diff options
Diffstat (limited to 'eigen/Eigen/src/Core/MathFunctionsImpl.h')
-rw-r--r-- | eigen/Eigen/src/Core/MathFunctionsImpl.h | 73 |
1 files changed, 73 insertions, 0 deletions
diff --git a/eigen/Eigen/src/Core/MathFunctionsImpl.h b/eigen/Eigen/src/Core/MathFunctionsImpl.h new file mode 100644 index 0000000..ae1386b --- /dev/null +++ b/eigen/Eigen/src/Core/MathFunctionsImpl.h @@ -0,0 +1,73 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) +// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATHFUNCTIONSIMPL_H +#define EIGEN_MATHFUNCTIONSIMPL_H + +namespace Eigen { + +namespace internal { + +/** \internal \returns the hyperbolic tan of \a a (coeff-wise) + Doesn't do anything fancy, just a 13/6-degree rational interpolant which + is accurate up to a couple of ulp in the range [-9, 9], outside of which + the tanh(x) = +/-1. + + This implementation works on both scalars and packets. +*/ +template<typename T> +T generic_fast_tanh_float(const T& a_x) +{ + // Clamp the inputs to the range [-9, 9] since anything outside + // this range is +/-1.0f in single-precision. + const T plus_9 = pset1<T>(9.f); + const T minus_9 = pset1<T>(-9.f); + const T x = pmax(pmin(a_x, plus_9), minus_9); + // The monomial coefficients of the numerator polynomial (odd). + const T alpha_1 = pset1<T>(4.89352455891786e-03f); + const T alpha_3 = pset1<T>(6.37261928875436e-04f); + const T alpha_5 = pset1<T>(1.48572235717979e-05f); + const T alpha_7 = pset1<T>(5.12229709037114e-08f); + const T alpha_9 = pset1<T>(-8.60467152213735e-11f); + const T alpha_11 = pset1<T>(2.00018790482477e-13f); + const T alpha_13 = pset1<T>(-2.76076847742355e-16f); + + // The monomial coefficients of the denominator polynomial (even). + const T beta_0 = pset1<T>(4.89352518554385e-03f); + const T beta_2 = pset1<T>(2.26843463243900e-03f); + const T beta_4 = pset1<T>(1.18534705686654e-04f); + const T beta_6 = pset1<T>(1.19825839466702e-06f); + + // Since the polynomials are odd/even, we need x^2. + const T x2 = pmul(x, x); + + // Evaluate the numerator polynomial p. + T p = pmadd(x2, alpha_13, alpha_11); + p = pmadd(x2, p, alpha_9); + p = pmadd(x2, p, alpha_7); + p = pmadd(x2, p, alpha_5); + p = pmadd(x2, p, alpha_3); + p = pmadd(x2, p, alpha_1); + p = pmul(x, p); + + // Evaluate the denominator polynomial p. + T q = pmadd(x2, beta_6, beta_4); + q = pmadd(x2, q, beta_2); + q = pmadd(x2, q, beta_0); + + // Divide the numerator by the denominator. + return pdiv(p, q); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATHFUNCTIONSIMPL_H |