diff options
Diffstat (limited to 'eigen/Eigen/src/Core/MathFunctions.h')
-rw-r--r-- | eigen/Eigen/src/Core/MathFunctions.h | 1415 |
1 files changed, 0 insertions, 1415 deletions
diff --git a/eigen/Eigen/src/Core/MathFunctions.h b/eigen/Eigen/src/Core/MathFunctions.h deleted file mode 100644 index b249ce0..0000000 --- a/eigen/Eigen/src/Core/MathFunctions.h +++ /dev/null @@ -1,1415 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATHFUNCTIONS_H -#define EIGEN_MATHFUNCTIONS_H - -// source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html -// TODO this should better be moved to NumTraits -#define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L - - -namespace Eigen { - -// On WINCE, std::abs is defined for int only, so let's defined our own overloads: -// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too. -#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500 -long abs(long x) { return (labs(x)); } -double abs(double x) { return (fabs(x)); } -float abs(float x) { return (fabsf(x)); } -long double abs(long double x) { return (fabsl(x)); } -#endif - -namespace internal { - -/** \internal \class global_math_functions_filtering_base - * - * What it does: - * Defines a typedef 'type' as follows: - * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then - * global_math_functions_filtering_base<T>::type is a typedef for it. - * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T. - * - * How it's used: - * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions. - * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know - * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>. - * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization - * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it. - * - * How it's implemented: - * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace - * the typename dummy by an integer template parameter, it doesn't work anymore! - */ - -template<typename T, typename dummy = void> -struct global_math_functions_filtering_base -{ - typedef T type; -}; - -template<typename T> struct always_void { typedef void type; }; - -template<typename T> -struct global_math_functions_filtering_base - <T, - typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type - > -{ - typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type; -}; - -#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type> -#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type - -/**************************************************************************** -* Implementation of real * -****************************************************************************/ - -template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> -struct real_default_impl -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline RealScalar run(const Scalar& x) - { - return x; - } -}; - -template<typename Scalar> -struct real_default_impl<Scalar,true> -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline RealScalar run(const Scalar& x) - { - using std::real; - return real(x); - } -}; - -template<typename Scalar> struct real_impl : real_default_impl<Scalar> {}; - -#ifdef __CUDA_ARCH__ -template<typename T> -struct real_impl<std::complex<T> > -{ - typedef T RealScalar; - EIGEN_DEVICE_FUNC - static inline T run(const std::complex<T>& x) - { - return x.real(); - } -}; -#endif - -template<typename Scalar> -struct real_retval -{ - typedef typename NumTraits<Scalar>::Real type; -}; - -/**************************************************************************** -* Implementation of imag * -****************************************************************************/ - -template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> -struct imag_default_impl -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline RealScalar run(const Scalar&) - { - return RealScalar(0); - } -}; - -template<typename Scalar> -struct imag_default_impl<Scalar,true> -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline RealScalar run(const Scalar& x) - { - using std::imag; - return imag(x); - } -}; - -template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {}; - -#ifdef __CUDA_ARCH__ -template<typename T> -struct imag_impl<std::complex<T> > -{ - typedef T RealScalar; - EIGEN_DEVICE_FUNC - static inline T run(const std::complex<T>& x) - { - return x.imag(); - } -}; -#endif - -template<typename Scalar> -struct imag_retval -{ - typedef typename NumTraits<Scalar>::Real type; -}; - -/**************************************************************************** -* Implementation of real_ref * -****************************************************************************/ - -template<typename Scalar> -struct real_ref_impl -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline RealScalar& run(Scalar& x) - { - return reinterpret_cast<RealScalar*>(&x)[0]; - } - EIGEN_DEVICE_FUNC - static inline const RealScalar& run(const Scalar& x) - { - return reinterpret_cast<const RealScalar*>(&x)[0]; - } -}; - -template<typename Scalar> -struct real_ref_retval -{ - typedef typename NumTraits<Scalar>::Real & type; -}; - -/**************************************************************************** -* Implementation of imag_ref * -****************************************************************************/ - -template<typename Scalar, bool IsComplex> -struct imag_ref_default_impl -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline RealScalar& run(Scalar& x) - { - return reinterpret_cast<RealScalar*>(&x)[1]; - } - EIGEN_DEVICE_FUNC - static inline const RealScalar& run(const Scalar& x) - { - return reinterpret_cast<RealScalar*>(&x)[1]; - } -}; - -template<typename Scalar> -struct imag_ref_default_impl<Scalar, false> -{ - EIGEN_DEVICE_FUNC - static inline Scalar run(Scalar&) - { - return