summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/test/cxx11_tensor_contract_sycl.cpp
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2017-03-25 14:17:07 +0100
committerStanislaw Halik <sthalik@misaki.pl>2017-03-25 14:17:07 +0100
commit35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch)
tree7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/unsupported/test/cxx11_tensor_contract_sycl.cpp
parent6e8724193e40a932faf9064b664b529e7301c578 (diff)
update
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_contract_sycl.cpp')
-rw-r--r--eigen/unsupported/test/cxx11_tensor_contract_sycl.cpp290
1 files changed, 290 insertions, 0 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_contract_sycl.cpp b/eigen/unsupported/test/cxx11_tensor_contract_sycl.cpp
new file mode 100644
index 0000000..5bace66
--- /dev/null
+++ b/eigen/unsupported/test/cxx11_tensor_contract_sycl.cpp
@@ -0,0 +1,290 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#define EIGEN_TEST_NO_LONGDOUBLE
+#define EIGEN_TEST_NO_COMPLEX
+#define EIGEN_TEST_FUNC cxx11_tensor_contract_sycl
+#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
+#define EIGEN_USE_SYCL
+
+#include <iostream>
+#include <chrono>
+#include <ctime>
+
+#include "main.h"
+#include <unsupported/Eigen/CXX11/Tensor>
+
+using Eigen::array;
+using Eigen::SyclDevice;
+using Eigen::Tensor;
+using Eigen::TensorMap;
+template<int DataLayout, typename DataType, typename IndexType, typename Device>
+void static test_sycl_contraction(const Device& sycl_device, IndexType m_size, IndexType k_size, IndexType n_size)
+{
+ typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair DimPair;
+ static const DataType error_threshold =1e-4f;
+// std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
+ // with these dimensions, the output has 300 * 140 elements, which is
+ // more than 30 * 1024, which is the number of threads in blocks on
+ // a 15 SM GK110 GPU
+ Tensor<DataType, 2, DataLayout, IndexType> t_left(m_size, k_size);
+ Tensor<DataType, 2, DataLayout, IndexType> t_right(k_size, n_size);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result(m_size, n_size);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result_gpu(m_size, n_size);
+// Eigen::array<DimPair, 1> dims(DimPair(1, 0));
+ Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}};
+ Eigen::array<IndexType, 2> left_dims = {{m_size, k_size}};
+ Eigen::array<IndexType, 2> right_dims = {{k_size, n_size}};
+ Eigen::array<IndexType, 2> result_dims = {{m_size, n_size}};
+
+ t_left.setRandom();
+ t_right.setRandom();
+
+ std::size_t t_left_bytes = t_left.size() * sizeof(DataType);
+ std::size_t t_right_bytes = t_right.size() * sizeof(DataType);
+ std::size_t t_result_bytes = t_result.size() * sizeof(DataType);
+
+ DataType * d_t_left = static_cast<DataType*>(sycl_device.allocate(t_left_bytes));
+ DataType * d_t_right = static_cast<DataType*>(sycl_device.allocate(t_right_bytes));
+ DataType * d_t_result = static_cast<DataType*>(sycl_device.allocate(t_result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_t_left(d_t_left, left_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_t_right(d_t_right, right_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_t_result(d_t_result, result_dims);
+
+ sycl_device.memcpyHostToDevice(d_t_left, t_left.data(),t_left_bytes);
+ sycl_device.memcpyHostToDevice(d_t_right, t_right.data(),t_right_bytes);
+
+ gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims);
+ sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, t_result_bytes);
+
+ t_result = t_left.contract(t_right, dims);
+
+ for (IndexType i = 0; i < t_result.size(); i++) {
+ if (static_cast<DataType>(fabs(t_result(i) - t_result_gpu(i))) < error_threshold) {
+ continue;
+ }
+ if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), error_threshold)) {
+ continue;
+ }
+ std::cout << "mismatch detected at IndexType " << i << ": " << t_result(i)
+ << " vs " << t_result_gpu(i) << std::endl;
+ assert(false);
+ }
+ sycl_device.deallocate(d_t_left);
+ sycl_device.deallocate(d_t_right);
+ sycl_device.deallocate(d_t_result);
+}
+
