diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/unsupported/test/cxx11_tensor_contraction.cpp | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_contraction.cpp')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_contraction.cpp | 545 |
1 files changed, 545 insertions, 0 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_contraction.cpp b/eigen/unsupported/test/cxx11_tensor_contraction.cpp new file mode 100644 index 0000000..ace9705 --- /dev/null +++ b/eigen/unsupported/test/cxx11_tensor_contraction.cpp @@ -0,0 +1,545 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" + +#include <Eigen/CXX11/Tensor> + +using Eigen::DefaultDevice; +using Eigen::Tensor; + +typedef Tensor<float, 1>::DimensionPair DimPair; + +template<int DataLayout> +static void test_evals() +{ + Tensor<float, 2, DataLayout> mat1(2, 3); + Tensor<float, 2, DataLayout> mat2(2, 3); + Tensor<float, 2, DataLayout> mat3(3, 2); + + mat1.setRandom(); + mat2.setRandom(); + mat3.setRandom(); + + Tensor<float, 2, DataLayout> mat4(3,3); + mat4.setZero(); + Eigen::array<DimPair, 1> dims3 = {{DimPair(0, 0)}}; + typedef TensorEvaluator<decltype(mat1.contract(mat2, dims3)), DefaultDevice> Evaluator; + Evaluator eval(mat1.contract(mat2, dims3), DefaultDevice()); + eval.evalTo(mat4.data()); + EIGEN_STATIC_ASSERT(Evaluator::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); + VERIFY_IS_EQUAL(eval.dimensions()[0], 3); + VERIFY_IS_EQUAL(eval.dimensions()[1], 3); + + VERIFY_IS_APPROX(mat4(0,0), mat1(0,0)*mat2(0,0) + mat1(1,0)*mat2(1,0)); + VERIFY_IS_APPROX(mat4(0,1), mat1(0,0)*mat2(0,1) + mat1(1,0)*mat2(1,1)); + VERIFY_IS_APPROX(mat4(0,2), mat1(0,0)*mat2(0,2) + mat1(1,0)*mat2(1,2)); + VERIFY_IS_APPROX(mat4(1,0), mat1(0,1)*mat2(0,0) + mat1(1,1)*mat2(1,0)); + VERIFY_IS_APPROX(mat4(1,1), mat1(0,1)*mat2(0,1) + mat1(1,1)*mat2(1,1)); + VERIFY_IS_APPROX(mat4(1,2), mat1(0,1)*mat2(0,2) + mat1(1,1)*mat2(1,2)); + VERIFY_IS_APPROX(mat4(2,0), mat1(0,2)*mat2(0,0) + mat1(1,2)*mat2(1,0)); + VERIFY_IS_APPROX(mat4(2,1), mat1(0,2)*mat2(0,1) + mat1(1,2)*mat2(1,1)); + VERIFY_IS_APPROX(mat4(2,2), mat1(0,2)*mat2(0,2) + mat1(1,2)*mat2(1,2)); + + Tensor<float, 2, DataLayout> mat5(2,2); + mat5.setZero(); + Eigen::array<DimPair, 1> dims4 = {{DimPair(1, 1)}}; + typedef TensorEvaluator<decltype(mat1.contract(mat2, dims4)), DefaultDevice> Evaluator2; + Evaluator2 eval2(mat1.contract(mat2, dims4), DefaultDevice()); + eval2.evalTo(mat5.data()); + EIGEN_STATIC_ASSERT(Evaluator2::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); + VERIFY_IS_EQUAL(eval2.dimensions()[0], 2); + VERIFY_IS_EQUAL(eval2.dimensions()[1], 2); + + VERIFY_IS_APPROX(mat5(0,0), mat1(0,0)*mat2(0,0) + mat1(0,1)*mat2(0,1) + mat1(0,2)*mat2(0,2)); + VERIFY_IS_APPROX(mat5(0,1), mat1(0,0)*mat2(1,0) + mat1(0,1)*mat2(1,1) + mat1(0,2)*mat2(1,2)); + VERIFY_IS_APPROX(mat5(1,0), mat1(1,0)*mat2(0,0) + mat1(1,1)*mat2(0,1) + mat1(1,2)*mat2(0,2)); + VERIFY_IS_APPROX(mat5(1,1), mat1(1,0)*mat2(1,0) + mat1(1,1)*mat2(1,1) + mat1(1,2)*mat2(1,2)); + + Tensor<float, 