Scalar(0); - } - EIGEN_DEVICE_FUNC - static inline const Scalar run(const Scalar&) - { - return Scalar(0); - } -}; - -template<typename Scalar> -struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; - -template<typename Scalar> -struct imag_ref_retval -{ - typedef typename NumTraits<Scalar>::Real & type; -}; - -/**************************************************************************** -* Implementation of conj * -****************************************************************************/ - -template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> -struct conj_impl -{ - EIGEN_DEVICE_FUNC - static inline Scalar run(const Scalar& x) - { - return x; - } -}; - -template<typename Scalar> -struct conj_impl<Scalar,true> -{ - EIGEN_DEVICE_FUNC - static inline Scalar run(const Scalar& x) - { - using std::conj; - return conj(x); - } -}; - -template<typename Scalar> -struct conj_retval -{ - typedef Scalar type; -}; - -/**************************************************************************** -* Implementation of abs2 * -****************************************************************************/ - -template<typename Scalar,bool IsComplex> -struct abs2_impl_default -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline RealScalar run(const Scalar& x) - { - return x*x; - } -}; - -template<typename Scalar> -struct abs2_impl_default<Scalar, true> // IsComplex -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline RealScalar run(const Scalar& x) - { - return real(x)*real(x) + imag(x)*imag(x); - } -}; - -template<typename Scalar> -struct abs2_impl -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline RealScalar run(const Scalar& x) - { - return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x); - } -}; - -template<typename Scalar> -struct abs2_retval -{ - typedef typename NumTraits<Scalar>::Real type; -}; - -/**************************************************************************** -* Implementation of norm1 * -****************************************************************************/ - -template<typename Scalar, bool IsComplex> -struct norm1_default_impl -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline RealScalar run(const Scalar& x) - { - EIGEN_USING_STD_MATH(abs); - return abs(real(x)) + abs(imag(x)); - } -}; - -template<typename Scalar> -struct norm1_default_impl<Scalar, false> -{ - EIGEN_DEVICE_FUNC - static inline Scalar run(const Scalar& x) - { - EIGEN_USING_STD_MATH(abs); - return abs(x); - } -}; - -template<typename Scalar> -struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; - -template<typename Scalar> -struct norm1_retval -{ - typedef typename NumTraits<Scalar>::Real type; -}; - -/**************************************************************************** -* Implementation of hypot * -****************************************************************************/ - -template<typename Scalar> struct hypot_impl; - -template<typename Scalar> -struct hypot_retval -{ - typedef typename NumTraits<Scalar>::Real type; -}; - -/**************************************************************************** -* Implementation of cast * -****************************************************************************/ - -template<typename OldType, typename NewType> -struct cast_impl -{ - EIGEN_DEVICE_FUNC - static inline NewType run(const OldType& x) - { - return static_cast<NewType>(x); - } -}; - -// here, for once, we're plainly returning NewType: we don't want cast to do weird things. - -template<typename OldType, typename NewType> -EIGEN_DEVICE_FUNC -inline NewType cast(const OldType& x) -{ - return cast_impl<OldType, NewType>::run(x); -} - -/**************************************************************************** -* Implementation of round * -****************************************************************************/ - -#if EIGEN_HAS_CXX11_MATH - template<typename Scalar> - struct round_impl { - static inline Scalar run(const Scalar& x) - { - EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) - using std::round; - return round(x); - } - }; -#else - template<typename Scalar> - struct round_impl - { - static inline Scalar run(const Scalar& x) - { - EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) - EIGEN_USING_STD_MATH(floor); - EIGEN_USING_STD_MATH(ceil); - return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5)); - } - }; -#endif - -template<typename Scalar> -struct round_retval -{ - typedef Scalar type; -}; - -/**************************************************************************** -* Implementation of arg * -****************************************************************************/ - -#if EIGEN_HAS_CXX11_MATH - template<typename Scalar> - struct arg_impl { - static inline Scalar run(const Scalar& x) - { - EIGEN_USING_STD_MATH(arg); - return arg(x); - } - }; -#else - template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> - struct arg_default_impl - { - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline RealScalar run(const Scalar& x) - { - return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); } - }; - - template<typename Scalar> - struct arg_default_impl<Scalar,true> - { - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline RealScalar run(const Scalar& x) - { - EIGEN_USING_STD_MATH(arg); - return arg(x); - } - }; - - template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {}; -#endif - -template<typename Scalar> -struct arg_retval -{ - typedef typename NumTraits<Scalar>::Real type; -}; - -/**************************************************************************** -* Implementation of log1p * -****************************************************************************/ - -namespace std_fallback { - // fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar, - // or that there is no suitable std::log1p function available - template<typename Scalar> - EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) - typedef typename NumTraits<Scalar>::Real RealScalar; - EIGEN_USING_STD_MATH(log); - Scalar x1p = RealScalar(1) + x; - return numext::equal_strict(x1p, Scalar(1)) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) ); - } -} - -template<typename Scalar> -struct log1p_impl { - static inline Scalar run(const Scalar& x) - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) - #if EIGEN_HAS_CXX11_MATH - using std::log1p; - #endif - using std_fallback::log1p; - return log1p(x); - } -}; - - -template<typename Scalar> -struct log1p_retval -{ - typedef Scalar type; -}; - -/**************************************************************************** -* Implementation of pow * -****************************************************************************/ - -template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger> -struct pow_impl -{ - //typedef Scalar retval; - typedef typename ScalarBinaryOpTraits<ScalarX,ScalarY,internal::scalar_pow_op<ScalarX,ScalarY> >::ReturnType result_type; - static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y) - { - EIGEN_USING_STD_MATH(pow); - return pow(x, y); - } -}; - -template<typename ScalarX,typename ScalarY> -struct pow_impl<ScalarX,ScalarY, true> -{ - typedef ScalarX result_type; - static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y) - { - ScalarX res(1); - eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0); - if(y & 1) res *= x; - y >>= 1; - while(y) - { - x *= x; - if(y&1) res *= x; - y >>= 1; - } - return res; - } -}; - -/**************************************************************************** -* Implementation of random * -****************************************************************************/ - -template<typename Scalar, - bool IsComplex, - bool IsInteger> -struct random_default_impl {}; - -template<typename Scalar> -struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; - -template<typename Scalar> -struct random_retval -{ - typedef Scalar type; -}; - -template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y); -template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(); - -template<typename Scalar> -struct random_default_impl<Scalar, false, false> -{ - static inline Scalar run(const Scalar& x, const Scalar& y) - { - return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX); - } - static inline Scalar run() - { - return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1)); - } -}; - -enum { - meta_floor_log2_terminate, - meta_floor_log2_move_up, - meta_floor_log2_move_down, - meta_floor_log2_bogus -}; - -template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector -{ - enum { middle = (lower + upper) / 2, - value = (upper <= lower + 1) ? int(meta_floor_log2_terminate) - : (n < (1 << middle)) ? int(meta_floor_log2_move_down) - : (n==0) ? int(meta_floor_log2_bogus) - : int(meta_floor_log2_move_up) - }; -}; - -template<unsigned int n, - int lower = 0, - int upper = sizeof(unsigned int) * CHAR_BIT - 1, - int selector = meta_floor_log2_selector<n, lower, upper>::value> -struct meta_floor_log2 {}; - -template<unsigned int n, int lower, int upper> -struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down> -{ - enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value }; -}; - -template<unsigned int n, int lower, int upper> -struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up> -{ - enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value }; -}; - -template<unsigned int n, int lower, int upper> -struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate> -{ - enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower }; -}; - -template<unsigned int n, int lower, int upper> -struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus> -{ - // no value, error at compile time -}; - -template<typename Scalar> -struct random_default_impl<Scalar, false, true> -{ - static inline Scalar run(const Scalar& x, const Scalar& y) - { - if (y <= x) - return x; - // ScalarU is the unsigned counterpart of Scalar, possibly Scalar itself. - typedef typename make_unsigned<Scalar>::type ScalarU; - // ScalarX is the widest of ScalarU and unsigned int. - // We'll deal only with ScalarX and unsigned int below thus avoiding signed - // types and arithmetic and signed overflows (which are undefined behavior). - typedef typename conditional<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned>::type ScalarX; - // The following difference doesn't overflow, provided our integer types are two's - // complement and have the same number of padding bits in signed and unsigned variants. - // This is the case in most modern implementations of C++. - ScalarX range = ScalarX(y) - ScalarX(x); - ScalarX offset = 0; - ScalarX divisor = 1; - ScalarX multiplier = 1; - const unsigned rand_max = RAND_MAX; - if (range <= rand_max) divisor = (rand_max + 1) / (range + 1); - else multiplier = 1 + range / (rand_max + 1); - // Rejection sampling. - do { - offset = (unsigned(std::rand()) * multiplier) / divisor; - } while (offset > range); - return Scalar(ScalarX(x) + offset); - } - - static inline Scalar run() - { -#ifdef EIGEN_MAKING_DOCS - return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10)); -#else - enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value, - scalar_bits = sizeof(Scalar) * CHAR_BIT, - shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)), - offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0 - }; - return Scalar((std::rand() >> shift) - offset); -#endif - } -}; - -template<typename Scalar> -struct random_default_impl<Scalar, true, false> -{ - static inline Scalar run(const Scalar& x, const Scalar& y) - { - return Scalar(random(real(x), real(y)), - random(imag(x), imag(y))); - } - static