+template<int DataLayout, typename DataType, typename IndexType, typename Device>
+void test_TF(const Device& sycl_device)
+{
+ typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair DimPair;
+ static const DataType error_threshold =1e-4f;
+ Eigen::array<IndexType, 2> left_dims = {{2, 3}};
+ Eigen::array<IndexType, 2> right_dims = {{3, 1}};
+ Eigen::array<IndexType, 2> res_dims = {{2, 1}};
+ Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}};
+
+
+ Tensor<DataType, 2, DataLayout, IndexType> t_left(left_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> t_right(right_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result_gpu(res_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result(res_dims);
+
+ t_left.data()[0] = 1.0f;
+ t_left.data()[1] = 2.0f;
+ t_left.data()[2] = 3.0f;
+ t_left.data()[3] = 4.0f;
+ t_left.data()[4] = 5.0f;
+ t_left.data()[5] = 6.0f;
+
+ t_right.data()[0] = -1.0f;
+ t_right.data()[1] = 0.5f;
+ t_right.data()[2] = 2.0f;
+
+ std::size_t t_left_bytes = t_left.size() * sizeof(DataType);
+ std::size_t t_right_bytes = t_right.size() * sizeof(DataType);
+ std::size_t t_result_bytes = t_result.size()*sizeof(DataType);
+
+
+ DataType * d_t_left = static_cast<DataType*>(sycl_device.allocate(t_left_bytes));
+ DataType * d_t_right = static_cast<DataType*>(sycl_device.allocate(t_right_bytes));
+ DataType * d_t_result = static_cast<DataType*>(sycl_device.allocate(t_result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_t_left(d_t_left, left_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_t_right(d_t_right, right_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_t_result(d_t_result, res_dims);
+
+ sycl_device.memcpyHostToDevice(d_t_left, t_left.data(),t_left_bytes);
+ sycl_device.memcpyHostToDevice(d_t_right, t_right.data(),t_right_bytes);
+
+ gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims);
+ sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, t_result_bytes);
+
+ t_result = t_left.contract(t_right, dims);
+
+ for (IndexType i = 0; i < t_result.size(); i++) {
+ if (static_cast<DataType>(fabs(t_result(i) - t_result_gpu(i))) < error_threshold) {
+ continue;
+ }
+ if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), error_threshold)) {
+ continue;
+ }
+ std::cout << "mismatch detected at IndexType " << i << ": " << t_result(i)
+ << " vs " << t_result_gpu(i) << std::endl;
+ assert(false);
+ }
+ sycl_device.deallocate(d_t_left);
+ sycl_device.deallocate(d_t_right);
+ sycl_device.deallocate(d_t_result);
+
+
+}
+
+template<int DataLayout, typename DataType, typename IndexType, typename Device>
+void test_scalar(const Device& sycl_device, IndexType m_size, IndexType k_size, IndexType n_size)
+{
+ //std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
+ // with these dimensions, the output has 300 * 140 elements, which is
+ // more than 30 * 1024, which is the number of threads in blocks on
+ // a 15 SM GK110 GPU
+ typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair DimPair;
+ static const DataType error_threshold =1e-4f;
+ Tensor<DataType, 2, DataLayout, IndexType> t_left(m_size, k_size);
+ Tensor<DataType, 2, DataLayout, IndexType> t_right(k_size, n_size);
+ Tensor<DataType, 0, DataLayout, IndexType> t_result;
+ Tensor<DataType, 0, DataLayout, IndexType> t_result_gpu;
+ Eigen::array<DimPair, 2> dims = {{DimPair(0, 0), DimPair(1, 1)}};
+ Eigen::array<IndexType, 2> left_dims = {{m_size, k_size}};
+ Eigen::array<IndexType, 2> right_dims = {{k_size, n_size}};
+ t_left.setRandom();
+ t_right.setRandom();
+
+ std::size_t t_left_bytes = t_left.size() * sizeof(DataType);
+ std::size_t t_right_bytes = t_right.size() * sizeof(DataType);
+ std::size_t t_result_bytes = sizeof(DataType);
+
+
+ DataType * d_t_left = static_cast<DataType*>(sycl_device.allocate(t_left_bytes));
+ DataType * d_t_right = static_cast<DataType*>(sycl_device.allocate(t_right_bytes));
+ DataType * d_t_result = static_cast<DataType*>(sycl_device.allocate(t_result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_t_left(d_t_left, left_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_t_right(d_t_right, right_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 0, DataLayout, IndexType> > gpu_t_result(d_t_result);
