P;
- F += Fincr;
- P = Scalar(RealScalar(1.0/(s + 1))) * P * Ashifted;
-
- // test whether Taylor series converged
- const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
- const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
- if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
- RealScalar delta = 0;
- RealScalar rfactorial = 1;
- for (Index r = 0; r < rows; r++) {
- RealScalar mx = 0;
- for (Index i = 0; i < rows; i++)
- mx = (std::max)(mx, std::abs(m_f(Ashifted(i, i) + avgEival, static_cast<int>(s+r))));
- if (r != 0)
- rfactorial *= RealScalar(r);
- delta = (std::max)(delta, mx / rfactorial);
- }
- const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
- if (mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) // series converged
- break;
- }
- }
- return F;
-}
-
-/** \brief Find cluster in \p clusters containing some value
- * \param[in] key Value to find
- * \returns Iterator to cluster containing \p key, or \c clusters.end() if no cluster in \p m_clusters
- * contains \p key.
- */
-template <typename Index, typename ListOfClusters>
-typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOfClusters& clusters)
-{
- typename std::list<Index>::iterator j;
- for (typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) {
- j = std::find(i->begin(), i->end(), key);
- if (j != i->end())
- return i;
- }
- return clusters.end();
-}
-
-/** \brief Partition eigenvalues in clusters of ei'vals close to each other
- *
- * \param[in] eivals Eigenvalues
- * \param[out] clusters Resulting partition of eigenvalues
- *
- * The partition satisfies the following two properties:
- * # Any eigenvalue in a certain cluster is at most matrix_function_separation() away from another eigenvalue
- * in the same cluster.
- * # The distance between two eigenvalues in different clusters is more than matrix_function_separation().
- * The implementation follows Algorithm 4.1 in the paper of Davies and Higham.
- */
-template <typename EivalsType, typename Cluster>
-void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters)
-{
- typedef typename EivalsType::Index Index;
- typedef typename EivalsType::RealScalar RealScalar;
- for (Index i=0; i<eivals.rows(); ++i) {
- // Find cluster containing i-th ei'val, adding a new cluster if necessary
- typename std::list<Cluster>::iterator qi = matrix_function_find_cluster(i, clusters);
- if (qi == clusters.end()) {
- Cluster l;
- l.push_back(i);
- clusters.push_back(l);
- qi = clusters.end();
- --qi;
- }
-
- // Look for other element to add to the set
- for (Index j=i+1; j<eivals.rows(); ++j) {
- if (abs(eivals(j) - eivals(i)) <= RealScalar(matrix_function_separation)
- && std::find(qi->begin(), qi->end(), j) == qi->end()) {
- typename std::list<Cluster>::iterator qj = matrix_function_find_cluster(j, clusters);
- if (qj == clusters.end()) {
- qi->push_back(j);
- } else {
- qi->insert(qi->end(), qj->begin(), qj->end());
- clusters.erase(qj);
- }
- }
- }
- }
-}
-
-/** \brief Compute size of each cluster given a partitioning */
-template <typename ListOfClusters, typename Index>
-void matrix_function_compute_cluster_size(const ListOfClusters& clusters, Matrix<Index, Dynamic, 1>& clusterSize)
-{
- const Index numClusters = static_cast<Index>(clusters.size());
- clusterSize.setZero(numClusters);
- Index clusterIndex = 0;
- for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
- clusterSize[clusterIndex] = cluster->size();
- ++clusterIndex;
- }
-}
-
-/** \brief Compute start of each block using clusterSize */
-template <typename VectorType>
-void matrix_function_compute_block_start(const VectorType& clusterSize, VectorType& blockStart)
-{
- blockStart.resize(clusterSize.rows());
- blockStart(0) = 0;
- for (typename VectorType::Index i = 1; i < clusterSize.rows(); i++) {
- blockStart(i) = blockStart(i-1) + clusterSize(i-1);
- }
-}
-
-/** \brief Compute mapping of eigenvalue indices to cluster indices */
-template <typename EivalsType, typename ListOfClusters, typename VectorType>
-void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster)
-{
- typedef typename EivalsType::Index Index;
- eivalToCluster.resize(eivals.rows());
- Index clusterIndex = 0;
- for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
- for (Index i = 0; i < eivals.rows(); ++i) {
- if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) {
- eivalToCluster[i] = clusterIndex;
- }
- }
- ++clusterIndex;
- }
-}
-
-/** \brief Compute permutation which groups ei'vals in same cluster together */
-template <typename DynVectorType, typename VectorType>
-void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation)
-{
- typedef typename VectorType::Index Index;
- DynVectorType indexNextEntry = blockStart;
- permutation.resize(eivalToCluster.rows());
- for (Index i = 0; i < eivalToCluster.rows(); i++) {
- Index cluster = eivalToCluster[i];
- permutation[i] = indexNextEntry[cluster];
- ++indexNextEntry[cluster];
- }
-}
-
-/** \brief Permute Schur decomposition in U and T according to permutation */
-template <typename VectorType, typename MatrixType>
-void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T)
-{
- typedef typename VectorType::Index Index;
- for (Index i = 0; i < permutation.rows() - 1; i++) {
- Index j;
- for (j = i; j < permutation.rows(); j++) {
- if (permutation(j) == i) break;
- }
- eigen_assert(permutation(j) == i);
- for (Index k = j-1; k >= i; k--) {
- JacobiRotation<typename MatrixType::Scalar> rotation;
- rotation.makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k));
- T.applyOnTheLeft(k, k+1, rotation.adjoint());
- T.applyOnTheRight(k, k+1, rotation);
- U.applyOnTheRight(k, k+1, rotation);
- std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1));
- }
- }
-}
-
-/** \brief Compute block diagonal part of matrix function.
- *
- * This routine computes the matrix function applied to the block diagonal part of \p T (which should be
- * upper triangular), with the blocking given by \p blockStart and \p clusterSize. The matrix function of
- * each diagonal block is computed by \p atomic. The off-diagonal parts of \p fT are set to zero.
- */
-template <typename MatrixType, typename AtomicType, typename VectorType>
-void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
-{
- fT.setZero(T.rows(), T.cols());
- for (typename VectorType::Index i = 0; i < clusterSize.rows(); ++i) {
- fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
- = atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)));
- }
-}
-
-/** \brief Solve a triangular Sylvester equation AX + XB = C
- *
- * \param[in] A the matrix A; should be square and upper triangular
- * \param[in] B the matrix B; should be square and upper triangular
- * \param[in] C the matrix C; should have correct size.
- *
- * \returns the solution X.
- *
- * If A is m-by-m and B is n-by-n, then both C and X are m-by-n. The (i,j)-th component of the Sylvester
- * equation is
- * \f[
- * \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}.
- * \f]
- * This can be re-arranged to yield:
- * \f[
- * X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
- * - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
- * \f]
- * It is assumed that A and B are such that the numerator is never zero (otherwise the Sylvester equation
- * does not have a unique solution). In that case, these equations can be evaluated in the order
- * \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
- */
-template <typename MatrixType>
-MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C)
-{
- eigen_assert(A.rows() == A.cols());
- eigen_assert(A.isUpperTriangular());
- eigen_assert(B.rows() == B.cols());
- eigen_assert(B.isUpperTriangular());
- eigen_assert(C.rows() == A.rows());
- eigen_assert(C.cols() == B.rows());
-
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
-
- Index m = A.rows();
- Index n = B.rows();
- MatrixType X(m, n);
-
- for (Index i = m - 1; i >= 0; --i) {
- for (Index j = 0; j < n; ++j) {
-
- // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
- Scalar AX;
- if (i == m - 1) {
- AX = 0;
- } else {
- Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
- AX = AXmatrix(0,0);
- }
-
- // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
- Scalar XB;
- if (j == 0) {
- XB = 0;
- } else {
- Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
- XB = XBmatrix(0,0);
- }
-
- X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
- }
- }
- return X;
-}
-
-/** \brief Compute part of matrix function above block diagonal.
- *
- * This routine completes the computation of \p fT, denoting a matrix function applied to the triangular
- * matrix \p T. It assumes that the block diagonal part of \p fT has already been computed. The part below
- * the diagonal is zero, because \p T is upper triangular.
- */
-template <typename MatrixType, typename VectorType>
-void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
-{
- typedef internal::traits<MatrixType> Traits;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- static const int Options = MatrixType::Options;
- typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
-
- for (Index k = 1; k < clusterSize.rows(); k++) {
- for (Index i = 0; i < clusterSize.rows() - k; i++) {
- // compute (i, i+k) block
- DynMatrixType A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i));
- DynMatrixType B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
- DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
- * T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k));
- C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
- * fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
- for (Index m = i + 1; m < i + k; m++) {
- C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
- * T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
- C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
- * fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
- }
- fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
- = matrix_function_solve_triangular_sylvester(A, B, C);
- }
- }
-}
-
-/** \ingroup MatrixFunctions_Module
- * \brief Class for computing matrix functions.
- * \tparam MatrixType type of the argument of the matrix function,
- * expected to be an instantiation of the Matrix class template.
- * \tparam AtomicType type for computing matrix function of atomic blocks.
- * \tparam IsComplex used internally to select correct specialization.
- *
- * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
- * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
- * computation of the matrix function on every block corresponding to these clusters to an object of type
- * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
- * \p AtomicType should have a \p compute() member function for computing the matrix function of a block.
- *
- * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic
- */
-template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
-struct matrix_function_compute
-{
- /** \brief Compute the matrix function.
- *
- * \param[in] A argument of matrix function, should be a square matrix.
- * \param[in] atomic class for computing matrix function of atomic blocks.
- * \param[out] result the function \p f applied to \p A, as
- * specified in the constructor.
- *
- * See MatrixBase::matrixFunction() for details on how this computation
- * is implemented.
- */
- template <typename AtomicType, typename ResultType>
- static void run(const MatrixType& A, AtomicType& atomic, ResultType &result);
-};
-
-/** \internal \ingroup MatrixFunctions_Module
- * \brief Partial specialization of MatrixFunction for real matrices
- *
- * This converts the real matrix to a complex matrix, compute the matrix function of that matrix, and then
- * converts the result back to a real matrix.
- */
-template <typename MatrixType>
-struct matrix_function_compute<MatrixType, 0>
-{
- template <typename MatA, typename AtomicType, typename ResultType>
- static void run(const MatA& A, AtomicType& atomic, ResultType &result)
- {
- typedef internal::traits<MatrixType> Traits;
- typedef typename Traits::Scalar Scalar;
- static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime;
- static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime;
-
- typedef std::complex<Scalar> ComplexScalar;
- typedef Matrix<ComplexScalar, Rows, Cols, 0, MaxRows, MaxCols> ComplexMatrix;
-
- ComplexMatrix CA = A.template cast<ComplexScalar>();
- ComplexMatrix Cresult;
- matrix_function_compute<ComplexMatrix>::run(CA, atomic, Cresult);
- result = Cresult.real();
- }
-};
-
-/** \internal \ingroup MatrixFunctions_Module
- * \brief Partial specialization of MatrixFunction for complex matrices
- */
-template <typename MatrixType>
-struct matrix_function_compute<MatrixType, 1>
-{
- template <typename MatA, typename AtomicType, typename ResultType>
- static void run(const MatA& A, AtomicType& atomic, ResultType &result)
- {
- typedef internal::traits<MatrixType> Traits;
-
- // compute Schur decomposition of A
- const ComplexSchur<MatrixType> schurOfA(A);
- MatrixType T = schurOfA.matrixT();
- MatrixType U = schurOfA.matrixU();
-
- // partition eigenvalues into clusters of ei'vals "close" to each other
- std::list<std::list<Index> > clusters;
- matrix_function_partition_eigenvalues(T.diagonal(), clusters);
-
- // compute size of each cluster
- Matrix<Index, Dynamic, 1> clusterSize;
- matrix_function_compute_cluster_size(clusters, clusterSize);
-
- // blockStart[i] is row index at which block corresponding to i-th cluster starts
- Matrix<Index, Dynamic, 1> blockStart;
- matrix_function_compute_block_start(clusterSize, blockStart);
-
- // compute map so that eivalToCluster[i] = j means that i-th ei'val is in j-th cluster
- Matrix<Index, Dynamic, 1> eivalToCluster;
- matrix_function_compute_map(T.diagonal(), clusters, eivalToCluster);
-
- // compute permutation which groups ei'vals in same cluster together
- Matrix<Index, Traits::RowsAtCompileTime, 1> permutation;
- matrix_function_compute_permutation(blockStart, eivalToCluster, permutation);
-
- // permute Schur decomposition
- matrix_function_permute_schur(permutation, U, T);
-
- // compute result
- MatrixType fT; // matrix function applied to T
- matrix_function_compute_block_atomic(T, atomic, blockStart, clusterSize, fT);
- matrix_function_compute_above_diagonal(T, blockStart, clusterSize, fT);
- result = U * (fT.template triangularView<Upper>() * U.adjoint());
- }
-};
-
-} // end of namespace internal
-
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix function of some matrix (expression).
- *
- * \tparam Derived Type of the argument to the matrix function.
- *
- * This class holds the argument to the matrix function until it is assigned or evaluated for some other
- * reason (so the argument should not be changed in the meantime). It is the return type of
- * matrixBase::matrixFunction() and related functions and most of the time this is the only way it is used.
- */
-template<typename Derived> class MatrixFunctionReturnValue
-: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
-{
- public:
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Index Index;
- typedef typename internal::stem_function<Scalar>::type StemFunction;
-
- protected:
- typedef typename internal::ref_selector<Derived>::type DerivedNested;
-
- public:
-
- /** \brief Constructor.
- *
- * \param[in] A %Matrix (expression) forming the argument of the matrix function.
- * \param[in] f Stem function for matrix function under consideration.
- */
- MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
-
- /** \brief Compute the matrix function.
- *
- * \param[out] result \p f applied to \p A, where \p f and \p A are as in the constructor.
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType;
- typedef typename internal::remove_all<NestedEvalType>::type NestedEvalTypeClean;
- typedef internal::traits<NestedEvalTypeClean> Traits;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
-
- typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType;
- AtomicType atomic(m_f);
-
- internal::matrix_function_compute<typename NestedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
- }
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
- private:
- const DerivedNested m_A;
- StemFunction *m_f;
-};
-
-namespace internal {
-template<typename Derived>
-struct traits<MatrixFunctionReturnValue<Derived> >
-{
- typedef typename Derived::PlainObject ReturnType;
-};
-}
-
-
-/********** MatrixBase methods **********/
-
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
-{
- eigen_assert(rows() == cols());
- return MatrixFunctionReturnValue<Derived>(derived(), f);
-}
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sin<ComplexScalar>);
-}
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>);
-}
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>);
-}
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_FUNCTION_H
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
deleted file mode 100644
index cf5fffa..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
+++ /dev/null
@@ -1,373 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_LOGARITHM
-#define EIGEN_MATRIX_LOGARITHM
-
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-struct matrix_log_min_pade_degree
-{
- static const int value = 3;
-};
-
-template <typename Scalar>
-struct matrix_log_max_pade_degree
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static const int value = std::numeric_limits<RealScalar>::digits<= 24? 5: // single precision
- std::numeric_limits<RealScalar>::digits<= 53? 7: // double precision
- std::numeric_limits<RealScalar>::digits<= 64? 8: // extended precision
- std::numeric_limits<RealScalar>::digits<=106? 10: // double-double
- 11; // quadruple precision
-};
-
-/** \brief Compute logarithm of 2x2 triangular matrix. */
-template <typename MatrixType>
-void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- using std::abs;
- using std::ceil;
- using std::imag;
- using std::log;
-
- Scalar logA00 = log(A(0,0));
- Scalar logA11 = log(A(1,1));
-
- result(0,0) = logA00;
- result(1,0) = Scalar(0);
- result(1,1) = logA11;
-
- Scalar y = A(1,1) - A(0,0);
- if (y==Scalar(0))
- {
- result(0,1) = A(0,1) / A(0,0);
- }
- else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1))))
- {
- result(0,1) = A(0,1) * (logA11 - logA00) / y;
- }
- else
- {
- // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
- int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)));
- result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,2*EIGEN_PI*unwindingNumber)) / y;
- }
-}
-
-/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
-inline int matrix_log_get_pade_degree(float normTminusI)
-{
- const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
- 5.3149729967117310e-1 };
- const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
- const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
- int degree = minPadeDegree;
- for (; degree <= maxPadeDegree; ++degree)
- if (normTminusI <= maxNormForPade[degree - minPadeDegree])
- break;
- return degree;
-}
-
-/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
-inline int matrix_log_get_pade_degree(double normTminusI)
-{
- const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
- 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
- const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
- const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
- int degree = minPadeDegree;
- for (; degree <= maxPadeDegree; ++degree)
- if (normTminusI <= maxNormForPade[degree - minPadeDegree])
- break;
- return degree;
-}
-
-/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
-inline int matrix_log_get_pade_degree(long double normTminusI)
-{
-#if LDBL_MANT_DIG == 53 // double precision
- const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
- 1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
-#elif LDBL_MANT_DIG <= 64 // extended precision
- const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
- 5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
- 2.32777776523703892094e-1L };
-#elif LDBL_MANT_DIG <= 106 // double-double
- const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
- 9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
- 1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
- 4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
- 1.05026503471351080481093652651105e-1L };
-#else // quadruple precision
- const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
- 5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
- 8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
- 3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
- 8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
-#endif
- const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
- const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
- int degree = minPadeDegree;
- for (; degree <= maxPadeDegree; ++degree)
- if (normTminusI <= maxNormForPade[degree - minPadeDegree])
- break;
- return degree;
-}
-
-/* \brief Compute Pade approximation to matrix logarithm */
-template <typename MatrixType>
-void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree)
-{
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- const int minPadeDegree = 3;
- const int maxPadeDegree = 11;
- assert(degree >= minPadeDegree && degree <= maxPadeDegree);
-
- const RealScalar nodes[][maxPadeDegree] = {
- { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L, // degree 3
- 0.8872983346207416885179265399782400L },
- { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L, // degree 4
- 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
- { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L, // degree 5
- 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
- 0.9530899229693319963988134391496965L },
- { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L, // degree 6
- 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
- 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
- { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L, // degree 7
- 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
- 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
- 0.9745539561713792622630948420239256L },
- { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L, // degree 8
- 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
- 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
- 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
- { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L, // degree 9
- 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
- 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
- 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
- 0.9840801197538130449177881014518364L },
- { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L, // degree 10
- 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
- 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
- 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
- 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
- { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L, // degree 11
- 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
- 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
- 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
- 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
- 0.9891143290730284964019690005614287L } };
-
- const RealScalar weights[][maxPadeDegree] = {
- { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L, // degree 3
- 0.2777777777777777777777777777777778L },
- { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L, // degree 4
- 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
- { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L, // degree 5
- 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
- 0.1184634425280945437571320203599587L },
- { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, // degree 6
- 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
- 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
- { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L, // degree 7
- 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
- 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
- 0.0647424830844348466353057163395410L },
- { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L, // degree 8
- 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
- 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
- 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
- { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L, // degree 9
- 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
- 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
- 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
- 0.0406371941807872059859460790552618L },
- { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L, // degree 10
- 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
- 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
- 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
- 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
- { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L, // degree 11
- 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
- 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
- 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
- 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
- 0.0278342835580868332413768602212743L } };
-
- MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
- result.setZero(T.rows(), T.rows());
- for (int k = 0; k < degree; ++k) {
- RealScalar weight = weights[degree-minPadeDegree][k];
- RealScalar node = nodes[degree-minPadeDegree][k];
- result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
- .template triangularView<Upper>().solve(TminusI);
- }
-}
-
-/** \brief Compute logarithm of triangular matrices with size > 2.