2, DataLayout> mat6(2,2); + mat6.setZero(); + Eigen::array<DimPair, 1> dims6 = {{DimPair(1, 0)}}; + typedef TensorEvaluator<decltype(mat1.contract(mat3, dims6)), DefaultDevice> Evaluator3; + Evaluator3 eval3(mat1.contract(mat3, dims6), DefaultDevice()); + eval3.evalTo(mat6.data()); + EIGEN_STATIC_ASSERT(Evaluator3::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); + VERIFY_IS_EQUAL(eval3.dimensions()[0], 2); + VERIFY_IS_EQUAL(eval3.dimensions()[1], 2); + + VERIFY_IS_APPROX(mat6(0,0), mat1(0,0)*mat3(0,0) + mat1(0,1)*mat3(1,0) + mat1(0,2)*mat3(2,0)); + VERIFY_IS_APPROX(mat6(0,1), mat1(0,0)*mat3(0,1) + mat1(0,1)*mat3(1,1) + mat1(0,2)*mat3(2,1)); + VERIFY_IS_APPROX(mat6(1,0), mat1(1,0)*mat3(0,0) + mat1(1,1)*mat3(1,0) + mat1(1,2)*mat3(2,0)); + VERIFY_IS_APPROX(mat6(1,1), mat1(1,0)*mat3(0,1) + mat1(1,1)*mat3(1,1) + mat1(1,2)*mat3(2,1)); +} + +template<int DataLayout> +static void test_scalar() +{ + Tensor<float, 1, DataLayout> vec1({6}); + Tensor<float, 1, DataLayout> vec2({6}); + + vec1.setRandom(); + vec2.setRandom(); + + Eigen::array<DimPair, 1> dims = {{DimPair(0, 0)}}; + Tensor<float, 0, DataLayout> scalar = vec1.contract(vec2, dims); + + float expected = 0.0f; + for (int i = 0; i < 6; ++i) { + expected += vec1(i) * vec2(i); + } + VERIFY_IS_APPROX(scalar(), expected); +} + +template<int DataLayout> +static void test_multidims() +{ + Tensor<float, 3, DataLayout> mat1(2, 2, 2); + Tensor<float, 4, DataLayout> mat2(2, 2, 2, 2); + + mat1.setRandom(); + mat2.setRandom(); + + Tensor<float, 3, DataLayout> mat3(2, 2, 2); + mat3.setZero(); + Eigen::array<DimPair, 2> dims = {{DimPair(1, 2), DimPair(2, 3)}}; + typedef TensorEvaluator<decltype(mat1.contract(mat2, dims)), DefaultDevice> Evaluator; + Evaluator eval(mat1.contract(mat2, dims), DefaultDevice()); + eval.evalTo(mat3.data()); + EIGEN_STATIC_ASSERT(Evaluator::NumDims==3ul, YOU_MADE_A_PROGRAMMING_MISTAKE); + VERIFY_IS_EQUAL(eval.dimensions()[0], 2); + VERIFY_IS_EQUAL(eval.dimensions()[1], 2); + VERIFY_IS_EQUAL(eval.dimensions()[2], 2); + + VERIFY_IS_APPROX(mat3(0,0,0), mat1(0,0,0)*mat2(0,0,0,0) + mat1(0,1,0)*mat2(0,0,1,0) + + mat1(0,0,1)*mat2(0,0,0,1) + mat1(0,1,1)*mat2(0,0,1,1)); + VERIFY_IS_APPROX(mat3(0,0,1), mat1(0,0,0)*mat2(0,1,0,0) + mat1(0,1,0)*mat2(0,1,1,0) + + mat1(0,0,1)*mat2(0,1,0,1) + mat1(0,1,1)*mat2(0,1,1,1)); + VERIFY_IS_APPROX(mat3(0,1,0), mat1(0,0,0)*mat2(1,0,0,0) + mat1(0,1,0)*mat2(1,0,1,0) + + mat1(0,0,1)*mat2(1,0,0,1) + mat1(0,1,1)*mat2(1,0,1,1)); + VERIFY_IS_APPROX(mat3(0,1,1), mat1(0,0,0)*mat2(1,1,0,0) + mat1(0,1,0)*mat2(1,1,1,0) + + mat1(0,0,1)*mat2(1,1,0,1) + mat1(0,1,1)*mat2(1,1,1,1)); + VERIFY_IS_APPROX(mat3(1,0,0), mat1(1,0,0)*mat2(0,0,0,0) + mat1(1,1,0)*mat2(0,0,1,0) + + mat1(1,0,1)*mat2(0,0,0,1) + mat1(1,1,1)*mat2(0,0,1,1)); + VERIFY_IS_APPROX(mat3(1,0,1), mat1(1,0,0)*mat2(0,1,0,0) + mat1(1,1,0)*mat2(0,1,1,0) + + mat1(1,0,1)*mat2(0,1,0,1) + mat1(1,1,1)*mat2(0,1,1,1)); + VERIFY_IS_APPROX(mat3(1,1,0), mat1(1,0,0)*mat2(1,0,0,0) + mat1(1,1,0)*mat2(1,0,1,0) + + mat1(1,0,1)*mat2(1,0,0,1) + mat1(1,1,1)*mat2(1,0,1,1)); + VERIFY_IS_APPROX(mat3(1,1,1), mat1(1,0,0)*mat2(1,1,0,0) + mat1(1,1,0)*mat2(1,1,1,0) + + mat1(1,0,1)*mat2(1,1,0,1) + mat1(1,1,1)*mat2(1,1,1,1)); + + Tensor<float, 