+
+ sycl_device.memcpyHostToDevice(d_t_left, t_left.data(),t_left_bytes);
+ sycl_device.memcpyHostToDevice(d_t_right, t_right.data(),t_right_bytes);
+
+ gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims);
+ sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, t_result_bytes);
+
+ t_result = t_left.contract(t_right, dims);
+
+ if (static_cast<DataType>(fabs(t_result() - t_result_gpu())) > error_threshold &&
+ !Eigen::internal::isApprox(t_result(), t_result_gpu(), error_threshold)) {
+ std::cout << "mismatch detected: " << t_result()
+ << " vs " << t_result_gpu() << std::endl;
+ assert(false);
+ }
+
+ sycl_device.deallocate(d_t_left);
+ sycl_device.deallocate(d_t_right);
+ sycl_device.deallocate(d_t_result);
+}
+
+
+template<int DataLayout, typename DataType, typename IndexType, typename Device>
+void test_sycl_contraction_m(const Device& sycl_device) {
+ for (IndexType k = 32; k < 256; k++) {
+ test_sycl_contraction<DataLayout, DataType, IndexType>(sycl_device, k, 128, 128);
+ }
+}
+
+template<int DataLayout, typename DataType, typename IndexType, typename Device>
+void test_sycl_contraction_k(const Device& sycl_device) {
+ for (IndexType k = 32; k < 256; k++) {
+ test_sycl_contraction<DataLayout, DataType, IndexType>(sycl_device, 128, k, 128);
+ }
+}
+
+template<int DataLayout, typename DataType, typename IndexType, typename Device>
+void test_sycl_contraction_n(const Device& sycl_device) {
+ for (IndexType k = 32; k < 256; k++) {
+ test_sycl_contraction<DataLayout, DataType, IndexType>(sycl_device, 128, 128, k);
+ }
+}
+
+
+template<int DataLayout, typename DataType, typename IndexType, typename Device>
+void test_sycl_contraction_sizes(const Device& sycl_device) {
+ IndexType m_sizes[] = { 31, 39, 63, 64, 65,
+ 127, 129, 255, 257 , 511,
+ 512, 513, 1023, 1024, 1025};
+
+ IndexType n_sizes[] = { 31, 39, 63, 64, 65,
+ 127, 129, 255, 257, 511,
+ 512, 513, 1023, 1024, 1025};
+
+ IndexType k_sizes[] = { 31, 39, 63, 64, 65,
+ 95, 96, 127, 129, 255,
+ 257, 511, 512, 513, 1023,
+ 1024, 1025};
+
+ for (IndexType i = 0; i < 15; i++) {
+ for (IndexType j = 0; j < 15; j++) {
+ for (IndexType k = 0; k < 17; k++) {
+ test_sycl_contraction<DataLayout, DataType,IndexType>(sycl_device, m_sizes[i], n_sizes[j], k_sizes[k]);
+ }
+ }
+ }
+}
+
+template <typename Dev_selector> void tensorContractionPerDevice(Dev_selector& s){
+ QueueInterface queueInterface(s);
+ auto sycl_device=Eigen::SyclDevice(&queueInterface);
+ test_sycl_contraction<ColMajor, float,int64_t>(sycl_device, 32, 32, 32);
+ test_sycl_contraction<RowMajor,float,int64_t>(sycl_device, 32, 32, 32);
+ test_scalar<ColMajor,float,int64_t>(sycl_device, 32, 32, 32);
+ test_scalar<RowMajor,float,int64_t>(sycl_device, 32, 32, 32);
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ test_sycl_contraction<ColMajor,float,int64_t>(sycl_device, 128, 128, 128);
+ test_sycl_contraction<RowMajor,float,int64_t>(sycl_device, 128, 128, 128);
+ test_scalar<ColMajor,float,int64_t>(sycl_device, 128, 128, 128);
+ test_scalar<RowMajor,float,int64_t>(sycl_device, 128, 128, 128);
+ test_sycl_contraction_m<ColMajor, float, int64_t>(sycl_device);
+ test_sycl_contraction_m<RowMajor, float, int64_t>(sycl_device);
+ test_sycl_contraction_n<ColMajor, float, int64_t>(sycl_device);
+ test_sycl_contraction_n<RowMajor, float, int64_t>(sycl_device);
+ test_sycl_contraction_k<ColMajor, float, int64_t>(sycl_device);
+ test_sycl_contraction_k<RowMajor, float, int64_t>(sycl_device);
+ test_sycl_contraction_sizes<ColMajor, float, int64_t>(sycl_device);
+ test_sycl_contraction_sizes<RowMajor, float, int64_t>(sycl_device);
+ test_TF<RowMajor, float, int64_t>(sycl_device);
+ test_TF<ColMajor, float, int64_t>(sycl_device);
+
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end-start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "finished computation at " << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+
+}
+
+void test_cxx11_tensor_contract_sycl() {
+ for (const auto& device :Eigen::get_sycl_supported_devices()) {
+ CALL_SUBTEST(tensorContractionPerDevice(device));
+ }
+}