- * \details This uses a inverse scale-and-square algorithm. */
-template <typename MatrixType>
-void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- using std::pow;
-
- int numberOfSquareRoots = 0;
- int numberOfExtraSquareRoots = 0;
- int degree;
- MatrixType T = A, sqrtT;
-
- int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
- const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1L: // single precision
- maxPadeDegree<= 7? 2.6429608311114350e-1L: // double precision
- maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision
- maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double
- 1.1880960220216759245467951592883642e-1L; // quadruple precision
-
- while (true) {
- RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
- if (normTminusI < maxNormForPade) {
- degree = matrix_log_get_pade_degree(normTminusI);
- int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
- if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
- break;
- ++numberOfExtraSquareRoots;
- }
- matrix_sqrt_triangular(T, sqrtT);
- T = sqrtT.template triangularView<Upper>();
- ++numberOfSquareRoots;
- }
-
- matrix_log_compute_pade(result, T, degree);
- result *= pow(RealScalar(2), numberOfSquareRoots);
-}
-
-/** \ingroup MatrixFunctions_Module
- * \class MatrixLogarithmAtomic
- * \brief Helper class for computing matrix logarithm of atomic matrices.
- *
- * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
- *
- * \sa class MatrixFunctionAtomic, MatrixBase::log()
- */
-template <typename MatrixType>
-class MatrixLogarithmAtomic
-{
-public:
- /** \brief Compute matrix logarithm of atomic matrix
- * \param[in] A argument of matrix logarithm, should be upper triangular and atomic
- * \returns The logarithm of \p A.
- */
- MatrixType compute(const MatrixType& A);
-};
-
-template <typename MatrixType>
-MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
-{
- using std::log;
- MatrixType result(A.rows(), A.rows());
- if (A.rows() == 1)
- result(0,0) = log(A(0,0));
- else if (A.rows() == 2)
- matrix_log_compute_2x2(A, result);
- else
- matrix_log_compute_big(A, result);
- return result;
-}
-
-} // end of namespace internal
-
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix logarithm of some matrix (expression).
- *
- * \tparam Derived Type of the argument to the matrix function.
- *
- * This class holds the argument to the matrix function until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::log() and most of the time this is the only way it
- * is used.
- */
-template<typename Derived> class MatrixLogarithmReturnValue
-: public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
-{
-public:
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Index Index;
-
-protected:
- typedef typename internal::ref_selector<Derived>::type DerivedNested;
-
-public:
-
- /** \brief Constructor.
- *
- * \param[in] A %Matrix (expression) forming the argument of the matrix logarithm.
- */
- explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
-
- /** \brief Compute the matrix logarithm.
- *
- * \param[out] result Logarithm of \c A, where \c A is as specified in the constructor.
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
- typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
- typedef internal::traits<DerivedEvalTypeClean> Traits;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
- typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
- AtomicType atomic;
-
- internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
- }
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
-private:
- const DerivedNested m_A;
-};
-
-namespace internal {
- template<typename Derived>
- struct traits<MatrixLogarithmReturnValue<Derived> >
- {
- typedef typename Derived::PlainObject ReturnType;
- };
-}
-
-
-/********** MatrixBase method **********/
-
-
-template <typename Derived>
-const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
-{
- eigen_assert(rows() == cols());
- return MatrixLogarithmReturnValue<Derived>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_LOGARITHM
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
deleted file mode 100644
index a3273da..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
+++ /dev/null
@@ -1,709 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_POWER
-#define EIGEN_MATRIX_POWER
-
-namespace Eigen {
-
-template<typename MatrixType> class MatrixPower;
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix power of some matrix.
- *
- * \tparam MatrixType type of the base, a matrix.
- *
- * This class holds the arguments to the matrix power until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixPower::operator() and related functions and most of the
- * time this is the only way it is used.
- */
-/* TODO This class is only used by MatrixPower, so it should be nested
- * into MatrixPower, like MatrixPower::ReturnValue. However, my
- * compiler complained about unused template parameter in the
- * following declaration in namespace internal.
- *
- * template<typename MatrixType>
- * struct traits<MatrixPower<MatrixType>::ReturnValue>;
- */
-template<typename MatrixType>
-class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParenthesesReturnValue<MatrixType> >
-{
- public:
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
-
- /**
- * \brief Constructor.
- *
- * \param[in] pow %MatrixPower storing the base.
- * \param[in] p scalar, the exponent of the matrix power.
- */
- MatrixPowerParenthesesReturnValue(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
- { }
-
- /**
- * \brief Compute the matrix power.
- *
- * \param[out] result
- */
- template<typename ResultType>
- inline void evalTo(ResultType& result) const
- { m_pow.compute(result, m_p); }
-
- Index rows() const { return m_pow.rows(); }
- Index cols() const { return m_pow.cols(); }
-
- private:
- MatrixPower<MatrixType>& m_pow;
- const RealScalar m_p;
-};
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Class for computing matrix powers.
- *
- * \tparam MatrixType type of the base, expected to be an instantiation
- * of the Matrix class template.
- *
- * This class is capable of computing triangular real/complex matrices
- * raised to a power in the interval \f$ (-1, 1) \f$.
- *
- * \note Currently this class is only used by MatrixPower. One may
- * insist that this be nested into MatrixPower. This class is here to
- * faciliate future development of triangular matrix functions.
- */
-template<typename MatrixType>
-class MatrixPowerAtomic : internal::noncopyable
-{
- private:
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef std::complex<RealScalar> ComplexScalar;
- typedef typename MatrixType::Index Index;
- typedef Block<MatrixType,Dynamic,Dynamic> ResultType;
-
- const MatrixType& m_A;
- RealScalar m_p;
-
- void computePade(int degree, const MatrixType& IminusT, ResultType& res) const;
- void compute2x2(ResultType& res, RealScalar p) const;
- void computeBig(ResultType& res) const;
- static int getPadeDegree(float normIminusT);
- static int getPadeDegree(double normIminusT);
- static int getPadeDegree(long double normIminusT);
- static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
- static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
-
- public:
- /**
- * \brief Constructor.