inline Scalar run() - { - typedef typename NumTraits<Scalar>::Real RealScalar; - return Scalar(random<RealScalar>(), random<RealScalar>()); - } -}; - -template<typename Scalar> -inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y) -{ - return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y); -} - -template<typename Scalar> -inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random() -{ - return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(); -} - -// Implementatin of is* functions - -// std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang. -#if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG) -#define EIGEN_USE_STD_FPCLASSIFY 1 -#else -#define EIGEN_USE_STD_FPCLASSIFY 0 -#endif - -template<typename T> -EIGEN_DEVICE_FUNC -typename internal::enable_if<internal::is_integral<T>::value,bool>::type -isnan_impl(const T&) { return false; } - -template<typename T> -EIGEN_DEVICE_FUNC -typename internal::enable_if<internal::is_integral<T>::value,bool>::type -isinf_impl(const T&) { return false; } - -template<typename T> -EIGEN_DEVICE_FUNC -typename internal::enable_if<internal::is_integral<T>::value,bool>::type -isfinite_impl(const T&) { return true; } - -template<typename T> -EIGEN_DEVICE_FUNC -typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type -isfinite_impl(const T& x) -{ - #ifdef __CUDA_ARCH__ - return (::isfinite)(x); - #elif EIGEN_USE_STD_FPCLASSIFY - using std::isfinite; - return isfinite EIGEN_NOT_A_MACRO (x); - #else - return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest(); - #endif -} - -template<typename T> -EIGEN_DEVICE_FUNC -typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type -isinf_impl(const T& x) -{ - #ifdef __CUDA_ARCH__ - return (::isinf)(x); - #elif EIGEN_USE_STD_FPCLASSIFY - using std::isinf; - return isinf EIGEN_NOT_A_MACRO (x); - #else - return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest(); - #endif -} - -template<typename T> -EIGEN_DEVICE_FUNC -typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type -isnan_impl(const T& x) -{ - #ifdef __CUDA_ARCH__ - return (::isnan)(x); - #elif EIGEN_USE_STD_FPCLASSIFY - using std::isnan; - return isnan EIGEN_NOT_A_MACRO (x); - #else - return x != x; - #endif -} - -#if (!EIGEN_USE_STD_FPCLASSIFY) - -#if EIGEN_COMP_MSVC - -template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x) -{ - return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF; -} - -//MSVC defines a _isnan builtin function, but for double only -EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; } -EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; } -EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; } - -EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); } -EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); } -EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); } - -#elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC) - -#if EIGEN_GNUC_AT_LEAST(5,0) - #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only"))) -#else - // NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol), - // while the second prevent too aggressive optimizations in fast-math mode: - #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only"))) -#endif - -template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); } -template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); } -template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); } -template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); } -template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); } -template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); } - -#undef EIGEN_TMP_NOOPT_ATTRIB - -#endif - -#endif - -// The following overload are defined at the end of this file -template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x); -template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x); -template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x); - -template<typename T> T generic_fast_tanh_float(const T& a_x); - -} // end namespace internal - -/**************************************************************************** -* Generic math functions * -****************************************************************************/ - -namespace numext { - -#ifndef __CUDA_ARCH__ -template<typename T> -EIGEN_DEVICE_FUNC -EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) -{ - EIGEN_USING_STD_MATH(min); - return min EIGEN_NOT_A_MACRO (x,y); -} - -template<typename T> -EIGEN_DEVICE_FUNC -EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) -{ - EIGEN_USING_STD_MATH(max); - return max EIGEN_NOT_A_MACRO (x,y); -} -#else -template<typename T> -EIGEN_DEVICE_FUNC -EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) -{ - return y < x ? y : x; -} -template<> -EIGEN_DEVICE_FUNC -EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y) -{ - return fminf(x, y); -} -template<typename T> -EIGEN_DEVICE_FUNC -EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) -{ - return x < y ? y : x; -} -template<> -EIGEN_DEVICE_FUNC -EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y) -{ - return fmaxf(x, y); -} -#endif - - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x); -} - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x) -{ - return internal::real_ref_impl<Scalar>::run(x); -} - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x); -} - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x); -} - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x); -} - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x) -{ - return internal::imag_ref_impl<Scalar>::run(x); -} - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x); -} - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x); -} - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); -} - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x); -} - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y) -{ - return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y); -} - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float log1p(const float &x) { return ::log1pf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double log1p(const double &x) { return ::log1p(x); } -#endif - -template<typename ScalarX,typename ScalarY> -EIGEN_DEVICE_FUNC -inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const ScalarX& x, const ScalarY& y) -{ - return internal::pow_impl<ScalarX,ScalarY>::run(x, y); -} - -template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); } -template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); } -template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); } - -template<typename Scalar> -EIGEN_DEVICE_FUNC -inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x); -} - -template<typename T> -EIGEN_DEVICE_FUNC -T (floor)(const T& x) -{ - EIGEN_USING_STD_MATH(floor); - return floor(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float floor(const float &x) { return ::floorf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double floor(const double &x) { return ::floor(x); } -#endif - -template<typename T> -EIGEN_DEVICE_FUNC -T (ceil)(const T& x) -{ - EIGEN_USING_STD_MATH(ceil); - return ceil(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float ceil(const float &x) { return ::ceilf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double ceil(const double &x) { return ::ceil(x); } -#endif - - -/** Log base 2 for 32 bits positive integers. - * Conveniently returns 0 for x==0. */ -inline int log2(int x) -{ - eigen_assert(x>=0); - unsigned int v(x); - static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - return table[(v * 0x07C4ACDDU) >> 27]; -} - -/** \returns the square root of \a x. - * - * It is essentially equivalent to - * \code using std::sqrt; return sqrt(x); \endcode - * but slightly faster for float/double and some compilers (e.g., gcc), thanks to - * specializations when SSE is enabled. - * - * It's usage is justified in performance critical functions, like norm/normalize. - */ -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T sqrt(const T &x) -{ - EIGEN_USING_STD_MATH(sqrt); - return sqrt(x); -} - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T log(const T &x) { - EIGEN_USING_STD_MATH(log); - return log(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float log(const float &x) { return ::logf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double log(const double &x) { return ::log(x); } -#endif - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type -abs(const T &x) { - EIGEN_USING_STD_MATH(abs); - return abs(x); -} - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type -abs(const T &x) { - return x; -} - -#if defined(__SYCL_DEVICE_ONLY__) -EIGEN_ALWAYS_INLINE float abs(float x) { return cl::sycl::fabs(x); } -EIGEN_ALWAYS_INLINE double abs(double x) { return cl::sycl::fabs(x); } -#endif // defined(__SYCL_DEVICE_ONLY__) - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float abs(const float &x) { return ::fabsf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double abs(const double &x) { return ::fabs(x); } - -template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float abs(const std::complex<float>& x) { - return ::hypotf(x.real(), x.imag()); -} - -template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double abs(const std::complex<double>& x) { - return ::hypot(x.real(), x.imag()); -} -#endif - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T exp(const T &x) { - EIGEN_USING_STD_MATH(exp); - return exp(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float exp(const float &x) { return ::expf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double exp(const double &x) { return ::exp(x); } -#endif - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T cos(const T &x) { - EIGEN_USING_STD_MATH(cos); - return cos(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float cos(const float &x) { return ::cosf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double cos(const double &x) { return ::cos(x); } -#endif - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T sin(const T &x) { - EIGEN_USING_STD_MATH(sin); - return sin(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float sin(const float &x) { return ::sinf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double sin(const double &x) { return ::sin(x); } -#endif - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T tan(const T &x) { - EIGEN_USING_STD_MATH(tan); - return tan(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float tan(const float &x) { return ::tanf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double tan(const double &x) { return ::tan(x); } -#endif - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T acos(const T &x) { - EIGEN_USING_STD_MATH(acos); - return acos(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float acos(const float &x) { return ::acosf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double acos(const double &x) { return ::acos(x); } -#endif - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T asin(const T &x) { - EIGEN_USING_STD_MATH(asin); - return asin(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float asin(const float &x) { return ::asinf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double asin(const double &x) { return ::asin(x); } -#endif - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T atan(const T &x) { - EIGEN_USING_STD_MATH(atan); - return atan(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float atan(const float &x) { return ::atanf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double