2, DataLayout> mat4(2, 2); + Tensor<float, 3, DataLayout> mat5(2, 2, 2); + + mat4.setRandom(); + mat5.setRandom(); + + Tensor<float, 1, DataLayout> mat6(2); + mat6.setZero(); + Eigen::array<DimPair, 2> dims2({{DimPair(0, 1), DimPair(1, 0)}}); + typedef TensorEvaluator<decltype(mat4.contract(mat5, dims2)), DefaultDevice> Evaluator2; + Evaluator2 eval2(mat4.contract(mat5, dims2), DefaultDevice()); + eval2.evalTo(mat6.data()); + EIGEN_STATIC_ASSERT(Evaluator2::NumDims==1ul, YOU_MADE_A_PROGRAMMING_MISTAKE); + VERIFY_IS_EQUAL(eval2.dimensions()[0], 2); + + VERIFY_IS_APPROX(mat6(0), mat4(0,0)*mat5(0,0,0) + mat4(1,0)*mat5(0,1,0) + + mat4(0,1)*mat5(1,0,0) + mat4(1,1)*mat5(1,1,0)); + VERIFY_IS_APPROX(mat6(1), mat4(0,0)*mat5(0,0,1) + mat4(1,0)*mat5(0,1,1) + + mat4(0,1)*mat5(1,0,1) + mat4(1,1)*mat5(1,1,1)); +} + +template<int DataLayout> +static void test_holes() { + Tensor<float, 4, DataLayout> t1(2, 5, 7, 3); + Tensor<float, 5, DataLayout> t2(2, 7, 11, 13, 3); + t1.setRandom(); + t2.setRandom(); + + Eigen::array<DimPair, 2> dims = {{DimPair(0, 0), DimPair(3, 4)}}; + Tensor<float, 5, DataLayout> result = t1.contract(t2, dims); + VERIFY_IS_EQUAL(result.dimension(0), 5); + VERIFY_IS_EQUAL(result.dimension(1), 7); + VERIFY_IS_EQUAL(result.dimension(2), 7); + VERIFY_IS_EQUAL(result.dimension(3), 11); + VERIFY_IS_EQUAL(result.dimension(4), 13); + + for (int i = 0; i < 5; ++i) { + for (int j = 0; j < 5; ++j) { + for (int k = 0; k < 5; ++k) { + for (int l = 0; l < 5; ++l) { + for (int m = 0; m < 5; ++m) { + VERIFY_IS_APPROX(result(i, j, k, l, m), + t1(0, i, j, 0) * t2(0, k, l, m, 0) + + t1(1, i, j, 0) * t2(1, k, l, m, 0) + + t1(0, i, j, 1) * t2(0, k, l, m, 1) + + t1(1, i, j, 1) * t2(1, k, l, m, 1) + + t1(0, i, j, 2) * t2(0, k, l, m, 2) + + t1(1, i, j, 2) * t2(1, k, l, m, 2)); + } + } + } + } + } +} + +template<int DataLayout> +static void test_full_redux() +{ + Tensor<float, 2, DataLayout> t1(2, 2); + Tensor<float, 3, DataLayout> t2(2, 2, 2); + t1.setRandom(); + t2.setRandom(); + + Eigen::array<DimPair, 2> dims = {{DimPair(0, 0), DimPair(1, 1)}}; + Tensor<float, 1, DataLayout> result = t1.contract(t2, dims); + VERIFY_IS_EQUAL(result.dimension(0), 2); + VERIFY_IS_APPROX(result(0), t1(0, 0) * t2(0, 0, 0) + t1(1, 0) * t2(1, 0, 0) + + t1(0, 1) * t2(0, 1, 0) + t1(1, 1) * t2(1, 1, 0)); + VERIFY_IS_APPROX(result(1), t1(0, 0) * t2(0, 0, 1) + t1(1, 0) * t2(1, 0, 1) + + t1(0, 1) * t2(0, 1, 1) + t1(1, 1) * t2(1, 1, 1)); + + dims[0] = DimPair(1, 0); + dims[1] = DimPair(2, 1); + result = t2.contract(t1, dims); + VERIFY_IS_EQUAL(result.dimension(0), 