- *
- * \param[in] T the base of the matrix power.
- * \param[in] p the exponent of the matrix power, should be in
- * \f$ (-1, 1) \f$.
- *
- * The class stores a reference to T, so it should not be changed
- * (or destroyed) before evaluation. Only the upper triangular
- * part of T is read.
- */
- MatrixPowerAtomic(const MatrixType& T, RealScalar p);
-
- /**
- * \brief Compute the matrix power.
- *
- * \param[out] res \f$ A^p \f$ where A and p are specified in the
- * constructor.
- */
- void compute(ResultType& res) const;
-};
-
-template<typename MatrixType>
-MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
- m_A(T), m_p(p)
-{
- eigen_assert(T.rows() == T.cols());
- eigen_assert(p > -1 && p < 1);
-}
-
-template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const
-{
- using std::pow;
- switch (m_A.rows()) {
- case 0:
- break;
- case 1:
- res(0,0) = pow(m_A(0,0), m_p);
- break;
- case 2:
- compute2x2(res, m_p);
- break;
- default:
- computeBig(res);
- }
-}
-
-template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, ResultType& res) const
-{
- int i = 2*degree;
- res = (m_p-degree) / (2*i-2) * IminusT;
-
- for (--i; i; --i) {
- res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
- .solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval();
- }
- res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
-}
-
-// This function assumes that res has the correct size (see bug 614)
-template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) const
-{
- using std::abs;
- using std::pow;
- res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
-
- for (Index i=1; i < m_A.cols(); ++i) {
- res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
- if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
- res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
- else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
- res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
- else
- res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
- res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
- }
-}
-
-template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
-{
- using std::ldexp;
- const int digits = std::numeric_limits<RealScalar>::digits;
- const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1L // single precision
- : digits <= 53? 2.789358995219730e-1L // double precision
- : digits <= 64? 2.4471944416607995472e-1L // extended precision
- : digits <= 106? 1.1016843812851143391275867258512e-1L // double-double
- : 9.134603732914548552537150753385375e-2L; // quadruple precision
- MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
- RealScalar normIminusT;
- int degree, degree2, numberOfSquareRoots = 0;
- bool hasExtraSquareRoot = false;
-
- for (Index i=0; i < m_A.cols(); ++i)
- eigen_assert(m_A(i,i) != RealScalar(0));
-
- while (true) {
- IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
- normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
- if (normIminusT < maxNormForPade) {
- degree = getPadeDegree(normIminusT);
- degree2 = getPadeDegree(normIminusT/2);
- if (degree - degree2 <= 1 || hasExtraSquareRoot)
- break;
- hasExtraSquareRoot = true;
- }
- matrix_sqrt_triangular(T, sqrtT);
- T = sqrtT.template triangularView<Upper>();
- ++numberOfSquareRoots;
- }
- computePade(degree, IminusT, res);
-
- for (; numberOfSquareRoots; --numberOfSquareRoots) {
- compute2x2(res, ldexp(m_p, -numberOfSquareRoots));
- res = res.template triangularView<Upper>() * res;
- }
- compute2x2(res, m_p);
-}
-
-template<typename MatrixType>
-inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
-{
- const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
- int degree = 3;
- for (; degree <= 4; ++degree)
- if (normIminusT <= maxNormForPade[degree - 3])
- break;
- return degree;
-}
-
-template<typename MatrixType>
-inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
-{
- const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
- 1.999045567181744e-1, 2.789358995219730e-1 };
- int degree = 3;
- for (; degree <= 7; ++degree)
- if (normIminusT <= maxNormForPade[degree - 3])
- break;
- return degree;
-}
-
-template<typename MatrixType>
-inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
-{
-#if LDBL_MANT_DIG == 53
- const int maxPadeDegree = 7;
- const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
- 1.999045567181744e-1L, 2.789358995219730e-1L };
-#elif LDBL_MANT_DIG <= 64
- const int maxPadeDegree = 8;
- const long double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
- 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
-#elif LDBL_MANT_DIG <= 106
- const int maxPadeDegree = 10;
- const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
- 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
- 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
- 1.1016843812851143391275867258512e-1L };
-#else
- const int maxPadeDegree = 10;
- const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
- 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
- 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
- 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
- 9.134603732914548552537150753385375e-2L };
-#endif
- int degree = 3;
- for (; degree <= maxPadeDegree; ++degree)
- if (normIminusT <= maxNormForPade[degree - 3])
- break;
- return degree;
-}
-
-template<typename MatrixType>
-inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
-MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
-{
- using std::ceil;
- using std::exp;
- using std::log;
- using std::sinh;
-
- ComplexScalar logCurr = log(curr);
- ComplexScalar logPrev = log(prev);
- int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
- ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, EIGEN_PI*unwindingNumber);
- return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev);
-}
-
-template<typename MatrixType>
-inline typename MatrixPowerAtomic<MatrixType>::RealScalar
-MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
-{
- using std::exp;
- using std::log;
- using std::sinh;
-
- RealScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2);
- return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev);
-}
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Class for computing matrix powers.
- *
- * \tparam MatrixType type of the base, expected to be an instantiation
- * of the Matrix class template.
- *
- * This class is capable of computing real/complex matrices raised to
- * an arbitrary real power. Meanwhile, it saves the result of Schur
- * decomposition if an non-integral power has even been calculated.
- * Therefore, if you want to compute multiple (>= 2) matrix powers
- * for the same matrix, using the class directly is more efficient than
- * calling MatrixBase::pow().
- *
- * Example:
- * \include MatrixPower_optimal.cpp
- * Output: \verbinclude MatrixPower_optimal.out
- */
-template<typename MatrixType>
-class MatrixPower : internal::noncopyable
-{
- private:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
-
- public:
- /**
- * \brief Constructor.
- *
- * \param[in] A the base of the matrix power.
- *
- * The class stores a reference to A, so it should not be changed
- * (or destroyed) before evaluation.
- */
- explicit MatrixPower(const MatrixType& A) :
- m_A(A),
- m_conditionNumber(0),
- m_rank(A.cols()),
- m_nulls(0)
- { eigen_assert(A.rows() == A.cols()); }
-
- /**
- * \brief Returns the matrix power.
- *
- * \param[in] p exponent, a real scalar.
- * \return The expression \f$ A^p \f$, where A is specified in the
- * constructor.
- */
- const MatrixPowerParenthesesReturnValue<MatrixType> operator()(RealScalar p)
- { return MatrixPowerParenthesesReturnValue<MatrixType>(*this, p); }
-
- /**
- * \brief Compute the matrix power.
