summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h')
-rw-r--r--eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h1843
1 files changed, 0 insertions, 1843 deletions
diff --git a/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h b/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h
deleted file mode 100644
index da85b4d..0000000
--- a/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h
+++ /dev/null
@@ -1,1843 +0,0 @@
-// // This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// This file is modified from the colamd/symamd library. The copyright is below
-
-// The authors of the code itself are Stefan I. Larimore and Timothy A.
-// Davis (davis@cise.ufl.edu), University of Florida. The algorithm was
-// developed in collaboration with John Gilbert, Xerox PARC, and Esmond
-// Ng, Oak Ridge National Laboratory.
-//
-// Date:
-//
-// September 8, 2003. Version 2.3.
-//
-// Acknowledgements:
-//
-// This work was supported by the National Science Foundation, under
-// grants DMS-9504974 and DMS-9803599.
-//
-// Notice:
-//
-// Copyright (c) 1998-2003 by the University of Florida.
-// All Rights Reserved.
-//
-// THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
-// EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-//
-// Permission is hereby granted to use, copy, modify, and/or distribute
-// this program, provided that the Copyright, this License, and the
-// Availability of the original version is retained on all copies and made
-// accessible to the end-user of any code or package that includes COLAMD
-// or any modified version of COLAMD.
-//
-// Availability:
-//
-// The colamd/symamd library is available at
-//
-// http://www.suitesparse.com
-
-
-#ifndef EIGEN_COLAMD_H
-#define EIGEN_COLAMD_H
-
-namespace internal {
-/* Ensure that debugging is turned off: */
-#ifndef COLAMD_NDEBUG
-#define COLAMD_NDEBUG
-#endif /* NDEBUG */
-/* ========================================================================== */
-/* === Knob and statistics definitions ====================================== */
-/* ========================================================================== */
-
-/* size of the knobs [ ] array. Only knobs [0..1] are currently used. */
-#define COLAMD_KNOBS 20
-
-/* number of output statistics. Only stats [0..6] are currently used. */
-#define COLAMD_STATS 20
-
-/* knobs [0] and stats [0]: dense row knob and output statistic. */
-#define COLAMD_DENSE_ROW 0
-
-/* knobs [1] and stats [1]: dense column knob and output statistic. */
-#define COLAMD_DENSE_COL 1
-
-/* stats [2]: memory defragmentation count output statistic */
-#define COLAMD_DEFRAG_COUNT 2
-
-/* stats [3]: colamd status: zero OK, > 0 warning or notice, < 0 error */
-#define COLAMD_STATUS 3
-
-/* stats [4..6]: error info, or info on jumbled columns */
-#define COLAMD_INFO1 4
-#define COLAMD_INFO2 5
-#define COLAMD_INFO3 6
-
-/* error codes returned in stats [3]: */
-#define COLAMD_OK (0)
-#define COLAMD_OK_BUT_JUMBLED (1)
-#define COLAMD_ERROR_A_not_present (-1)
-#define COLAMD_ERROR_p_not_present (-2)
-#define COLAMD_ERROR_nrow_negative (-3)
-#define COLAMD_ERROR_ncol_negative (-4)
-#define COLAMD_ERROR_nnz_negative (-5)
-#define COLAMD_ERROR_p0_nonzero (-6)
-#define COLAMD_ERROR_A_too_small (-7)
-#define COLAMD_ERROR_col_length_negative (-8)
-#define COLAMD_ERROR_row_index_out_of_bounds (-9)
-#define COLAMD_ERROR_out_of_memory (-10)
-#define COLAMD_ERROR_internal_error (-999)
-
-/* ========================================================================== */
-/* === Definitions ========================================================== */
-/* ========================================================================== */
-
-#define ONES_COMPLEMENT(r) (-(r)-1)
-
-/* -------------------------------------------------------------------------- */
-
-#define COLAMD_EMPTY (-1)
-
-/* Row and column status */
-#define ALIVE (0)
-#define DEAD (-1)
-
-/* Column status */
-#define DEAD_PRINCIPAL (-1)
-#define DEAD_NON_PRINCIPAL (-2)
-
-/* Macros for row and column status update and checking. */
-#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
-#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
-#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
-#define COL_IS_DEAD(c) (Col [c].start < ALIVE)
-#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
-#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
-#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
-#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
-#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
-
-/* ========================================================================== */
-/* === Colamd reporting mechanism =========================================== */
-/* ========================================================================== */
-
-// == Row and Column structures ==
-template <typename IndexType>
-struct colamd_col
-{
- IndexType start ; /* index for A of first row in this column, or DEAD */
- /* if column is dead */
- IndexType length ; /* number of rows in this column */
- union
- {
- IndexType thickness ; /* number of original columns represented by this */
- /* col, if the column is alive */
- IndexType parent ; /* parent in parent tree super-column structure, if */
- /* the column is dead */
- } shared1 ;
- union
- {
- IndexType score ; /* the score used to maintain heap, if col is alive */
- IndexType order ; /* pivot ordering of this column, if col is dead */
- } shared2 ;
- union
- {
- IndexType headhash ; /* head of a hash bucket, if col is at the head of */
- /* a degree list */
- IndexType hash ; /* hash value, if col is not in a degree list */
- IndexType prev ; /* previous column in degree list, if col is in a */
- /* degree list (but not at the head of a degree list) */
- } shared3 ;
- union
- {
- IndexType degree_next ; /* next column, if col is in a degree list */
- IndexType hash_next ; /* next column, if col is in a hash list */
- } shared4 ;
-
-};
-
-template <typename IndexType>
-struct Colamd_Row
-{
- IndexType start ; /* index for A of first col in this row */
- IndexType length ; /* number of principal columns in this row */
- union
- {
- IndexType degree ; /* number of principal & non-principal columns in row */
- IndexType p ; /* used as a row pointer in init_rows_cols () */
- } shared1 ;
- union
- {
- IndexType mark ; /* for computing set differences and marking dead rows*/
- IndexType first_column ;/* first column in row (used in garbage collection) */
- } shared2 ;
-
-};
-
-/* ========================================================================== */
-/* === Colamd recommended memory size ======================================= */
-/* ========================================================================== */
-
-/*
- The recommended length Alen of the array A passed to colamd is given by
- the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro. It returns -1 if any
- argument is negative. 2*nnz space is required for the row and column
- indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is
- required for the Col and Row arrays, respectively, which are internal to
- colamd. An additional n_col space is the minimal amount of "elbow room",
- and nnz/5 more space is recommended for run time efficiency.
-
- This macro is not needed when using symamd.
-
- Explicit typecast to IndexType added Sept. 23, 2002, COLAMD version 2.2, to avoid
- gcc -pedantic warning messages.
-*/
-template <typename IndexType>
-inline IndexType colamd_c(IndexType n_col)
-{ return IndexType( ((n_col) + 1) * sizeof (colamd_col<IndexType>) / sizeof (IndexType) ) ; }
-
-template <typename IndexType>
-inline IndexType colamd_r(IndexType n_row)
-{ return IndexType(((n_row) + 1) * sizeof (Colamd_Row<IndexType>) / sizeof (IndexType)); }
-
-// Prototypes of non-user callable routines
-template <typename IndexType>
-static IndexType init_rows_cols (IndexType n_row, IndexType n_col, Colamd_Row<IndexType> Row [], colamd_col<IndexType> col [], IndexType A [], IndexType p [], IndexType stats[COLAMD_STATS] );
-
-template <typename IndexType>
-static void init_scoring (IndexType n_row, IndexType n_col, Colamd_Row<IndexType> Row [], colamd_col<IndexType> Col [], IndexType A [], IndexType head [], double knobs[COLAMD_KNOBS], IndexType *p_n_row2, IndexType *p_n_col2, IndexType *p_max_deg);
-
-template <typename IndexType>
-static IndexType find_ordering (IndexType n_row, IndexType n_col, IndexType Alen, Colamd_Row<IndexType> Row [], colamd_col<IndexType> Col [], IndexType A [], IndexType head [], IndexType n_col2, IndexType max_deg, IndexType pfree);
-
-template <typename IndexType>
-static void order_children (IndexType n_col, colamd_col<IndexType> Col [], IndexType p []);
-
-template <typename IndexType>
-static void detect_super_cols (colamd_col<IndexType> Col [], IndexType A [], IndexType head [], IndexType row_start, IndexType row_length ) ;
-
-template <typename IndexType>
-static IndexType garbage_collection (IndexType n_row, IndexType n_col, Colamd_Row<IndexType> Row [], colamd_col<IndexType> Col [], IndexType A [], IndexType *pfree) ;
-
-template <typename IndexType>
-static inline IndexType clear_mark (IndexType n_row, Colamd_Row<IndexType> Row [] ) ;
-
-/* === No debugging ========================================================= */
-
-#define COLAMD_DEBUG0(params) ;
-#define COLAMD_DEBUG1(params) ;
-#define COLAMD_DEBUG2(params) ;
-#define COLAMD_DEBUG3(params) ;
-#define COLAMD_DEBUG4(params) ;
-
-#define COLAMD_ASSERT(expression) ((void) 0)
-
-
-/**
- * \brief Returns the recommended value of Alen
- *
- * Returns recommended value of Alen for use by colamd.
- * Returns -1 if any input argument is negative.
- * The use of this routine or macro is optional.
- * Note that the macro uses its arguments more than once,
- * so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED.
- *
- * \param nnz nonzeros in A
- * \param n_row number of rows in A
- * \param n_col number of columns in A
- * \return recommended value of Alen for use by colamd
- */
-template <typename IndexType>
-inline IndexType colamd_recommended ( IndexType nnz, IndexType n_row, IndexType n_col)
-{
- if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0)
- return (-1);
- else
- return (2 * (nnz) + colamd_c (n_col) + colamd_r (n_row) + (n_col) + ((nnz) / 5));
-}
-
-/**
- * \brief set default parameters The use of this routine is optional.
- *
- * Colamd: rows with more than (knobs [COLAMD_DENSE_ROW] * n_col)
- * entries are removed prior to ordering. Columns with more than
- * (knobs [COLAMD_DENSE_COL] * n_row) entries are removed prior to
- * ordering, and placed last in the output column ordering.
- *
- * COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
- * respectively, in colamd.h. Default values of these two knobs
- * are both 0.5. Currently, only knobs [0] and knobs [1] are
- * used, but future versions may use more knobs. If so, they will
- * be properly set to their defaults by the future version of
- * colamd_set_defaults, so that the code that calls colamd will
- * not need to change, assuming that you either use
- * colamd_set_defaults, or pass a (double *) NULL pointer as the
- * knobs array to colamd or symamd.
- *
- * \param knobs parameter settings for colamd
- */
-
-static inline void colamd_set_defaults(double knobs[COLAMD_KNOBS])
-{
- /* === Local variables ================================================== */
-
- int i ;
-
- if (!knobs)
- {
- return ; /* no knobs to initialize */
- }
- for (i = 0 ; i < COLAMD_KNOBS ; i++)
- {
- knobs [i] = 0 ;
- }
- knobs [COLAMD_DENSE_ROW] = 0.5 ; /* ignore rows over 50% dense */
- knobs [COLAMD_DENSE_COL] = 0.5 ; /* ignore columns over 50% dense */
-}
-
-/**
- * \brief Computes a column ordering using the column approximate minimum degree ordering
- *
- * Computes a column ordering (Q) of A such that P(AQ)=LU or
- * (AQ)'AQ=LL' have less fill-in and require fewer floating point
- * operations than factorizing the unpermuted matrix A or A'A,
- * respectively.
- *
- *
- * \param n_row number of rows in A
- * \param n_col number of columns in A
- * \param Alen, size of the array A
- * \param A row indices of the matrix, of size ALen
- * \param p column pointers of A, of size n_col+1
- * \param knobs parameter settings for colamd
- * \param stats colamd output statistics and error codes
- */
-template <typename IndexType>
-static bool colamd(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, double knobs[COLAMD_KNOBS], IndexType stats[COLAMD_STATS])
-{
- /* === Local variables ================================================== */
-
- IndexType i ; /* loop index */
- IndexType nnz ; /* nonzeros in A */
- IndexType Row_size ; /* size of Row [], in integers */
- IndexType Col_size ; /* size of Col [], in integers */
- IndexType need ; /* minimum required length of A */
- Colamd_Row<IndexType> *Row ; /* pointer into A of Row [0..n_row] array */
- colamd_col<IndexType> *Col ; /* pointer into A of Col [0..n_col] array */
- IndexType n_col2 ; /* number of non-dense, non-empty columns */
- IndexType n_row2 ; /* number of non-dense, non-empty rows */
- IndexType ngarbage ; /* number of garbage collections performed */
- IndexType max_deg ; /* maximum row degree */
- double default_knobs [COLAMD_KNOBS] ; /* default knobs array */
-
-
- /* === Check the input arguments ======================================== */
-
- if (!stats)
- {
- COLAMD_DEBUG0 (("colamd: stats not present\n")) ;
- return (false) ;
- }
- for (i = 0 ; i < COLAMD_STATS ; i++)
- {
- stats [i] = 0 ;
- }
- stats [COLAMD_STATUS] = COLAMD_OK ;
- stats [COLAMD_INFO1] = -1 ;
- stats [COLAMD_INFO2] = -1 ;
-
- if (!A) /* A is not present */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
- COLAMD_DEBUG0 (("colamd: A not present\n")) ;
- return (false) ;
- }
-
- if (!p) /* p is not present */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
- COLAMD_DEBUG0 (("colamd: p not present\n")) ;
- return (false) ;
- }
-
- if (n_row < 0) /* n_row must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
- stats [COLAMD_INFO1] = n_row ;
- COLAMD_DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
- return (false) ;
- }
-
- if (n_col < 0) /* n_col must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
- stats [COLAMD_INFO1] = n_col ;
- COLAMD_DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
- return (false) ;
- }
-
- nnz = p [n_col] ;
- if (nnz < 0) /* nnz must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
- stats [COLAMD_INFO1] = nnz ;
- COLAMD_DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
- return (false) ;
- }
-
- if (p [0] != 0)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
- stats [COLAMD_INFO1] = p [0] ;
- COLAMD_DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
- return (false) ;
- }
-
- /* === If no knobs, set default knobs =================================== */
-
- if (!knobs)
- {
- colamd_set_defaults (default_knobs) ;
- knobs = default_knobs ;
- }
-
- /* === Allocate the Row and Col arrays from array A ===================== */
-
- Col_size = colamd_c (n_col) ;
- Row_size = colamd_r (n_row) ;
- need = 2*nnz + n_col + Col_size + Row_size ;
-
- if (need > Alen)
- {
- /* not enough space in array A to perform the ordering */
- stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
- stats [COLAMD_INFO1] = need ;
- stats [COLAMD_INFO2] = Alen ;
- COLAMD_DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
- return (false) ;
- }
-
- Alen -= Col_size + Row_size ;
- Col = (colamd_col<IndexType> *) &A [Alen] ;
- Row = (Colamd_Row<IndexType> *) &A [Alen + Col_size] ;
-
- /* === Construct the row and column data structures ===================== */
-
- if (!Eigen::internal::init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
- {
- /* input matrix is invalid */
- COLAMD_DEBUG0 (("colamd: Matrix invalid\n")) ;
- return (false) ;
- }
-
- /* === Initialize scores, kill dense rows/columns ======================= */
-
- Eigen::internal::init_scoring (n_row, n_col, Row, Col, A, p, knobs,
- &n_row2, &n_col2, &max_deg) ;
-
- /* === Order the supercolumns =========================================== */
-
- ngarbage = Eigen::internal::find_ordering (n_row, n_col, Alen, Row, Col, A, p,
- n_col2, max_deg, 2*nnz) ;
-
- /* === Order the non-principal columns ================================== */
-
- Eigen::internal::order_children (n_col, Col, p) ;
-
- /* === Return statistics in stats ======================================= */
-
- stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
- stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
- stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
- COLAMD_DEBUG0 (("colamd: done.\n")) ;
- return (true) ;
-}
-
-/* ========================================================================== */
-/* === NON-USER-CALLABLE ROUTINES: ========================================== */
-/* ========================================================================== */
-
-/* There are no user-callable routines beyond this point in the file */
-
-
-/* ========================================================================== */
-/* === init_rows_cols ======================================================= */
-/* ========================================================================== */
-
-/*
- Takes the column form of the matrix in A and creates the row form of the
- matrix. Also, row and column attributes are stored in the Col and Row
- structs. If the columns are un-sorted or contain duplicate row indices,
- this routine will also sort and remove duplicate row indices from the
- column form of the matrix. Returns false if the matrix is invalid,
- true otherwise. Not user-callable.
-*/
-template <typename IndexType>
-static IndexType init_rows_cols /* returns true if OK, or false otherwise */
- (
- /* === Parameters ======================================================= */
-
- IndexType n_row, /* number of rows of A */
- IndexType n_col, /* number of columns of A */
- Colamd_Row<IndexType> Row [], /* of size n_row+1 */
- colamd_col<IndexType> Col [], /* of size n_col+1 */
- IndexType A [], /* row indices of A, of size Alen */
- IndexType p [], /* pointers to columns in A, of size n_col+1 */
- IndexType stats [COLAMD_STATS] /* colamd statistics */
- )
-{
- /* === Local variables ================================================== */
-
- IndexType col ; /* a column index */
- IndexType row ; /* a row index */
- IndexType *cp ; /* a column pointer */
- IndexType *cp_end ; /* a pointer to the end of a column */
- IndexType *rp ; /* a row pointer */
- IndexType *rp_end ; /* a pointer to the end of a row */
- IndexType last_row ; /* previous row */
-
- /* === Initialize columns, and check column pointers ==================== */
-
- for (col = 0 ; col < n_col ; col++)
- {
- Col [col].start = p [col] ;
- Col [col].length = p [col+1] - p [col] ;
-
- if ((Col [col].length) < 0) // extra parentheses to work-around gcc bug 10200
- {
- /* column pointers must be non-decreasing */
- stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
- stats [COLAMD_INFO1] = col ;
- stats [COLAMD_INFO2] = Col [col].length ;
- COLAMD_DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
- return (false) ;
- }
-
- Col [col].shared1.thickness = 1 ;
- Col [col].shared2.score = 0 ;
- Col [col].shared3.prev = COLAMD_EMPTY ;
- Col [col].shared4.degree_next = COLAMD_EMPTY ;
- }
-
- /* p [0..n_col] no longer needed, used as "head" in subsequent routines */
-
- /* === Scan columns, compute row degrees, and check row indices ========= */
-
- stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
-
- for (row = 0 ; row < n_row ; row++)
- {
- Row [row].length = 0 ;
- Row [row].shared2.mark = -1 ;
- }
-
- for (col = 0 ; col < n_col ; col++)
- {
- last_row = -1 ;
-
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
-
- while (cp < cp_end)
- {
- row = *cp++ ;
-
- /* make sure row indices within range */
- if (row < 0 || row >= n_row)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
- stats [COLAMD_INFO1] = col ;
- stats [COLAMD_INFO2] = row ;
- stats [COLAMD_INFO3] = n_row ;
- COLAMD_DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
- return (false) ;
- }
-
- if (row <= last_row || Row [row].shared2.mark == col)
- {
- /* row index are unsorted or repeated (or both), thus col */
- /* is jumbled. This is a notice, not an error condition. */
- stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
- stats [COLAMD_INFO1] = col ;
- stats [COLAMD_INFO2] = row ;
- (stats [COLAMD_INFO3]) ++ ;
- COLAMD_DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
- }
-
- if (Row [row].shared2.mark != col)
- {
- Row [row].length++ ;
- }
- else
- {
- /* this is a repeated entry in the column, */
- /* it will be removed */
- Col [col].length-- ;
- }
-
- /* mark the row as having been seen in this column */
- Row [row].shared2.mark = col ;
-
- last_row = row ;
- }
- }
-
- /* === Compute row pointers ============================================= */
-
- /* row form of the matrix starts directly after the column */
- /* form of matrix in A */
- Row [0].start = p [n_col] ;
- Row [0].shared1.p = Row [0].start ;
- Row [0].shared2.mark = -1 ;
- for (row = 1 ; row < n_row ; row++)
- {
- Row [row].start = Row [row-1].start + Row [row-1].length ;
- Row [row].shared1.p = Row [row].start ;
- Row [row].shared2.mark = -1 ;
- }
-
- /* === Create row form ================================================== */
-
- if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
- {
- /* if cols jumbled, watch for repeated row indices */
- for (col = 0 ; col < n_col ; col++)
- {
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
- while (cp < cp_end)
- {
- row = *cp++ ;
- if (Row [row].shared2.mark != col)
- {
- A [(Row [row].shared1.p)++] = col ;
- Row [row].shared2.mark = col ;
- }
- }
- }
- }
- else
- {
- /* if cols not jumbled, we don't need the mark (this is faster) */
- for (col = 0 ; col < n_col ; col++)
- {
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
- while (cp < cp_end)
- {
- A [(Row [*cp++].shared1.p)++] = col ;
- }
- }
- }
-
- /* === Clear the row marks and set row degrees ========================== */
-
- for (row = 0 ; row < n_row ; row++)
- {
- Row [row].shared2.mark = 0 ;
- Row [row].shared1.degree = Row [row].length ;
- }
-
- /* === See if we need to re-create columns ============================== */
-
- if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
- {
- COLAMD_DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;
-
-
- /* === Compute col pointers ========================================= */
-
- /* col form of the matrix starts at A [0]. */
- /* Note, we may have a gap between the col form and the row */
- /* form if there were duplicate entries, if so, it will be */
- /* removed upon the first garbage collection */
- Col [0].start = 0 ;
- p [0] = Col [0].start ;
- for (col = 1 ; col < n_col ; col++)
- {
- /* note that the lengths here are for pruned columns, i.e. */
- /* no duplicate row indices will exist for these columns */
- Col [col].start = Col [col-1].start + Col [col-1].length ;
- p [col] = Col [col].start ;
- }
-
- /* === Re-create col form =========================================== */
-
- for (row = 0 ; row < n_row ; row++)
- {
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- A [(p [*rp++])++] = row ;
- }
- }
- }
-
- /* === Done. Matrix is not (or no longer) jumbled ====================== */
-
- return (true) ;
-}
-
-
-/* ========================================================================== */
-/* === init_scoring ========================================================= */
-/* ========================================================================== */
-
-/*
- Kills dense or empty columns and rows, calculates an initial score for
- each column, and places all columns in the degree lists. Not user-callable.