2); + VERIFY_IS_APPROX(result(0), t1(0, 0) * t2(0, 0, 0) + t1(1, 0) * t2(0, 1, 0) + + t1(0, 1) * t2(0, 0, 1) + t1(1, 1) * t2(0, 1, 1)); + VERIFY_IS_APPROX(result(1), t1(0, 0) * t2(1, 0, 0) + t1(1, 0) * t2(1, 1, 0) + + t1(0, 1) * t2(1, 0, 1) + t1(1, 1) * t2(1, 1, 1)); +} + +template<int DataLayout> +static void test_contraction_of_contraction() +{ + Tensor<float, 2, DataLayout> t1(2, 2); + Tensor<float, 2, DataLayout> t2(2, 2); + Tensor<float, 2, DataLayout> t3(2, 2); + Tensor<float, 2, DataLayout> t4(2, 2); + t1.setRandom(); + t2.setRandom(); + t3.setRandom(); + t4.setRandom(); + + Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}}; + auto contract1 = t1.contract(t2, dims); + auto diff = t3 - contract1; + auto contract2 = t1.contract(t4, dims); + Tensor<float, 2, DataLayout> result = contract2.contract(diff, dims); + + VERIFY_IS_EQUAL(result.dimension(0), 2); + VERIFY_IS_EQUAL(result.dimension(1), 2); + + Eigen::Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> + m1(t1.data(), 2, 2), m2(t2.data(), 2, 2), m3(t3.data(), 2, 2), + m4(t4.data(), 2, 2); + Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> + expected = (m1 * m4) * (m3 - m1 * m2); + + VERIFY_IS_APPROX(result(0, 0), expected(0, 0)); + VERIFY_IS_APPROX(result(0, 1), expected(0, 1)); + VERIFY_IS_APPROX(result(1, 0), expected(1, 0)); + VERIFY_IS_APPROX(result(1, 1), expected(1, 1)); +} + +template<int DataLayout> +static void test_expr() +{ + Tensor<float, 2, DataLayout> mat1(2, 3); + Tensor<float, 2, DataLayout> mat2(3, 2); + mat1.setRandom(); + mat2.setRandom(); + + Tensor<float, 2, DataLayout> mat3(2,2); + + Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}}; + mat3 = mat1.contract(mat2, dims); + + VERIFY_IS_APPROX(mat3(0,0), mat1(0,0)*mat2(0,0) + mat1(0,1)*mat2(1,0) + mat1(0,2)*mat2(2,0)); + VERIFY_IS_APPROX(mat3(0,1), mat1(0,0)*mat2(0,1) + mat1(0,1)*mat2(1,1) + mat1(0,2)*mat2(2,1)); + VERIFY_IS_APPROX(mat3(1,0), mat1(1,0)*mat2(0,0) + mat1(1,1)*mat2(1,0) + mat1(1,2)*mat2(2,0)); + VERIFY_IS_APPROX(mat3(1,1), mat1(1,0)*mat2(0,1) + mat1(1,1)*mat2(1,1) + mat1(1,2)*mat2(2,1)); +} + +template<int DataLayout> +static void test_out_of_order_contraction() +{ + Tensor<float, 3, DataLayout> mat1(2, 2, 2); + Tensor<float, 3, DataLayout> mat2(2, 2, 2); + + mat1.setRandom(); + mat2.setRandom(); + + Tensor<float, 2, DataLayout> mat3(2, 2); + + Eigen::array<DimPair, 2> dims = {{DimPair(2, 0), DimPair(0, 2)}}; + mat3 = mat1.contract(mat2, dims); + + VERIFY_IS_APPROX(mat3(0, 0), + mat1(0,0,0)*mat2(0,0,0) + mat1(1,0,0)*mat2(0,0,1) + + mat1(0,0,1)*mat2(1,0,0) + mat1(1,0,1)*mat2(1,0,1)); + VERIFY_IS_APPROX(mat3(1, 0), + mat1(0,1,0)*mat2(0,0,0) + mat1(1,1,0)*mat2(0,0,1) + + mat1(0,1,1)*mat2(1,0,0) + mat1(1,1,1)*mat2(1,0,1)); + VERIFY_IS_APPROX(mat3(0, 1), + mat1(0,0,0)*mat2(0,1,0) + mat1(1,0,0)*mat2(0,1,1) + + mat1(0,0,1)*mat2(1,1,0) + mat1(1,0,1)*mat2(1,1,1)); + VERIFY_IS_APPROX(mat3(1, 1), + mat1(0,1,0)*mat2(0,1,0) + mat1(1,1,0)*mat2(0,1,1) + + mat1(0,1,1)*mat2(1,1,0) + mat1(1,1,1)*mat2(1,1,1)); + + Eigen::array<DimPair, 2> dims2 = {{DimPair(0, 2), DimPair(2, 0)}}; + mat3 = mat1.contract(mat2, dims2); + + VERIFY_IS_APPROX(mat3(0, 0), + mat1(0,0,0)*mat2(0,0,0) + mat1(1,0,0)*mat2(0,0,1) + + mat1(0,0,1)*mat2(1,0,0) + mat1(1,0,1)*mat2(1,0,1)); + VERIFY_IS_APPROX(mat3(1, 0), + mat1(0,1,0)*mat2(0,0,0) + mat1(1,1,0)*mat2(0,0,1) + + mat1(0,1,1)*mat2(1,0,0) + mat1(1,1,1)*mat2(1,0,1)); + VERIFY_IS_APPROX(mat3(0, 1), + mat1(0,0,0)*mat2(0,1,0) + mat1(1,0,0)*mat2(0,1,1) + + mat1(0,0,1)*mat2(1,1,0) + mat1(1,0,1)*mat2(1,1,1)); + VERIFY_IS_APPROX(mat3(1, 1), + mat1(0,1,0)*mat2(0,1,0) + mat1(1,1,0)*mat2(0,1,1) + + mat1(0,1,1)*mat2(1,1,0) + mat1(1,1,1)*mat2(1,1,1)); + +} + +template<int DataLayout> +static void test_consistency() +{ + // this does something like testing (A*B)^T = (B^T * A^T) + + Tensor<float, 3, DataLayout> mat1(4, 3, 5); + Tensor<float, 5, DataLayout> mat2(3, 2, 1, 5, 4); + mat1.setRandom(); + mat2.setRandom(); + + Tensor<float, 4, DataLayout> mat3(5, 2, 1, 5); + Tensor<float, 4, DataLayout> mat4(2, 1, 5, 5); + + // contract on dimensions of size 4 and 3 + Eigen::array<DimPair, 2> dims1 = {{DimPair(0, 4), DimPair(1, 0)}}; + Eigen::array<DimPair, 2> dims2 = {{DimPair(4, 0), DimPair(0, 1)}}; + + mat3 = mat1.contract(mat2, dims1); + mat4 = mat2.contract(mat1, dims2); + + // check that these are equal except for ordering of dimensions + if (DataLayout == ColMajor) { + for (size_t i = 0; i < 5; i++) { + for (size_t j = 0; j < 10; j++) { + VERIFY_IS_APPROX(mat3.data()[i + 5 * j], mat4.data()[j + 10 * i]); + } + } + } else { + // Row major + for (size_t i = 0; i < 5; i++) { + for (size_t j = 0; j < 10; j++) { + VERIFY_IS_APPROX(mat3.data()[10 * i + j], mat4.data()[i + 5 * j]); + } + } + } +} + +template<int DataLayout> +static void test_large_contraction() +{ + Tensor<float, 4, DataLayout> t_left(30, 50, 8, 31); + Tensor<float, 5, DataLayout> t_right(8, 31, 7, 20, 10); + Tensor<float, 5, DataLayout> t_result(30, 50, 7, 20, 10); + + t_left.setRandom(); + t_right.setRandom(); + + // Add a little offset so that the results won't be close to zero. + t_left += t_left.constant(1.0f); + t_right += t_right.constant(1.0f); + + typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf; + MapXf m_left(t_left.data(), 1500, 248); + MapXf m_right(t_right.data(), 248, 1400); + Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(1500, 1400); + + // this contraction should be equivalent to a single matrix multiplication + Eigen::array<DimPair, 2> dims = {{DimPair(2, 0), DimPair(3, 1)}}; + + // compute results by separate methods + t_result = t_left.contract(t_right, dims); + m_result = m_left * m_right; + + for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { + VERIFY(&t_result.data()[i] != &m_result.data()[i]); + VERIFY_IS_APPROX(t_result.data()[i], m_result.data()[i]); + } +} + +template<int DataLayout> +static