- *
- * \param[in] p exponent, a real scalar.
- * \param[out] res \f$ A^p \f$ where A is specified in the
- * constructor.
- */
- template<typename ResultType>
- void compute(ResultType& res, RealScalar p);
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
- private:
- typedef std::complex<RealScalar> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0,
- MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> ComplexMatrix;
-
- /** \brief Reference to the base of matrix power. */
- typename MatrixType::Nested m_A;
-
- /** \brief Temporary storage. */
- MatrixType m_tmp;
-
- /** \brief Store the result of Schur decomposition. */
- ComplexMatrix m_T, m_U;
-
- /** \brief Store fractional power of m_T. */
- ComplexMatrix m_fT;
-
- /**
- * \brief Condition number of m_A.
- *
- * It is initialized as 0 to avoid performing unnecessary Schur
- * decomposition, which is the bottleneck.
- */
- RealScalar m_conditionNumber;
-
- /** \brief Rank of m_A. */
- Index m_rank;
-
- /** \brief Rank deficiency of m_A. */
- Index m_nulls;
-
- /**
- * \brief Split p into integral part and fractional part.
- *
- * \param[in] p The exponent.
- * \param[out] p The fractional part ranging in \f$ (-1, 1) \f$.
- * \param[out] intpart The integral part.
- *
- * Only if the fractional part is nonzero, it calls initialize().
- */
- void split(RealScalar& p, RealScalar& intpart);
-
- /** \brief Perform Schur decomposition for fractional power. */
- void initialize();
-
- template<typename ResultType>
- void computeIntPower(ResultType& res, RealScalar p);
-
- template<typename ResultType>
- void computeFracPower(ResultType& res, RealScalar p);
-
- template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
- static void revertSchur(
- Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
- const ComplexMatrix& T,
- const ComplexMatrix& U);
-
- template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
- static void revertSchur(
- Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
- const ComplexMatrix& T,
- const ComplexMatrix& U);
-};
-
-template<typename MatrixType>
-template<typename ResultType>
-void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
-{
- using std::pow;
- switch (cols()) {
- case 0:
- break;
- case 1:
- res(0,0) = pow(m_A.coeff(0,0), p);
- break;
- default:
- RealScalar intpart;
- split(p, intpart);
-
- res = MatrixType::Identity(rows(), cols());
- computeIntPower(res, intpart);
- if (p) computeFracPower(res, p);
- }
-}
-
-template<typename MatrixType>
-void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart)
-{
- using std::floor;
- using std::pow;
-
- intpart = floor(p);
- p -= intpart;
-
- // Perform Schur decomposition if it is not yet performed and the power is
- // not an integer.
- if (!m_conditionNumber && p)
- initialize();
-
- // Choose the more stable of intpart = floor(p) and intpart = ceil(p).
- if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) {
- --p;
- ++intpart;
- }
-}
-
-template<typename MatrixType>
-void MatrixPower<MatrixType>::initialize()
-{
- const ComplexSchur<MatrixType> schurOfA(m_A);
- JacobiRotation<ComplexScalar> rot;
- ComplexScalar eigenvalue;
-
- m_fT.resizeLike(m_A);
- m_T = schurOfA.matrixT();
- m_U = schurOfA.matrixU();
- m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff();
-
- // Move zero eigenvalues to the bottom right corner.
- for (Index i = cols()-1; i>=0; --i) {
- if (m_rank <= 2)
- return;
- if (m_T.coeff(i,i) == RealScalar(0)) {
- for (Index j=i+1; j < m_rank; ++j) {
- eigenvalue = m_T.coeff(j,j);
- rot.makeGivens(m_T.coeff(j-1,j), eigenvalue);
- m_T.applyOnTheRight(j-1, j, rot);
- m_T.applyOnTheLeft(j-1, j, rot.adjoint());
- m_T.coeffRef(j-1,j-1) = eigenvalue;
- m_T.coeffRef(j,j) = RealScalar(0);
- m_U.applyOnTheRight(j-1, j, rot);
- }
- --m_rank;
- }
- }
-
- m_nulls = rows() - m_rank;
- if (m_nulls) {
- eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero()
- && "Base of matrix power should be invertible or with a semisimple zero eigenvalue.");
- m_fT.bottomRows(m_nulls).fill(RealScalar(0));
- }
-}
-
-template<typename MatrixType>
-template<typename ResultType>
-void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
-{
- using std::abs;
- using std::fmod;
- RealScalar pp = abs(p);
-
- if (p<0)
- m_tmp = m_A.inverse();
- else
- m_tmp = m_A;
-
- while (true) {
- if (fmod(pp, 2) >= 1)
- res = m_tmp * res;
- pp /= 2;
- if (pp < 1)
- break;
- m_tmp *= m_tmp;
- }
-}
-
-template<typename MatrixType>
-template<typename ResultType>
-void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
-{
- Block<ComplexMatrix,Dynamic,Dynamic> blockTp(m_fT, 0, 0, m_rank, m_rank);
- eigen_assert(m_conditionNumber);
- eigen_assert(m_rank + m_nulls == rows());
-
- MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank), p).compute(blockTp);
- if (m_nulls) {
- m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>()
- .solve(blockTp * m_T.topRightCorner(m_rank, m_nulls));
- }
- revertSchur(m_tmp, m_fT, m_U);
- res = m_tmp * res;
-}
-
-template<typename MatrixType>
-template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-inline void MatrixPower<MatrixType>::revertSchur(
- Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
- const ComplexMatrix& T,
- const ComplexMatrix& U)
-{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
-
-template<typename MatrixType>
-template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-inline void MatrixPower<MatrixType>::revertSchur(
- Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
- const ComplexMatrix& T,
- const ComplexMatrix& U)
-{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix power of some matrix (expression).
- *
- * \tparam Derived type of the base, a matrix (expression).
- *
- * This class holds the arguments to the matrix power until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::pow() and related functions and most of the
- * time this is the only way it is used.
- */
-template<typename Derived>
-class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
-{
- public:
- typedef typename Derived::PlainObject PlainObject;
- typedef typename Derived::RealScalar RealScalar;
- typedef typename Derived::Index Index;
-
- /**
- * \brief Constructor.
- *
- * \param[in] A %Matrix (expression), the base of the matrix power.
- * \param[in] p real scalar, the exponent of the matrix power.
- */
- MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
- { }
-
- /**
- * \brief Compute the matrix power.
- *
- * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
- * constructor.
- */
- template<typename ResultType>
- inline void evalTo(ResultType& result) const
- { MatrixPower<PlainObject>(m_A.eval()).compute(result, m_p); }
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
- private:
- const Derived& m_A;
- const RealScalar m_p;
-};
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix power of some matrix (expression).
- *
- * \tparam Derived type of the base, a matrix (expression).
- *
- * This class holds the arguments to the matrix power until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::pow() and related functions and most of the
- * time this is the only way it is used.
- */
-template<typename Derived>
-class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerReturnValue<Derived> >
-{
- public:
- typedef typename Derived::PlainObject PlainObject;
- typedef typename std::complex<typename Derived::RealScalar> ComplexScalar;
- typedef typename Derived::Index Index;
-
- /**
- * \brief Constructor.
- *
- * \param[in] A %Matrix (expression), the base of the matrix power.
- * \param[in] p complex scalar, the exponent of the matrix power.
- */
- MatrixComplexPowerReturnValue(const Derived& A, const ComplexScalar& p) : m_A(A), m_p(p)
- { }
-
- /**
- * \brief Compute the matrix power.
- *
- * Because \p p is complex, \f$ A^p \f$ is simply evaluated as \f$
- * \exp(p \log(A)) \f$.
- *
- * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
- * constructor.
- */
- template<typename ResultType>
- inline void evalTo(ResultType& result) const
- { result = (m_p * m_A.log()).exp(); }
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
- private:
- const Derived& m_A;
- const ComplexScalar m_p;
-};
-
-namespace internal {
-
-template<typename MatrixPowerType>
-struct traits< MatrixPowerParenthesesReturnValue<MatrixPowerType> >
-{ typedef typename MatrixPowerType::PlainObject ReturnType; };
-
-template<typename Derived>
-struct traits< MatrixPowerReturnValue<Derived> >
-{ typedef typename Derived::PlainObject ReturnType; };
-
-template<typename Derived>
-struct traits< MatrixComplexPowerReturnValue<Derived> >
-{ typedef typename Derived::PlainObject ReturnType; };
-
-}
-
-template<typename Derived>
-const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
-{ return MatrixPowerReturnValue<Derived>(derived(), p); }
-
-template<typename Derived>
-const MatrixComplexPowerReturnValue<Derived> MatrixBase<Derived>::pow(const std::complex<RealScalar>& p) const
-{ return MatrixComplexPowerReturnValue<Derived>(derived(), p); }
-
-} // namespace Eigen
-
-#endif // EIGEN_MATRIX_POWER
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
deleted file mode 100644
index 2e5abda..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
+++ /dev/null
@@ -1,366 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_SQUARE_ROOT
-#define EIGEN_MATRIX_SQUARE_ROOT
-
-namespace Eigen {
-
-namespace internal {
-
-// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
-// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT)
-{
- // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
- // in EigenSolver. If we expose it, we could call it directly from here.
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
- EigenSolver<Matrix<Scalar,2,2> > es(block);
- sqrtT.template block<2,2>(i,i)
- = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
-}
-
-// pre: block structure of T is such that (i,j) is a 1x1 block,
-// all blocks of sqrtT to left of and below (i,j) are correct
-// post: sqrtT(i,j) has the correct value
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
- sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
-}
-
-// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
- if (j-i > 1)
- rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
- Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
- A += sqrtT.template block<2,2>(j,j).transpose();
- sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
-}
-
-// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
- if (j-i > 2)
- rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
- Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
- A += sqrtT.template block<2,2>(i,i);
- sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
-}
-
-// solves the equation A X + X B = C where all matrices are 2-by-2
-template <typename MatrixType>
-void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
- coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
- coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
- coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
- coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
- coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
- coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
- coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
- coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
- coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
- coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
- coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
- coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
-
- Matrix<Scalar,4,1> rhs;
- rhs.coeffRef(0) = C.coeff(0,0);
- rhs.coeffRef(1) = C.coeff(0,1);
- rhs.coeffRef(2) = C.coeff(1,0);
- rhs.coeffRef(3) = C.coeff(1,1);
-
- Matrix<Scalar,4,1> result;
- result = coeffMatrix.fullPivLu().solve(rhs);
-
- X.coeffRef(0,0) = result.coeff(0);
- X.coeffRef(0,1) = result.coeff(1);
- X.coeffRef(1,0) = result.coeff(2);
- X.coeffRef(1,1) = result.coeff(3);
-}
-
-// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
- Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
- Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
- if (j-i > 2)
- C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
- Matrix<Scalar,2,2> X;
- matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C);
- sqrtT.template block<2,2>(i,j) = X;
-}
-
-// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
-// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT)
-{
- using std::sqrt;
- const Index size = T.rows();
- for (Index i = 0; i < size; i++) {
- if (i == size - 1 || T.coeff(i+1, i) == 0) {
- eigen_assert(T(i,i) >= 0);
- sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
- }
- else {
- matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT);
- ++i;
- }
- }
-}
-
-// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
-// post: sqrtT is the square root of T.
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT)
-{
- const Index size = T.rows();
- for (Index j = 1; j < size; j++) {
- if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
- continue;
- for (Index i = j-1; i >= 0; i--) {
- if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
- continue;
- bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
- bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
- if (iBlockIs2x2 && jBlockIs2x2)
- matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT);
- else if (iBlockIs2x2 && !jBlockIs2x2)
- matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT);
- else if (!iBlockIs2x2 && jBlockIs2x2)
- matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT);
- else if (!iBlockIs2x2 && !jBlockIs2x2)
- matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT);
- }
- }
-}
-
-} // end of namespace internal
-
-/** \ingroup MatrixFunctions_Module
- * \brief Compute matrix square root of quasi-triangular matrix.
- *
- * \tparam MatrixType type of \p arg, the argument of matrix square root,
- * expected to be an instantiation of the Matrix class template.
- * \tparam ResultType type of \p result, where result is to be stored.
- * \param[in] arg argument of matrix square root.
- * \param[out] result matrix square root of upper Hessenberg part of \p arg.
- *
- * This function computes the square root of the upper quasi-triangular matrix stored in the upper
- * Hessenberg part of \p arg. Only the upper Hessenberg part of \p result is updated, the rest is
- * not touched. See MatrixBase::sqrt() for details on how this computation is implemented.
- *
- * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
- */
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result)
-{
- eigen_assert(arg.rows() == arg.cols());
- result.resize(arg.rows(), arg.cols());
- internal::matrix_sqrt_quasi_triangular_diagonal(arg, result);
- internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result);
-}
-
-
-/** \ingroup MatrixFunctions_Module
- * \brief Compute matrix square root of triangular matrix.