-*/
-template <typename IndexType>
-static void init_scoring
- (
- /* === Parameters ======================================================= */
-
- IndexType n_row, /* number of rows of A */
- IndexType n_col, /* number of columns of A */
- Colamd_Row<IndexType> Row [], /* of size n_row+1 */
- colamd_col<IndexType> Col [], /* of size n_col+1 */
- IndexType A [], /* column form and row form of A */
- IndexType head [], /* of size n_col+1 */
- double knobs [COLAMD_KNOBS],/* parameters */
- IndexType *p_n_row2, /* number of non-dense, non-empty rows */
- IndexType *p_n_col2, /* number of non-dense, non-empty columns */
- IndexType *p_max_deg /* maximum row degree */
- )
-{
- /* === Local variables ================================================== */
-
- IndexType c ; /* a column index */
- IndexType r, row ; /* a row index */
- IndexType *cp ; /* a column pointer */
- IndexType deg ; /* degree of a row or column */
- IndexType *cp_end ; /* a pointer to the end of a column */
- IndexType *new_cp ; /* new column pointer */
- IndexType col_length ; /* length of pruned column */
- IndexType score ; /* current column score */
- IndexType n_col2 ; /* number of non-dense, non-empty columns */
- IndexType n_row2 ; /* number of non-dense, non-empty rows */
- IndexType dense_row_count ; /* remove rows with more entries than this */
- IndexType dense_col_count ; /* remove cols with more entries than this */
- IndexType min_score ; /* smallest column score */
- IndexType max_deg ; /* maximum row degree */
- IndexType next_col ; /* Used to add to degree list.*/
-
-
- /* === Extract knobs ==================================================== */
-
- dense_row_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [COLAMD_DENSE_ROW] * n_col), n_col)) ;
- dense_col_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [COLAMD_DENSE_COL] * n_row), n_row)) ;
- COLAMD_DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
- max_deg = 0 ;
- n_col2 = n_col ;
- n_row2 = n_row ;
-
- /* === Kill empty columns =============================================== */
-
- /* Put the empty columns at the end in their natural order, so that LU */
- /* factorization can proceed as far as possible. */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- deg = Col [c].length ;
- if (deg == 0)
- {
- /* this is a empty column, kill and order it last */
- Col [c].shared2.order = --n_col2 ;
- KILL_PRINCIPAL_COL (c) ;
- }
- }
- COLAMD_DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;
-
- /* === Kill dense columns =============================================== */
-
- /* Put the dense columns at the end, in their natural order */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* skip any dead columns */
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- deg = Col [c].length ;
- if (deg > dense_col_count)
- {
- /* this is a dense column, kill and order it last */
- Col [c].shared2.order = --n_col2 ;
- /* decrement the row degrees */
- cp = &A [Col [c].start] ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- Row [*cp++].shared1.degree-- ;
- }
- KILL_PRINCIPAL_COL (c) ;
- }
- }
- COLAMD_DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;
-
- /* === Kill dense and empty rows ======================================== */
-
- for (r = 0 ; r < n_row ; r++)
- {
- deg = Row [r].shared1.degree ;
- COLAMD_ASSERT (deg >= 0 && deg <= n_col) ;
- if (deg > dense_row_count || deg == 0)
- {
- /* kill a dense or empty row */
- KILL_ROW (r) ;
- --n_row2 ;
- }
- else
- {
- /* keep track of max degree of remaining rows */
- max_deg = numext::maxi(max_deg, deg) ;
- }
- }
- COLAMD_DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
-
- /* === Compute initial column scores ==================================== */
-
- /* At this point the row degrees are accurate. They reflect the number */
- /* of "live" (non-dense) columns in each row. No empty rows exist. */
- /* Some "live" columns may contain only dead rows, however. These are */
- /* pruned in the code below. */
-
- /* now find the initial matlab score for each column */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* skip dead column */
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- score = 0 ;
- cp = &A [Col [c].start] ;
- new_cp = cp ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- /* skip if dead */
- if (ROW_IS_DEAD (row))
- {
- continue ;
- }
- /* compact the column */
- *new_cp++ = row ;
- /* add row's external degree */
- score += Row [row].shared1.degree - 1 ;
- /* guard against integer overflow */
- score = numext::mini(score, n_col) ;
- }
- /* determine pruned column length */
- col_length = (IndexType) (new_cp - &A [Col [c].start]) ;
- if (col_length == 0)
- {
- /* a newly-made null column (all rows in this col are "dense" */
- /* and have already been killed) */
- COLAMD_DEBUG2 (("Newly null killed: %d\n", c)) ;
- Col [c].shared2.order = --n_col2 ;
- KILL_PRINCIPAL_COL (c) ;
- }
- else
- {
- /* set column length and set score */
- COLAMD_ASSERT (score >= 0) ;
- COLAMD_ASSERT (score <= n_col) ;
- Col [c].length = col_length ;
- Col [c].shared2.score = score ;
- }
- }
- COLAMD_DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
- n_col-n_col2)) ;
-
- /* At this point, all empty rows and columns are dead. All live columns */
- /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
- /* yet). Rows may contain dead columns, but all live rows contain at */
- /* least one live column. */
-
- /* === Initialize degree lists ========================================== */
-
-
- /* clear the hash buckets */
- for (c = 0 ; c <= n_col ; c++)
- {
- head [c] = COLAMD_EMPTY ;
- }
- min_score = n_col ;
- /* place in reverse order, so low column indices are at the front */
- /* of the lists. This is to encourage natural tie-breaking */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* only add principal columns to degree lists */
- if (COL_IS_ALIVE (c))
- {
- COLAMD_DEBUG4 (("place %d score %d minscore %d ncol %d\n",
- c, Col [c].shared2.score, min_score, n_col)) ;
-
- /* === Add columns score to DList =============================== */
-
- score = Col [c].shared2.score ;
-
- COLAMD_ASSERT (min_score >= 0) ;
- COLAMD_ASSERT (min_score <= n_col) ;
- COLAMD_ASSERT (score >= 0) ;
- COLAMD_ASSERT (score <= n_col) ;
- COLAMD_ASSERT (head [score] >= COLAMD_EMPTY) ;
-
- /* now add this column to dList at proper score location */
- next_col = head [score] ;
- Col [c].shared3.prev = COLAMD_EMPTY ;
- Col [c].shared4.degree_next = next_col ;
-
- /* if there already was a column with the same score, set its */
- /* previous pointer to this new column */
- if (next_col != COLAMD_EMPTY)
- {
- Col [next_col].shared3.prev = c ;
- }
- head [score] = c ;
-
- /* see if this score is less than current min */
- min_score = numext::mini(min_score, score) ;
-
-
- }
- }
-
-
- /* === Return number of remaining columns, and max row degree =========== */
-
- *p_n_col2 = n_col2 ;
- *p_n_row2 = n_row2 ;
- *p_max_deg = max_deg ;
-}
-
-
-/* ========================================================================== */
-/* === find_ordering ======================================================== */
-/* ========================================================================== */
-
-/*
- Order the principal columns of the supercolumn form of the matrix
- (no supercolumns on input). Uses a minimum approximate column minimum
- degree ordering method. Not user-callable.
-*/
-template <typename IndexType>
-static IndexType find_ordering /* return the number of garbage collections */
- (
- /* === Parameters ======================================================= */
-
- IndexType n_row, /* number of rows of A */
- IndexType n_col, /* number of columns of A */
- IndexType Alen, /* size of A, 2*nnz + n_col or larger */
- Colamd_Row<IndexType> Row [], /* of size n_row+1 */
- colamd_col<IndexType> Col [], /* of size n_col+1 */
- IndexType A [], /* column form and row form of A */
- IndexType head [], /* of size n_col+1 */
- IndexType n_col2, /* Remaining columns to order */
- IndexType max_deg, /* Maximum row degree */
- IndexType pfree /* index of first free slot (2*nnz on entry) */
- )
-{
- /* === Local variables ================================================== */
-
- IndexType k ; /* current pivot ordering step */
- IndexType pivot_col ; /* current pivot column */
- IndexType *cp ; /* a column pointer */
- IndexType *rp ; /* a row pointer */
- IndexType pivot_row ; /* current pivot row */
- IndexType *new_cp ; /* modified column pointer */
- IndexType *new_rp ; /* modified row pointer */
- IndexType pivot_row_start ; /* pointer to start of pivot row */
- IndexType pivot_row_degree ; /* number of columns in pivot row */
- IndexType pivot_row_length ; /* number of supercolumns in pivot row */
- IndexType pivot_col_score ; /* score of pivot column */
- IndexType needed_memory ; /* free space needed for pivot row */
- IndexType *cp_end ; /* pointer to the end of a column */
- IndexType *rp_end ; /* pointer to the end of a row */
- IndexType row ; /* a row index */
- IndexType col ; /* a column index */
- IndexType max_score ; /* maximum possible score */
- IndexType cur_score ; /* score of current column */
- unsigned int hash ; /* hash value for supernode detection */
- IndexType head_column ; /* head of hash bucket */
- IndexType first_col ; /* first column in hash bucket */
- IndexType tag_mark ; /* marker value for mark array */
- IndexType row_mark ; /* Row [row].shared2.mark */
- IndexType set_difference ; /* set difference size of row with pivot row */
- IndexType min_score ; /* smallest column score */
- IndexType col_thickness ; /* "thickness" (no. of columns in a supercol) */
- IndexType max_mark ; /* maximum value of tag_mark */
- IndexType pivot_col_thickness ; /* number of columns represented by pivot col */
- IndexType prev_col ; /* Used by Dlist operations. */
- IndexType next_col ; /* Used by Dlist operations. */
- IndexType ngarbage ; /* number of garbage collections performed */
-
-
- /* === Initialization and clear mark ==================================== */
-
- max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */
- tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
- min_score = 0 ;
- ngarbage = 0 ;
- COLAMD_DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;
-
- /* === Order the columns ================================================ */
-
- for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
- {
-
- /* === Select pivot column, and order it ============================ */
-
- /* make sure degree list isn't empty */
- COLAMD_ASSERT (min_score >= 0) ;
- COLAMD_ASSERT (min_score <= n_col) ;
- COLAMD_ASSERT (head [min_score] >= COLAMD_EMPTY) ;
-
- /* get pivot column from head of minimum degree list */
- while (min_score < n_col && head [min_score] == COLAMD_EMPTY)
- {
- min_score++ ;
- }
- pivot_col = head [min_score] ;
- COLAMD_ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
- next_col = Col [pivot_col].shared4.degree_next ;
- head [min_score] = next_col ;
- if (next_col != COLAMD_EMPTY)
- {
- Col [next_col].shared3.prev = COLAMD_EMPTY ;
- }
-
- COLAMD_ASSERT (COL_IS_ALIVE (pivot_col)) ;
- COLAMD_DEBUG3 (("Pivot col: %d\n", pivot_col)) ;
-
- /* remember score for defrag check */
- pivot_col_score = Col [pivot_col].shared2.score ;
-
- /* the pivot column is the kth column in the pivot order */
- Col [pivot_col].shared2.order = k ;
-
- /* increment order count by column thickness */
- pivot_col_thickness = Col [pivot_col].shared1.thickness ;
- k += pivot_col_thickness ;
- COLAMD_ASSERT (pivot_col_thickness > 0) ;
-
- /* === Garbage_collection, if necessary ============================= */
-
- needed_memory = numext::mini(pivot_col_score, n_col - k) ;
- if (pfree + needed_memory >= Alen)
- {
- pfree = Eigen::internal::garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
- ngarbage++ ;
- /* after garbage collection we will have enough */
- COLAMD_ASSERT (pfree + needed_memory < Alen) ;
- /* garbage collection has wiped out the Row[].shared2.mark array */
- tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
-
- }
-
- /* === Compute pivot row pattern ==================================== */
-
- /* get starting location for this new merged row */
- pivot_row_start = pfree ;
-
- /* initialize new row counts to zero */
- pivot_row_degree = 0 ;
-
- /* tag pivot column as having been visited so it isn't included */
- /* in merged pivot row */
- Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
-
- /* pivot row is the union of all rows in the pivot column pattern */
- cp = &A [Col [pivot_col].start] ;
- cp_end = cp + Col [pivot_col].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- COLAMD_DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
- /* skip if row is dead */
- if (ROW_IS_DEAD (row))
- {
- continue ;
- }
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- /* get a column */
- col = *rp++ ;
- /* add the column, if alive and untagged */
- col_thickness = Col [col].shared1.thickness ;
- if (col_thickness > 0 && COL_IS_ALIVE (col))
- {
- /* tag column in pivot row */
- Col [col].shared1.thickness = -col_thickness ;
- COLAMD_ASSERT (pfree < Alen) ;
- /* place column in pivot row */
- A [pfree++] = col ;
- pivot_row_degree += col_thickness ;
- }
- }
- }
-
- /* clear tag on pivot column */
- Col [pivot_col].shared1.thickness = pivot_col_thickness ;
- max_deg = numext::maxi(max_deg, pivot_row_degree) ;
-
-
- /* === Kill all rows used to construct pivot row ==================== */
-
- /* also kill pivot row, temporarily */
- cp = &A [Col [pivot_col].start] ;
- cp_end = cp + Col [pivot_col].length ;
- while (cp < cp_end)
- {
- /* may be killing an already dead row */
- row = *cp++ ;
- COLAMD_DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