atan(const double &x) { return ::atan(x); } -#endif - - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T cosh(const T &x) { - EIGEN_USING_STD_MATH(cosh); - return cosh(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float cosh(const float &x) { return ::coshf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double cosh(const double &x) { return ::cosh(x); } -#endif - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T sinh(const T &x) { - EIGEN_USING_STD_MATH(sinh); - return sinh(x); -} - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float sinh(const float &x) { return ::sinhf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double sinh(const double &x) { return ::sinh(x); } -#endif - -template<typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T tanh(const T &x) { - EIGEN_USING_STD_MATH(tanh); - return tanh(x); -} - -#if (!defined(__CUDACC__)) && EIGEN_FAST_MATH -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float tanh(float x) { return internal::generic_fast_tanh_float(x); } -#endif - -#ifdef __CUDACC__ -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float tanh(const float &x) { return ::tanhf(x); } - -template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double tanh(const double &x) { return ::tanh(x); } -#endif - -template <typename T> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -T fmod(const T& a, const T& b) { - EIGEN_USING_STD_MATH(fmod); - return fmod(a, b); -} - -#ifdef __CUDACC__ -template <> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float fmod(const float& a, const float& b) { - return ::fmodf(a, b); -} - -template <> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double fmod(const double& a, const double& b) { - return ::fmod(a, b); -} -#endif - -} // end namespace numext - -namespace internal { - -template<typename T> -EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x) -{ - return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x)); -} - -template<typename T> -EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x) -{ - return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x)); -} - -template<typename T> -EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x) -{ - return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x)); -} - -/**************************************************************************** -* Implementation of fuzzy comparisons * -****************************************************************************/ - -template<typename Scalar, - bool IsComplex, - bool IsInteger> -struct scalar_fuzzy_default_impl {}; - -template<typename Scalar> -struct scalar_fuzzy_default_impl<Scalar, false, false> -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - template<typename OtherScalar> EIGEN_DEVICE_FUNC - static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) - { - return numext::abs(x) <= numext::abs(y) * prec; - } - EIGEN_DEVICE_FUNC - static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) - { - return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec; - } - EIGEN_DEVICE_FUNC - static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec) - { - return x <= y || isApprox(x, y, prec); - } -}; - -template<typename Scalar> -struct scalar_fuzzy_default_impl<Scalar, false, true> -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - template<typename OtherScalar> EIGEN_DEVICE_FUNC - static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&) - { - return x == Scalar(0); - } - EIGEN_DEVICE_FUNC - static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&) - { - return x == y; - } - EIGEN_DEVICE_FUNC - static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&) - { - return x <= y; - } -}; - -template<typename Scalar> -struct scalar_fuzzy_default_impl<Scalar, true, false> -{ - typedef typename NumTraits<Scalar>::Real RealScalar; - template<typename OtherScalar> EIGEN_DEVICE_FUNC - static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) - { - return numext::abs2(x) <= numext::abs2(y) * prec * prec; - } - EIGEN_DEVICE_FUNC - static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) - { - return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec; - } -}; - -template<typename Scalar> -struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; - -template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC -inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, - const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) -{ - return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision); -} - -template<typename Scalar> EIGEN_DEVICE_FUNC -inline bool isApprox(const Scalar& x, const Scalar& y, - const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) -{ - return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision); -} - -template<typename Scalar> EIGEN_DEVICE_FUNC -inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, - const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) -{ - return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision); -} - -/****************************************** -*** The special case of the bool type *** -******************************************/ - -template<> struct random_impl<bool> -{ - static inline bool run() - { - return random<int>(0,1)==0 ? false : true; - } -}; - -template<> struct scalar_fuzzy_impl<bool> -{ - typedef bool RealScalar; - - template<typename OtherScalar> EIGEN_DEVICE_FUNC - static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&) - { - return !x; - } - - EIGEN_DEVICE_FUNC - static inline bool isApprox(bool x, bool y, bool) - { - return x == y; - } - - EIGEN_DEVICE_FUNC - static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&) - { - return (!x) || y; - } - -}; - - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_MATHFUNCTIONS_H |