- *
- * \tparam MatrixType type of \p arg, the argument of matrix square root,
- * expected to be an instantiation of the Matrix class template.
- * \tparam ResultType type of \p result, where result is to be stored.
- * \param[in] arg argument of matrix square root.
- * \param[out] result matrix square root of upper triangular part of \p arg.
- *
- * Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not
- * touched. See MatrixBase::sqrt() for details on how this computation is implemented.
- *
- * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
- */
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
-{
- using std::sqrt;
- typedef typename MatrixType::Scalar Scalar;
-
- eigen_assert(arg.rows() == arg.cols());
-
- // Compute square root of arg and store it in upper triangular part of result
- // This uses that the square root of triangular matrices can be computed directly.
- result.resize(arg.rows(), arg.cols());
- for (Index i = 0; i < arg.rows(); i++) {
- result.coeffRef(i,i) = sqrt(arg.coeff(i,i));
- }
- for (Index j = 1; j < arg.cols(); j++) {
- for (Index i = j-1; i >= 0; i--) {
- // if i = j-1, then segment has length 0 so tmp = 0
- Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
- // denominator may be zero if original matrix is singular
- result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
- }
- }
-}
-
-
-namespace internal {
-
-/** \ingroup MatrixFunctions_Module
- * \brief Helper struct for computing matrix square roots of general matrices.
- * \tparam MatrixType type of the argument of the matrix square root,
- * expected to be an instantiation of the Matrix class template.
- *
- * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
- */
-template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
-struct matrix_sqrt_compute
-{
- /** \brief Compute the matrix square root
- *
- * \param[in] arg matrix whose square root is to be computed.
- * \param[out] result square root of \p arg.
- *
- * See MatrixBase::sqrt() for details on how this computation is implemented.
- */
- template <typename ResultType> static void run(const MatrixType &arg, ResultType &result);
-};
-
-
-// ********** Partial specialization for real matrices **********
-
-template <typename MatrixType>
-struct matrix_sqrt_compute<MatrixType, 0>
-{
- template <typename ResultType>
- static void run(const MatrixType &arg, ResultType &result)
- {
- eigen_assert(arg.rows() == arg.cols());
-
- // Compute Schur decomposition of arg
- const RealSchur<MatrixType> schurOfA(arg);
- const MatrixType& T = schurOfA.matrixT();
- const MatrixType& U = schurOfA.matrixU();
-
- // Compute square root of T
- MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols());
- matrix_sqrt_quasi_triangular(T, sqrtT);
-
- // Compute square root of arg
- result = U * sqrtT * U.adjoint();
- }
-};
-
-
-// ********** Partial specialization for complex matrices **********
-
-template <typename MatrixType>
-struct matrix_sqrt_compute<MatrixType, 1>
-{
- template <typename ResultType>
- static void run(const MatrixType &arg, ResultType &result)
- {
- eigen_assert(arg.rows() == arg.cols());
-
- // Compute Schur decomposition of arg
- const ComplexSchur<MatrixType> schurOfA(arg);
- const MatrixType& T = schurOfA.matrixT();
- const MatrixType& U = schurOfA.matrixU();
-
- // Compute square root of T
- MatrixType sqrtT;
- matrix_sqrt_triangular(T, sqrtT);
-
- // Compute square root of arg
- result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
- }
-};
-
-} // end namespace internal
-
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix square root of some matrix (expression).
- *
- * \tparam Derived Type of the argument to the matrix square root.
- *
- * This class holds the argument to the matrix square root until it
- * is assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::sqrt() and most of the time this is the only way it is
- * used.
- */
-template<typename Derived> class MatrixSquareRootReturnValue
-: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
-{
- protected:
- typedef typename internal::ref_selector<Derived>::type DerivedNested;
-
- public:
- /** \brief Constructor.
- *
- * \param[in] src %Matrix (expression) forming the argument of the
- * matrix square root.
- */
- explicit MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
-
- /** \brief Compute the matrix square root.
- *
- * \param[out] result the matrix square root of \p src in the
- * constructor.
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
- typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
- DerivedEvalType tmp(m_src);
- internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result);
- }
-
- Index rows() const { return m_src.rows(); }
- Index cols() const { return m_src.cols(); }
-
- protected:
- const DerivedNested m_src;
-};
-
-namespace internal {
-template<typename Derived>
-struct traits<MatrixSquareRootReturnValue<Derived> >
-{
- typedef typename Derived::PlainObject ReturnType;
-};
-}
-
-template <typename Derived>
-const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
-{
- eigen_assert(rows() == cols());
- return MatrixSquareRootReturnValue<Derived>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_FUNCTION
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
deleted file mode 100644
index 7604df9..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
+++ /dev/null
@@ -1,117 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STEM_FUNCTION
-#define EIGEN_STEM_FUNCTION
-
-namespace Eigen {
-
-namespace internal {
-
-/** \brief The exponential function (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_exp(Scalar x, int)
-{
- using std::exp;
- return exp(x);
-}
-
-/** \brief Cosine (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_cos(Scalar x, int n)
-{
- using std::cos;
- using std::sin;
- Scalar res;
-
- switch (n % 4) {
- case 0:
- res = std::cos(x);
- break;
- case 1:
- res = -std::sin(x);
- break;
- case 2:
- res = -std::cos(x);
- break;
- case 3:
- res = std::sin(x);
- break;
- }
- return res;
-}
-
-/** \brief Sine (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_sin(Scalar x, int n)
-{
- using std::cos;
- using std::sin;
- Scalar res;
-
- switch (n % 4) {
- case 0:
- res = std::sin(x);
- break;
- case 1:
- res = std::cos(x);
- break;
- case 2:
- res = -std::sin(x);
- break;
- case 3:
- res = -std::cos(x);
- break;
- }
- return res;
-}
-
-/** \brief Hyperbolic cosine (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_cosh(Scalar x, int n)
-{
- using std::cosh;
- using std::sinh;
- Scalar res;
-
- switch (n % 2) {
- case 0:
- res = std::cosh(x);
- break;
- case 1:
- res = std::sinh(x);
- break;
- }
- return res;
-}
-
-/** \brief Hyperbolic sine (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_sinh(Scalar x, int n)
-{
- using std::cosh;
- using std::sinh;
- Scalar res;
-
- switch (n % 2) {
- case 0:
- res = std::sinh(x);
- break;
- case 1:
- res = std::cosh(x);
- break;
- }
- return res;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_STEM_FUNCTION