summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/Core/MathFunctions.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/Eigen/src/Core/MathFunctions.h')
-rw-r--r--eigen/Eigen/src/Core/MathFunctions.h1415
1 files changed, 0 insertions, 1415 deletions
diff --git a/eigen/Eigen/src/Core/MathFunctions.h b/eigen/Eigen/src/Core/MathFunctions.h
deleted file mode 100644
index b249ce0..0000000
--- a/eigen/Eigen/src/Core/MathFunctions.h
+++ /dev/null
@@ -1,1415 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATHFUNCTIONS_H
-#define EIGEN_MATHFUNCTIONS_H
-
-// source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
-// TODO this should better be moved to NumTraits
-#define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L
-
-
-namespace Eigen {
-
-// On WINCE, std::abs is defined for int only, so let's defined our own overloads:
-// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too.
-#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500
-long abs(long x) { return (labs(x)); }
-double abs(double x) { return (fabs(x)); }
-float abs(float x) { return (fabsf(x)); }
-long double abs(long double x) { return (fabsl(x)); }
-#endif
-
-namespace internal {
-
-/** \internal \class global_math_functions_filtering_base
- *
- * What it does:
- * Defines a typedef 'type' as follows:
- * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
- * global_math_functions_filtering_base<T>::type is a typedef for it.
- * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
- *
- * How it's used:
- * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
- * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
- * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
- * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
- * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
- *
- * How it's implemented:
- * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
- * the typename dummy by an integer template parameter, it doesn't work anymore!
- */
-
-template<typename T, typename dummy = void>
-struct global_math_functions_filtering_base
-{
- typedef T type;
-};
-
-template<typename T> struct always_void { typedef void type; };
-
-template<typename T>
-struct global_math_functions_filtering_base
- <T,
- typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
- >
-{
- typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
-};
-
-#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
-#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type
-
-/****************************************************************************
-* Implementation of real *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
-struct real_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- return x;
- }
-};
-
-template<typename Scalar>
-struct real_default_impl<Scalar,true>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- using std::real;
- return real(x);
- }
-};
-
-template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};
-
-#ifdef __CUDA_ARCH__
-template<typename T>
-struct real_impl<std::complex<T> >
-{
- typedef T RealScalar;
- EIGEN_DEVICE_FUNC
- static inline T run(const std::complex<T>& x)
- {
- return x.real();
- }
-};
-#endif
-
-template<typename Scalar>
-struct real_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of imag *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
-struct imag_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar&)
- {
- return RealScalar(0);
- }
-};
-
-template<typename Scalar>
-struct imag_default_impl<Scalar,true>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- using std::imag;
- return imag(x);
- }
-};
-
-template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};
-
-#ifdef __CUDA_ARCH__
-template<typename T>
-struct imag_impl<std::complex<T> >
-{
- typedef T RealScalar;
- EIGEN_DEVICE_FUNC
- static inline T run(const std::complex<T>& x)
- {
- return x.imag();
- }
-};
-#endif
-
-template<typename Scalar>
-struct imag_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of real_ref *
-****************************************************************************/
-
-template<typename Scalar>
-struct real_ref_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar& run(Scalar& x)
- {
- return reinterpret_cast<RealScalar*>(&x)[0];
- }
- EIGEN_DEVICE_FUNC
- static inline const RealScalar& run(const Scalar& x)
- {
- return reinterpret_cast<const RealScalar*>(&x)[0];
- }
-};
-
-template<typename Scalar>
-struct real_ref_retval
-{
- typedef typename NumTraits<Scalar>::Real & type;
-};
-
-/****************************************************************************
-* Implementation of imag_ref *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex>
-struct imag_ref_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar& run(Scalar& x)
- {
- return reinterpret_cast<RealScalar*>(&x)[1];
- }
- EIGEN_DEVICE_FUNC
- static inline const RealScalar& run(const Scalar& x)
- {
- return reinterpret_cast<RealScalar*>(&x)[1];
- }