void test_matrix_vector() +{ + Tensor<float, 2, DataLayout> t_left(30, 50); + Tensor<float, 1, DataLayout> t_right(50); + Tensor<float, 1, DataLayout> t_result(30); + + t_left.setRandom(); + t_right.setRandom(); + + typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf; + MapXf m_left(t_left.data(), 30, 50); + MapXf m_right(t_right.data(), 50, 1); + Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(30, 1); + + // this contraction should be equivalent to a single matrix multiplication + Eigen::array<DimPair, 1> dims{{DimPair(1, 0)}}; + + // compute results by separate methods + t_result = t_left.contract(t_right, dims); + m_result = m_left * m_right; + + for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { + VERIFY(internal::isApprox(t_result(i), m_result(i, 0), 1)); + } +} + + +template<int DataLayout> +static void test_tensor_vector() +{ + Tensor<float, 3, DataLayout> t_left(7, 13, 17); + Tensor<float, 2, DataLayout> t_right(1, 7); + + t_left.setRandom(); + t_right.setRandom(); + + typedef typename Tensor<float, 1, DataLayout>::DimensionPair DimensionPair; + Eigen::array<DimensionPair, 1> dim_pair01{{{0, 1}}}; + Tensor<float, 3, DataLayout> t_result = t_left.contract(t_right, dim_pair01); + + typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf; + MapXf m_left(t_left.data(), 7, 13*17); + MapXf m_right(t_right.data(), 1, 7); + Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result = m_left.transpose() * m_right.transpose(); + + for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { + VERIFY(internal::isApprox(t_result(i), m_result(i, 0), 1)); + } +} + + +template<int DataLayout> +static void test_small_blocking_factors() +{ + Tensor<float, 4, DataLayout> t_left(30, 5, 3, 31); + Tensor<float, 5, DataLayout> t_right(3, 31, 7, 20, 1); + t_left.setRandom(); + t_right.setRandom(); + + // Add a little offset so that the results won't be close to zero. + t_left += t_left.constant(1.0f); + t_right += t_right.constant(1.0f); + + // Force the cache sizes, which results in smaller blocking factors. + Eigen::setCpuCacheSizes(896, 1920, 2944); + + // this contraction should be equivalent to a single matrix multiplication + Eigen::array<DimPair, 2> dims = {{DimPair(2, 0), DimPair(3, 1)}}; + Tensor<float, 5, DataLayout> t_result; + t_result = t_left.contract(t_right, dims); + + // compute result using a simple eigen matrix product + Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> m_left(t_left.data(), 150, 93); + Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> m_right(t_right.data(), 93, 140); + Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result = m_left * m_right; + + for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { + VERIFY_IS_APPROX(t_result.data()[i], m_result.data()[i]); + } +} + +template<int DataLayout> +static void test_tensor_product() +{ + Tensor<float, 2, DataLayout> mat1(2, 3); + Tensor<float, 2, DataLayout> mat2(4, 