diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/unsupported/test/cxx11_tensor_contract_cuda.cu | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_contract_cuda.cu')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_contract_cuda.cu | 216 |
1 files changed, 216 insertions, 0 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_contract_cuda.cu b/eigen/unsupported/test/cxx11_tensor_contract_cuda.cu new file mode 100644 index 0000000..dd68430 --- /dev/null +++ b/eigen/unsupported/test/cxx11_tensor_contract_cuda.cu @@ -0,0 +1,216 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#define EIGEN_TEST_NO_LONGDOUBLE +#define EIGEN_TEST_NO_COMPLEX +#define EIGEN_TEST_FUNC cxx11_tensor_cuda +#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int +#define EIGEN_USE_GPU + +#if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500 +#include <cuda_fp16.h> +#endif +#include "main.h" +#include <unsupported/Eigen/CXX11/Tensor> + +using Eigen::Tensor; +typedef Tensor<float, 1>::DimensionPair DimPair; + +template<int DataLayout> +void test_cuda_contraction(int m_size, int k_size, int n_size) +{ + std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl; + // with these dimensions, the output has 300 * 140 elements, which is + // more than 30 * 1024, which is the number of threads in blocks on + // a 15 SM GK110 GPU + Tensor<float, 2, DataLayout> t_left(m_size, k_size); + Tensor<float, 2, DataLayout> t_right(k_size, n_size); + Tensor<float, 2, DataLayout> t_result(m_size, n_size); + Tensor<float, 2, DataLayout> t_result_gpu(m_size, n_size); + Eigen::array<DimPair, 1> dims(DimPair(1, 0)); + + t_left.setRandom(); + t_right.setRandom(); + + std::size_t t_left_bytes = t_left.size() * sizeof(float); + std::size_t t_right_bytes = t_right.size() * sizeof(float); + std::size_t t_result_bytes = t_result.size() * sizeof(float); + + float* d_t_left; + float* d_t_right; + float* d_t_result; + + cudaMalloc((void**)(&d_t_left), t_left_bytes); + cudaMalloc((void**)(&d_t_right), t_right_bytes); + cudaMalloc((void**)(&d_t_result), t_result_bytes); + + cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice); + cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice); + + Eigen::CudaStreamDevice stream; + Eigen::GpuDevice gpu_device(&stream); + + Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > + gpu_t_left(d_t_left, Eigen::array<int, 2>(m_size, k_size)); + Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > + gpu_t_right(d_t_right, Eigen::array<int, 2>(k_size, n_size)); + Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > + gpu_t_result(d_t_result, Eigen::array<int, 2>(m_size, n_size)); + + + gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims); + t_result = t_left.contract(t_right, dims); + + cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost); + for (DenseIndex i = 0; i < t_result.size(); i++) { + if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) { + continue; + } + if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) { + continue; + } + std::cout << "mismatch detected at index " << i << ": " << t_result(i) + << " vs " << t_result_gpu(i) << std::endl; + assert(false); + } + + cudaFree((void*)d_t_left); + cudaFree((void*)d_t_right); + cudaFree((void*)d_t_result); +} + + +template<int DataLayout> +void test_scalar(int m_size, int k_size, int n_size) +{ + std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl; + // with these dimensions, the output has 300 * 140 elements, which is + // more than 30 * 1024, which is the number of threads in blocks on + // a 15 SM GK110 GPU + Tensor<float, 2, DataLayout> t_left(m_size, k_size); + Tensor<float, 2, DataLayout> t_right(k_size, n_size); + Tensor<float, 0, DataLayout> t_result; + Tensor<float, 0, DataLayout> t_result_gpu; + Eigen::array<DimPair, 2> dims(DimPair(0, 0), DimPair(1, 1)); + + t_left.setRandom(); + t_right.setRandom(); + + std::size_t t_left_bytes = t_left.size() * sizeof(float); + std::size_t t_right_bytes = t_right.size() * sizeof(float); + std::size_t t_result_bytes = sizeof(float); + + float* d_t_left; + float* d_t_right; + float* d_t_result; + + cudaMalloc((void**)(&d_t_left), t_left_bytes); + cudaMalloc((void**)(&d_t_right), t_right_bytes); + cudaMalloc((void**)(&d_t_result), t_result_bytes); + + cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice); + cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice); + + Eigen::CudaStreamDevice stream; + Eigen::GpuDevice gpu_device(&stream); + + Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > + gpu_t_left(d_t_left, m_size, k_size); + Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > + gpu_t_right(d_t_right, k_size, n_size); + Eigen::TensorMap<Eigen::Tensor<float, 0, DataLayout> > + gpu_t_result(d_t_result); + + gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims); + t_result = t_left.contract(t_right, dims); + + cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost); + if (fabs(t_result() - t_result_gpu()) > 1e-4f && + !Eigen::internal::isApprox(t_result(), t_result_gpu(), 1e-4f)) { + std::cout << "mismatch detected: " << t_result() + << " vs " << t_result_gpu() << std::endl; + assert(false); + } + + cudaFree((void*)d_t_left); + cudaFree((void*)d_t_right); + cudaFree((void*)d_t_result); +} + + +template<int DataLayout> +void test_cuda_contraction_m() { + for (int k = 32; k < 256; k++) { + test_cuda_contraction<ColMajor>(k, 128, 128); + test_cuda_contraction<RowMajor>(k, 128, 128); + } +} + +template<int DataLayout> +void test_cuda_contraction_k() { + for (int k = 32; k < 256; k++) { + test_cuda_contraction<ColMajor>(128, k, 128); + test_cuda_contraction<RowMajor>(128, k, 128); + } +} + +template<int DataLayout> +void test_cuda_contraction_n() { + for (int k = 32; k < 256; k++) { + test_cuda_contraction<ColMajor>(128, 128, k); + test_cuda_contraction<RowMajor>(128, 128, k); + } +} + + +template<int DataLayout> +void test_cuda_contraction_sizes() { + int m_sizes[] = { 31, 39, 63, 64, 65, + 127, 129, 255, 257 , 511, + 512, 513, 1023, 1024, 1025}; + + int n_sizes[] = { 31, 39, 63, 64, 65, + 127, 129, 255, 257, 511, + 512, 513, 1023, 1024, 1025}; + + int k_sizes[] = { 31, 39, 63, 64, 65, + 95, 96, 127, 129, 255, + 257, 511, 512, 513, 1023, + 1024, 1025}; + + for (int i = 0; i < 15; i++) { + for (int j = 0; j < 15; j++) { + for (int k = 0; k < 17; k++) { + test_cuda_contraction<DataLayout>(m_sizes[i], n_sizes[j], k_sizes[k]); + } + } + } +} + +void test_cxx11_tensor_cuda() +{ + CALL_SUBTEST_1(test_cuda_contraction<ColMajor>(128, 128, 128)); + CALL_SUBTEST_1(test_cuda_contraction<RowMajor>(128, 128, 128)); + + CALL_SUBTEST_1(test_scalar<ColMajor>(128, 128, 128)); + CALL_SUBTEST_1(test_scalar<RowMajor>(128, 128, 128)); + + CALL_SUBTEST_2(test_cuda_contraction_m<ColMajor>()); + CALL_SUBTEST_3(test_cuda_contraction_m<RowMajor>()); + + CALL_SUBTEST_4(test_cuda_contraction_k<ColMajor>()); + CALL_SUBTEST_5(test_cuda_contraction_k<RowMajor>()); + + CALL_SUBTEST_6(test_cuda_contraction_n<ColMajor>()); + CALL_SUBTEST_7(test_cuda_contraction_n<RowMajor>()); + + CALL_SUBTEST_8(test_cuda_contraction_sizes<ColMajor>()); + CALL_SUBTEST_9(test_cuda_contraction_sizes<RowMajor>()); +} |