- KILL_ROW (row) ;
- }
-
- /* === Select a row index to use as the new pivot row =============== */
-
- pivot_row_length = pfree - pivot_row_start ;
- if (pivot_row_length > 0)
- {
- /* pick the "pivot" row arbitrarily (first row in col) */
- pivot_row = A [Col [pivot_col].start] ;
- COLAMD_DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
- }
- else
- {
- /* there is no pivot row, since it is of zero length */
- pivot_row = COLAMD_EMPTY ;
- COLAMD_ASSERT (pivot_row_length == 0) ;
- }
- COLAMD_ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
-
- /* === Approximate degree computation =============================== */
-
- /* Here begins the computation of the approximate degree. The column */
- /* score is the sum of the pivot row "length", plus the size of the */
- /* set differences of each row in the column minus the pattern of the */
- /* pivot row itself. The column ("thickness") itself is also */
- /* excluded from the column score (we thus use an approximate */
- /* external degree). */
-
- /* The time taken by the following code (compute set differences, and */
- /* add them up) is proportional to the size of the data structure */
- /* being scanned - that is, the sum of the sizes of each column in */
- /* the pivot row. Thus, the amortized time to compute a column score */
- /* is proportional to the size of that column (where size, in this */
- /* context, is the column "length", or the number of row indices */
- /* in that column). The number of row indices in a column is */
- /* monotonically non-decreasing, from the length of the original */
- /* column on input to colamd. */
-
- /* === Compute set differences ====================================== */
-
- COLAMD_DEBUG3 (("** Computing set differences phase. **\n")) ;
-
- /* pivot row is currently dead - it will be revived later. */
-
- COLAMD_DEBUG3 (("Pivot row: ")) ;
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
- COLAMD_DEBUG3 (("Col: %d\n", col)) ;
-
- /* clear tags used to construct pivot row pattern */
- col_thickness = -Col [col].shared1.thickness ;
- COLAMD_ASSERT (col_thickness > 0) ;
- Col [col].shared1.thickness = col_thickness ;
-
- /* === Remove column from degree list =========================== */
-
- cur_score = Col [col].shared2.score ;
- prev_col = Col [col].shared3.prev ;
- next_col = Col [col].shared4.degree_next ;
- COLAMD_ASSERT (cur_score >= 0) ;
- COLAMD_ASSERT (cur_score <= n_col) ;
- COLAMD_ASSERT (cur_score >= COLAMD_EMPTY) ;
- if (prev_col == COLAMD_EMPTY)
- {
- head [cur_score] = next_col ;
- }
- else
- {
- Col [prev_col].shared4.degree_next = next_col ;
- }
- if (next_col != COLAMD_EMPTY)
- {
- Col [next_col].shared3.prev = prev_col ;
- }
-
- /* === Scan the column ========================================== */
-
- cp = &A [Col [col].start] ;
- cp_end = cp + Col [col].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- row_mark = Row [row].shared2.mark ;
- /* skip if dead */
- if (ROW_IS_MARKED_DEAD (row_mark))
- {
- continue ;
- }
- COLAMD_ASSERT (row != pivot_row) ;
- set_difference = row_mark - tag_mark ;
- /* check if the row has been seen yet */
- if (set_difference < 0)
- {
- COLAMD_ASSERT (Row [row].shared1.degree <= max_deg) ;
- set_difference = Row [row].shared1.degree ;
- }
- /* subtract column thickness from this row's set difference */
- set_difference -= col_thickness ;
- COLAMD_ASSERT (set_difference >= 0) ;
- /* absorb this row if the set difference becomes zero */
- if (set_difference == 0)
- {
- COLAMD_DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
- KILL_ROW (row) ;
- }
- else
- {
- /* save the new mark */
- Row [row].shared2.mark = set_difference + tag_mark ;
- }
- }
- }
-
-
- /* === Add up set differences for each column ======================= */
-
- COLAMD_DEBUG3 (("** Adding set differences phase. **\n")) ;
-
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- /* get a column */
- col = *rp++ ;
- COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
- hash = 0 ;
- cur_score = 0 ;
- cp = &A [Col [col].start] ;
- /* compact the column */
- new_cp = cp ;
- cp_end = cp + Col [col].length ;
-
- COLAMD_DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;
-
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- COLAMD_ASSERT(row >= 0 && row < n_row) ;
- row_mark = Row [row].shared2.mark ;
- /* skip if dead */
- if (ROW_IS_MARKED_DEAD (row_mark))
- {
- continue ;
- }
- COLAMD_ASSERT (row_mark > tag_mark) ;
- /* compact the column */
- *new_cp++ = row ;
- /* compute hash function */
- hash += row ;
- /* add set difference */
- cur_score += row_mark - tag_mark ;
- /* integer overflow... */
- cur_score = numext::mini(cur_score, n_col) ;
- }
-
- /* recompute the column's length */
- Col [col].length = (IndexType) (new_cp - &A [Col [col].start]) ;
-
- /* === Further mass elimination ================================= */
-
- if (Col [col].length == 0)
- {
- COLAMD_DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
- /* nothing left but the pivot row in this column */
- KILL_PRINCIPAL_COL (col) ;
- pivot_row_degree -= Col [col].shared1.thickness ;
- COLAMD_ASSERT (pivot_row_degree >= 0) ;
- /* order it */
- Col [col].shared2.order = k ;
- /* increment order count by column thickness */
- k += Col [col].shared1.thickness ;
- }
- else
- {
- /* === Prepare for supercolumn detection ==================== */
-
- COLAMD_DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;
-
- /* save score so far */
- Col [col].shared2.score = cur_score ;
-
- /* add column to hash table, for supercolumn detection */
- hash %= n_col + 1 ;
-
- COLAMD_DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
- COLAMD_ASSERT (hash <= n_col) ;
-
- head_column = head [hash] ;
- if (head_column > COLAMD_EMPTY)
- {
- /* degree list "hash" is non-empty, use prev (shared3) of */
- /* first column in degree list as head of hash bucket */
- first_col = Col [head_column].shared3.headhash ;
- Col [head_column].shared3.headhash = col ;
- }
- else
- {
- /* degree list "hash" is empty, use head as hash bucket */
- first_col = - (head_column + 2) ;
- head [hash] = - (col + 2) ;
- }
- Col [col].shared4.hash_next = first_col ;
-
- /* save hash function in Col [col].shared3.hash */
- Col [col].shared3.hash = (IndexType) hash ;
- COLAMD_ASSERT (COL_IS_ALIVE (col)) ;
- }
- }
-
- /* The approximate external column degree is now computed. */