1); + mat1.setRandom(); + mat2.setRandom(); + + Tensor<float, 4, DataLayout> result = mat1.contract(mat2, Eigen::array<DimPair, 0>{{}}); + + VERIFY_IS_EQUAL(result.dimension(0), 2); + VERIFY_IS_EQUAL(result.dimension(1), 3); + VERIFY_IS_EQUAL(result.dimension(2), 4); + VERIFY_IS_EQUAL(result.dimension(3), 1); + for (int i = 0; i < result.dimension(0); ++i) { + for (int j = 0; j < result.dimension(1); ++j) { + for (int k = 0; k < result.dimension(2); ++k) { + for (int l = 0; l < result.dimension(3); ++l) { + VERIFY_IS_APPROX(result(i, j, k, l), mat1(i, j) * mat2(k, l) ); + } + } + } + } +} + + +template<int DataLayout> +static void test_const_inputs() +{ + Tensor<float, 2, DataLayout> in1(2, 3); + Tensor<float, 2, DataLayout> in2(3, 2); + in1.setRandom(); + in2.setRandom(); + + TensorMap<Tensor<const float, 2, DataLayout> > mat1(in1.data(), 2, 3); + TensorMap<Tensor<const float, 2, DataLayout> > mat2(in2.data(), 3, 2); + Tensor<float, 2, DataLayout> mat3(2,2); + + Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}}; + mat3 = mat1.contract(mat2, dims); + + VERIFY_IS_APPROX(mat3(0,0), mat1(0,0)*mat2(0,0) + mat1(0,1)*mat2(1,0) + mat1(0,2)*mat2(2,0)); + VERIFY_IS_APPROX(mat3(0,1), mat1(0,0)*mat2(0,1) + mat1(0,1)*mat2(1,1) + mat1(0,2)*mat2(2,1)); + VERIFY_IS_APPROX(mat3(1,0), mat1(1,0)*mat2(0,0) + mat1(1,1)*mat2(1,0) + mat1(1,2)*mat2(2,0)); + VERIFY_IS_APPROX(mat3(1,1), mat1(1,0)*mat2(0,1) + mat1(1,1)*mat2(1,1) + mat1(1,2)*mat2(2,1)); +} + +void test_cxx11_tensor_contraction() +{ + CALL_SUBTEST(test_evals<ColMajor>()); + CALL_SUBTEST(test_evals<RowMajor>()); + CALL_SUBTEST(test_scalar<ColMajor>()); + CALL_SUBTEST(test_scalar<RowMajor>()); + CALL_SUBTEST(test_multidims<ColMajor>()); + CALL_SUBTEST(test_multidims<RowMajor>()); + CALL_SUBTEST(test_holes<ColMajor>()); + CALL_SUBTEST(test_holes<RowMajor>()); + CALL_SUBTEST(test_full_redux<ColMajor>()); + CALL_SUBTEST(test_full_redux<RowMajor>()); + CALL_SUBTEST(test_contraction_of_contraction<ColMajor>()); + CALL_SUBTEST(test_contraction_of_contraction<RowMajor>()); + CALL_SUBTEST(test_expr<ColMajor>()); + CALL_SUBTEST(test_expr<RowMajor>()); + CALL_SUBTEST(test_out_of_order_contraction<ColMajor>()); + CALL_SUBTEST(test_out_of_order_contraction<RowMajor>()); + CALL_SUBTEST(test_consistency<ColMajor>()); + CALL_SUBTEST(test_consistency<RowMajor>()); + CALL_SUBTEST(test_large_contraction<ColMajor>()); + CALL_SUBTEST(test_large_contraction<RowMajor>()); + CALL_SUBTEST(test_matrix_vector<ColMajor>()); + CALL_SUBTEST(test_matrix_vector<RowMajor>()); + CALL_SUBTEST(test_tensor_vector<ColMajor>()); + CALL_SUBTEST(test_tensor_vector<RowMajor>()); + CALL_SUBTEST(test_small_blocking_factors<ColMajor>()); + CALL_SUBTEST(test_small_blocking_factors<RowMajor>()); + CALL_SUBTEST(test_tensor_product<ColMajor>()); + CALL_SUBTEST(test_tensor_product<RowMajor>()); + CALL_SUBTEST(test_const_inputs<ColMajor>()); + CALL_SUBTEST(test_const_inputs<RowMajor>()); +} |