-};
-
-template<typename Scalar>
-struct imag_ref_default_impl<Scalar, false>
-{
- EIGEN_DEVICE_FUNC
- static inline Scalar run(Scalar&)
- {
- return Scalar(0);
- }
- EIGEN_DEVICE_FUNC
- static inline const Scalar run(const Scalar&)
- {
- return Scalar(0);
- }
-};
-
-template<typename Scalar>
-struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
-
-template<typename Scalar>
-struct imag_ref_retval
-{
- typedef typename NumTraits<Scalar>::Real & type;
-};
-
-/****************************************************************************
-* Implementation of conj *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
-struct conj_impl
-{
- EIGEN_DEVICE_FUNC
- static inline Scalar run(const Scalar& x)
- {
- return x;
- }
-};
-
-template<typename Scalar>
-struct conj_impl<Scalar,true>
-{
- EIGEN_DEVICE_FUNC
- static inline Scalar run(const Scalar& x)
- {
- using std::conj;
- return conj(x);
- }
-};
-
-template<typename Scalar>
-struct conj_retval
-{
- typedef Scalar type;
-};
-
-/****************************************************************************
-* Implementation of abs2 *
-****************************************************************************/
-
-template<typename Scalar,bool IsComplex>
-struct abs2_impl_default
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- return x*x;
- }
-};
-
-template<typename Scalar>
-struct abs2_impl_default<Scalar, true> // IsComplex
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- return real(x)*real(x) + imag(x)*imag(x);
- }
-};
-
-template<typename Scalar>
-struct abs2_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x);
- }
-};
-
-template<typename Scalar>
-struct abs2_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of norm1 *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex>
-struct norm1_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- EIGEN_USING_STD_MATH(abs);
- return abs(real(x)) + abs(imag(x));
- }
-};
-
-template<typename Scalar>
-struct norm1_default_impl<Scalar, false>
-{
- EIGEN_DEVICE_FUNC
- static inline Scalar run(const Scalar& x)
- {
- EIGEN_USING_STD_MATH(abs);
- return abs(x);
- }
-};
-
-template<typename Scalar>
-struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
-
-template<typename Scalar>
-struct norm1_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of hypot *
-****************************************************************************/
-
-template<typename Scalar> struct hypot_impl;
-
-template<typename Scalar>
-struct hypot_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of cast *
-****************************************************************************/
-
-template<typename OldType, typename NewType>
-struct cast_impl
-{
- EIGEN_DEVICE_FUNC
- static inline NewType run(const OldType& x)
- {
- return static_cast<NewType>(x);
- }
-};
-
-// here, for once, we're plainly returning NewType: we don't want cast to do weird things.
-
-template<typename OldType, typename NewType>
-EIGEN_DEVICE_FUNC
-inline NewType cast(const OldType& x)
-{
- return cast_impl<OldType, NewType>::run(x);
-}
-
-/****************************************************************************
-* Implementation of round *
-****************************************************************************/
-
-#if EIGEN_HAS_CXX11_MATH
- template<typename Scalar>
- struct round_impl {
- static inline Scalar run(const Scalar& x)
- {
- EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
- using std::round;
- return round(x);
- }
- };
-#else
- template<typename Scalar>
- struct round_impl
- {
- static inline Scalar run(const Scalar& x)
- {
- EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
- EIGEN_USING_STD_MATH(floor);
- EIGEN_USING_STD_MATH(ceil);
- return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5));
- }
- };
-#endif
-
-template<typename Scalar>
-struct round_retval
-{
- typedef Scalar type;
-};
-
-/****************************************************************************
-* Implementation of arg *
-****************************************************************************/
-
-#if EIGEN_HAS_CXX11_MATH
- template<typename Scalar>
- struct arg_impl {
- static inline Scalar run(const Scalar& x)
- {
- EIGEN_USING_STD_MATH(arg);
- return arg(x);
- }
- };
-#else
- template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
- struct arg_default_impl
- {
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); }
- };
-
- template<typename Scalar>
- struct arg_default_impl<Scalar,true>
- {
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- EIGEN_USING_STD_MATH(arg);
- return arg(x);
- }
- };
-
- template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
-#endif
-
-template<typename Scalar>
-struct arg_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of log1p *
-****************************************************************************/
-
-namespace std_fallback {
- // fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar,
- // or that there is no suitable std::log1p function available
- template<typename Scalar>
- EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_USING_STD_MATH(log);
- Scalar x1p = RealScalar(1) + x;
- return numext::equal_strict(x1p, Scalar(1)) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) );
- }
-}
-
-template<typename Scalar>
-struct log1p_impl {
- static inline Scalar run(const Scalar& x)
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
- #if EIGEN_HAS_CXX11_MATH
- using std::log1p;
- #endif
- using std_fallback::log1p;
- return log1p(x);
- }
-};
-
-
-template<typename Scalar>
-struct log1p_retval
-{
- typedef Scalar type;
-};
-
-/****************************************************************************
-* Implementation of pow *
-****************************************************************************/
-
-template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger>
-struct pow_impl
-{
- //typedef Scalar retval;
- typedef typename ScalarBinaryOpTraits<ScalarX,ScalarY,internal::scalar_pow_op<ScalarX,ScalarY> >::ReturnType result_type;
- static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y)
- {
- EIGEN_USING_STD_MATH(pow);
- return pow(x, y);
- }
-};
-
-template<typename ScalarX,typename ScalarY>
-struct pow_impl<ScalarX,ScalarY, true>
-{
- typedef ScalarX result_type;
- static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y)
- {
- ScalarX res(1);
- eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0);
- if(y & 1) res *= x;
- y >>= 1;
- while(y)
- {
- x *= x;
- if(y&1) res *= x;
- y >>= 1;
- }
- return res;
- }
-};
-
-/****************************************************************************
-* Implementation of random *
-****************************************************************************/
-
-template<typename Scalar,
- bool IsComplex,
- bool IsInteger>
-struct random_default_impl {};
-
-template<typename Scalar>
-struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
-
-template<typename Scalar>
-struct random_retval
-{
- typedef Scalar type;
-};
-
-template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
-template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
-
-template<typename Scalar>
-struct random_default_impl<Scalar, false, false>
-{
- static inline Scalar run(const Scalar& x, const Scalar& y)
- {
- return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
- }
- static inline Scalar run()
- {
- return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
- }
-};
-
-enum {
- meta_floor_log2_terminate,
- meta_floor_log2_move_up,
- meta_floor_log2_move_down,
- meta_floor_log2_bogus
-};
-
-template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector
-{
- enum { middle = (lower + upper) / 2,
- value = (upper <= lower + 1) ? int(meta_floor_log2_terminate)
- : (n < (1 << middle)) ? int(meta_floor_log2_move_down)
- : (n==0) ? int(meta_floor_log2_bogus)
- : int(meta_floor_log2_move_up)
- };
-};
-
-template<unsigned int n,
- int lower = 0,
- int upper = sizeof(unsigned int) * CHAR_BIT - 1,
- int selector = meta_floor_log2_selector<n, lower, upper>::value>
-struct meta_floor_log2 {};
-
-template<unsigned int n, int lower, int upper>
-struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down>
-{
- enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value };
-};
-
-template<unsigned int n, int lower, int upper>
-struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up>
-{
- enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value };
-};
-
-template<unsigned int n, int lower, int upper>
-struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate>
-{
- enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
-};
-
-template<unsigned int n, int lower, int upper>
-struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus>
-{
- // no value, error at compile time
-};
-
-template<typename Scalar>
-struct random_default_impl<Scalar, false, true>
-{
- static inline Scalar run(const Scalar& x, const Scalar& y)
- {
- if (y <= x)
- return x;
- // ScalarU is the unsigned counterpart of Scalar, possibly Scalar itself.
- typedef typename make_unsigned<Scalar>::type ScalarU;
- // ScalarX is the widest of ScalarU and unsigned int.
- // We'll deal only with ScalarX and unsigned int below thus avoiding signed
- // types and arithmetic and signed overflows (which are undefined behavior).
- typedef typename conditional<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned>::type ScalarX;
- // The following difference doesn't overflow, provided our integer types are two's
- // complement and have the same number of padding bits in signed and unsigned variants.
- // This is the case in most modern implementations of C++.
- ScalarX range = ScalarX(y) - ScalarX(x);
- ScalarX offset = 0;
- ScalarX divisor = 1;
- ScalarX multiplier = 1;
- const unsigned rand_max = RAND_MAX;
- if (range <= rand_max) divisor = (rand_max + 1) / (range + 1);
- else multiplier = 1 + range / (rand_max + 1);
- // Rejection sampling.
- do {
- offset = (unsigned(std::rand()) * multiplier) / divisor;
- } while (offset > range);
- return Scalar(ScalarX(x) + offset);
- }
-
- static inline Scalar run()
- {
-#ifdef EIGEN_MAKING_DOCS
- return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
-#else
- enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value,
- scalar_bits = sizeof(Scalar) * CHAR_BIT,
- shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
- offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
- };
- return Scalar((std::rand() >> shift) - offset);
-#endif
- }
-};
-
-template<typename Scalar>
-struct random_default_impl<Scalar, true, false>
-{
- static inline Scalar run(const Scalar& x, const Scalar& y)
- {
- return Scalar(random(real(x), real(y)),
- random(imag(x), imag(y)));
- }
- static inline Scalar run()
- {
- typedef typename NumTraits<Scalar>::Real RealScalar;
- return Scalar(random<RealScalar>(), random<RealScalar>());
- }
-};
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
-{
- return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
-}
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
-{
- return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
-}
-
-// Implementatin of is* functions
-
-// std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang.
-#if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG)
-#define EIGEN_USE_STD_FPCLASSIFY 1
-#else
-#define EIGEN_USE_STD_FPCLASSIFY 0
-#endif
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-typename internal::enable_if<internal::is_integral<T>::value,bool>::type
-isnan_impl(const T&) { return false; }
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-typename internal::enable_if<internal::is_integral<T>::value,bool>::type
-isinf_impl(const T&) { return false; }
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-typename internal::enable_if<internal::is_integral<T>::value,bool>::type
-isfinite_impl(const T&) { return true; }
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
-isfinite_impl(const T& x)
-{
- #ifdef __CUDA_ARCH__
- return (::isfinite)(x);
- #elif EIGEN_USE_STD_FPCLASSIFY
- using std::isfinite;
- return isfinite EIGEN_NOT_A_MACRO (x);
- #else
- return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest();
- #endif
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
-isinf_impl(const T& x)
-{
- #ifdef __CUDA_ARCH__
- return (::isinf)(x);
- #elif EIGEN_USE_STD_FPCLASSIFY
- using std::isinf;
- return isinf EIGEN_NOT_A_MACRO (x);
- #else
- return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest();
- #endif
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
-isnan_impl(const T& x)
-{
- #ifdef __CUDA_ARCH__
- return (::isnan)(x);
- #elif EIGEN_USE_STD_FPCLASSIFY
- using std::isnan;
- return isnan EIGEN_NOT_A_MACRO (x);
- #else
- return x != x;
- #endif
-}
-
-#if (!EIGEN_USE_STD_FPCLASSIFY)
-
-#if EIGEN_COMP_MSVC
-
-template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x)
-{
- return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF;
-}
-
-//MSVC defines a _isnan builtin function, but for double only
-EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; }
-EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; }
-EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; }
-
-EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); }
-EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); }
-EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); }
-
-#elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC)
-
-#if EIGEN_GNUC_AT_LEAST(5,0)
- #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only")))
-#else
- // NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol),
- // while the second prevent too aggressive optimizations in fast-math mode:
- #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only")))
-#endif
-
-template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); }
-template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); }
-template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); }
-template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); }
-template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); }
-template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); }
-
-#undef EIGEN_TMP_NOOPT_ATTRIB
-
-#endif
-
-#endif
-
-// The following overload are defined at the end of this file
-template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x);
-template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x);
-template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x);
-
-template<typename T> T generic_fast_tanh_float(const T& a_x);
-
-} // end namespace internal
-
-/****************************************************************************
-* Generic math functions *
-****************************************************************************/
-
-namespace numext {
-
-#ifndef __CUDA_ARCH__
-template<typename T>
-EIGEN_DEVICE_FUNC
-EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
-{
- EIGEN_USING_STD_MATH(min);
- return min EIGEN_NOT_A_MACRO (x,y);
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
-{
- EIGEN_USING_STD_MATH(max);
- return max EIGEN_NOT_A_MACRO (x,y);
-}
-#else
-template<typename T>
-EIGEN_DEVICE_FUNC
-EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
-{
- return y < x ? y : x;
-}
-template<>
-EIGEN_DEVICE_FUNC
-EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y)
-{
- return fminf(x, y);
-}
-template<typename T>
-EIGEN_DEVICE_FUNC
-EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
-{
- return x < y ? y : x;
-}
-template<>
-EIGEN_DEVICE_FUNC
-EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y)
-{
- return fmaxf(x, y);
-}
-#endif
-
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
-{
- return internal::real_ref_impl<Scalar>::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
-{
- return internal::imag_ref_impl<Scalar>::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
-{
- return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
-}
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float log1p(const float &x) { return ::log1pf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double log1p(const double &x) { return ::log1p(x); }
-#endif
-
-template<typename ScalarX,typename ScalarY>
-EIGEN_DEVICE_FUNC
-inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const ScalarX& x, const ScalarY& y)
-{
- return internal::pow_impl<ScalarX,ScalarY>::run(x, y);
-}
-
-template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); }
-template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); }
-template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); }
-
-template<typename Scalar>
-EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x);
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-T (floor)(const T& x)
-{
- EIGEN_USING_STD_MATH(floor);
- return floor(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float floor(const float &x) { return ::floorf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double floor(const double &x) { return ::floor(x); }
-#endif
-
-template<typename T>
-EIGEN_DEVICE_FUNC
-T (ceil)(const T& x)
-{
- EIGEN_USING_STD_MATH(ceil);
- return ceil(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float ceil(const float &x) { return ::ceilf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double ceil(const double &x) { return ::ceil(x); }
-#endif
-
-
-/** Log base 2 for 32 bits positive integers.
- * Conveniently returns 0 for x==0. */
-inline int log2(int x)
-{
- eigen_assert(x>=0);
- unsigned int v(x);
- static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- return table[(v * 0x07C4ACDDU) >> 27];
-}
-
-/** \returns the square root of \a x.
- *
- * It is essentially equivalent to
- * \code using std::sqrt; return sqrt(x); \endcode
- * but slightly faster for float/double and some compilers (e.g., gcc), thanks to
- * specializations when SSE is enabled.
- *
- * It's usage is justified in performance critical functions, like norm/normalize.
- */
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T sqrt(const T &x)
-{
- EIGEN_USING_STD_MATH(sqrt);
- return sqrt(x);
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T log(const T &x) {
- EIGEN_USING_STD_MATH(log);
- return log(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float log(const float &x) { return ::logf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double log(const double &x) { return ::log(x); }
-#endif
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type
-abs(const T &x) {
- EIGEN_USING_STD_MATH(abs);
- return abs(x);
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type
-abs(const T &x) {
- return x;
-}
-
-#if defined(__SYCL_DEVICE_ONLY__)
-EIGEN_ALWAYS_INLINE float abs(float x) { return cl::sycl::fabs(x); }
-EIGEN_ALWAYS_INLINE double abs(double x) { return cl::sycl::fabs(x); }
-#endif // defined(__SYCL_DEVICE_ONLY__)
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float abs(const float &x) { return ::fabsf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double abs(const double &x) { return ::fabs(x); }
-
-template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float abs(const std::complex<float>& x) {
- return ::hypotf(x.real(), x.imag());
-}
-
-template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double abs(const std::complex<double>& x) {
- return ::hypot(x.real(), x.imag());
-}
-#endif
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T exp(const T &x) {
- EIGEN_USING_STD_MATH(exp);
- return exp(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float exp(const float &x) { return ::expf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double exp(const double &x) { return ::exp(x); }
-#endif
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T cos(const T &x) {
- EIGEN_USING_STD_MATH(cos);
- return cos(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float cos(const float &x) { return ::cosf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double cos(const double &x) { return ::cos(x); }
-#endif
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T sin(const T &x) {
- EIGEN_USING_STD_MATH(sin);
- return sin(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float sin(const float &x) { return ::sinf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double sin(const double &x) { return ::sin(x); }
-#endif
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T tan(const T &x) {
- EIGEN_USING_STD_MATH(tan);
- return tan(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float tan(const float &x) { return ::tanf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double tan(const double &x) { return ::tan(x); }
-#endif
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T acos(const T &x) {
- EIGEN_USING_STD_MATH(acos);
- return acos(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float acos(const float &x) { return ::acosf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double acos(const double &x) { return ::acos(x); }
-#endif
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T asin(const T &x) {
- EIGEN_USING_STD_MATH(asin);
- return asin(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float asin(const float &x) { return ::asinf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double asin(const double &x) { return ::asin(x); }
-#endif
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T atan(const T &x) {
- EIGEN_USING_STD_MATH(atan);
- return atan(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float atan(const float &x) { return ::atanf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double atan(const double &x) { return ::atan(x); }
-#endif
-
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T cosh(const T &x) {
- EIGEN_USING_STD_MATH(cosh);
- return cosh(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float cosh(const float &x) { return ::coshf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double cosh(const double &x) { return ::cosh(x); }
-#endif
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T sinh(const T &x) {
- EIGEN_USING_STD_MATH(sinh);
- return sinh(x);
-}
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float sinh(const float &x) { return ::sinhf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double sinh(const double &x) { return ::sinh(x); }
-#endif
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T tanh(const T &x) {
- EIGEN_USING_STD_MATH(tanh);
- return tanh(x);
-}
-
-#if (!defined(__CUDACC__)) && EIGEN_FAST_MATH
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float tanh(float x) { return internal::generic_fast_tanh_float(x); }
-#endif
-
-#ifdef __CUDACC__
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float tanh(const float &x) { return ::tanhf(x); }
-
-template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double tanh(const double &x) { return ::tanh(x); }
-#endif
-
-template <typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T fmod(const T& a, const T& b) {
- EIGEN_USING_STD_MATH(fmod);
- return fmod(a, b);
-}
-
-#ifdef __CUDACC__
-template <>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float fmod(const float& a, const float& b) {
- return ::fmodf(a, b);
-}
-
-template <>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double fmod(const double& a, const double& b) {
- return ::fmod(a, b);
-}
-#endif
-
-} // end namespace numext
-
-namespace internal {
-
-template<typename T>
-EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x)
-{
- return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x));
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x)
-{
- return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x));
-}
-
-template<typename T>
-EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x)
-{
- return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x));
-}
-
-/****************************************************************************
-* Implementation of fuzzy comparisons *
-****************************************************************************/
-
-template<typename Scalar,
- bool IsComplex,
- bool IsInteger>
-struct scalar_fuzzy_default_impl {};
-
-template<typename Scalar>
-struct scalar_fuzzy_default_impl<Scalar, false, false>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename OtherScalar> EIGEN_DEVICE_FUNC
- static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
- {
- return numext::abs(x) <= numext::abs(y) * prec;
- }
- EIGEN_DEVICE_FUNC
- static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
- {
- return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec;
- }
- EIGEN_DEVICE_FUNC
- static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
- {
- return x <= y || isApprox(x, y, prec);
- }
-};
-
-template<typename Scalar>
-struct scalar_fuzzy_default_impl<Scalar, false, true>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename OtherScalar> EIGEN_DEVICE_FUNC
- static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
- {
- return x == Scalar(0);
- }
- EIGEN_DEVICE_FUNC
- static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
- {
- return x == y;
- }
- EIGEN_DEVICE_FUNC
- static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
- {
- return x <= y;
- }
-};
-
-template<typename Scalar>
-struct scalar_fuzzy_default_impl<Scalar, true, false>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename OtherScalar> EIGEN_DEVICE_FUNC
- static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
- {
- return numext::abs2(x) <= numext::abs2(y) * prec * prec;
- }
- EIGEN_DEVICE_FUNC
- static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
- {
- return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec;
- }
-};
-
-template<typename Scalar>
-struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
-
-template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC
-inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
- const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
-{
- return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
-}
-
-template<typename Scalar> EIGEN_DEVICE_FUNC
-inline bool isApprox(const Scalar& x, const Scalar& y,
- const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
-{
- return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
-}
-
-template<typename Scalar> EIGEN_DEVICE_FUNC
-inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
- const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
-{
- return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
-}
-
-/******************************************
-*** The special case of the bool type ***
-******************************************/
-
-template<> struct random_impl<bool>
-{
- static inline bool run()
- {
- return random<int>(0,1)==0 ? false : true;
- }
-};
-
-template<> struct scalar_fuzzy_impl<bool>
-{
- typedef bool RealScalar;
-
- template<typename OtherScalar> EIGEN_DEVICE_FUNC
- static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
- {
- return !x;
- }
-
- EIGEN_DEVICE_FUNC
- static inline bool isApprox(bool x, bool y, bool)
- {
- return x == y;
- }
-
- EIGEN_DEVICE_FUNC
- static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
- {
- return (!x) || y;
- }
-
-};
-
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATHFUNCTIONS_H