-
- /* === Supercolumn detection ======================================== */
-
- COLAMD_DEBUG3 (("** Supercolumn detection phase. **\n")) ;
-
- Eigen::internal::detect_super_cols (Col, A, head, pivot_row_start, pivot_row_length) ;
-
- /* === Kill the pivotal column ====================================== */
-
- KILL_PRINCIPAL_COL (pivot_col) ;
-
- /* === Clear mark =================================================== */
-
- tag_mark += (max_deg + 1) ;
- if (tag_mark >= max_mark)
- {
- COLAMD_DEBUG2 (("clearing tag_mark\n")) ;
- tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
- }
-
- /* === Finalize the new pivot row, and column scores ================ */
-
- COLAMD_DEBUG3 (("** Finalize scores phase. **\n")) ;
-
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- /* compact the pivot row */
- new_rp = rp ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- /* skip dead columns */
- if (COL_IS_DEAD (col))
- {
- continue ;
- }
- *new_rp++ = col ;
- /* add new pivot row to column */
- A [Col [col].start + (Col [col].length++)] = pivot_row ;
-
- /* retrieve score so far and add on pivot row's degree. */
- /* (we wait until here for this in case the pivot */
- /* row's degree was reduced due to mass elimination). */
- cur_score = Col [col].shared2.score + pivot_row_degree ;
-
- /* calculate the max possible score as the number of */
- /* external columns minus the 'k' value minus the */
- /* columns thickness */
- max_score = n_col - k - Col [col].shared1.thickness ;
-
- /* make the score the external degree of the union-of-rows */
- cur_score -= Col [col].shared1.thickness ;
-
- /* make sure score is less or equal than the max score */
- cur_score = numext::mini(cur_score, max_score) ;
- COLAMD_ASSERT (cur_score >= 0) ;
-
- /* store updated score */
- Col [col].shared2.score = cur_score ;
-
- /* === Place column back in degree list ========================= */
-
- COLAMD_ASSERT (min_score >= 0) ;
- COLAMD_ASSERT (min_score <= n_col) ;
- COLAMD_ASSERT (cur_score >= 0) ;
- COLAMD_ASSERT (cur_score <= n_col) ;
- COLAMD_ASSERT (head [cur_score] >= COLAMD_EMPTY) ;
- next_col = head [cur_score] ;
- Col [col].shared4.degree_next = next_col ;
- Col [col].shared3.prev = COLAMD_EMPTY ;
- if (next_col != COLAMD_EMPTY)
- {
- Col [next_col].shared3.prev = col ;
- }
- head [cur_score] = col ;
-
- /* see if this score is less than current min */
- min_score = numext::mini(min_score, cur_score) ;
-
- }
-
- /* === Resurrect the new pivot row ================================== */
-
- if (pivot_row_degree > 0)
- {
- /* update pivot row length to reflect any cols that were killed */
- /* during super-col detection and mass elimination */
- Row [pivot_row].start = pivot_row_start ;
- Row [pivot_row].length = (IndexType) (new_rp - &A[pivot_row_start]) ;
- Row [pivot_row].shared1.degree = pivot_row_degree ;
- Row [pivot_row].shared2.mark = 0 ;
- /* pivot row is no longer dead */
- }
- }
-
- /* === All principal columns have now been ordered ====================== */
-
- return (ngarbage) ;
-}
-
-
-/* ========================================================================== */
-/* === order_children ======================================================= */
-/* ========================================================================== */
-
-/*
- The find_ordering routine has ordered all of the principal columns (the
- representatives of the supercolumns). The non-principal columns have not
- yet been ordered. This routine orders those columns by walking up the
- parent tree (a column is a child of the column which absorbed it). The
- final permutation vector is then placed in p [0 ... n_col-1], with p [0]
- being the first column, and p [n_col-1] being the last. It doesn't look
- like it at first glance, but be assured that this routine takes time linear
- in the number of columns. Although not immediately obvious, the time
- taken by this routine is O (n_col), that is, linear in the number of
- columns. Not user-callable.
-*/
-template <typename IndexType>
-static inline void order_children
-(
- /* === Parameters ======================================================= */
-
- IndexType n_col, /* number of columns of A */
- colamd_col<IndexType> Col [], /* of size n_col+1 */
- IndexType p [] /* p [0 ... n_col-1] is the column permutation*/
- )
-{
- /* === Local variables ================================================== */
-
- IndexType i ; /* loop counter for all columns */
- IndexType c ; /* column index */
- IndexType parent ; /* index of column's parent */
- IndexType order ; /* column's order */
-
- /* === Order each non-principal column ================================== */
-
- for (i = 0 ; i < n_col ; i++)
- {
- /* find an un-ordered non-principal column */
- COLAMD_ASSERT (COL_IS_DEAD (i)) ;
- if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == COLAMD_EMPTY)
- {
- parent = i ;
- /* once found, find its principal parent */
- do
- {
- parent = Col [parent].shared1.parent ;
- } while (!COL_IS_DEAD_PRINCIPAL (parent)) ;
-
- /* now, order all un-ordered non-principal columns along path */
- /* to this parent. collapse tree at the same time */
- c = i ;
- /* get order of parent */
- order = Col [parent].shared2.order ;
-
- do
- {
- COLAMD_ASSERT (Col [c].shared2.order == COLAMD_EMPTY) ;
-
- /* order this column */
- Col [c].shared2.order = order++ ;
- /* collaps tree */
- Col [c].shared1.parent = parent ;
-
- /* get immediate parent of this column */
- c = Col [c].shared1.parent ;
-
- /* continue until we hit an ordered column. There are */
- /* guarranteed not to be anymore unordered columns */
- /* above an ordered column */
- } while (Col [c].shared2.order == COLAMD_EMPTY) ;
-
- /* re-order the super_col parent to largest order for this group */
- Col [parent].shared2.order = order ;
- }
- }
-
- /* === Generate the permutation ========================================= */
-
- for (c = 0 ; c < n_col ; c++)
- {
- p [Col [c].shared2.order] = c ;
- }
-}
-
-
-/* ========================================================================== */
-/* === detect_super_cols ==================================================== */
-/* ========================================================================== */
-
-/*
- Detects supercolumns by finding matches between columns in the hash buckets.
- Check amongst columns in the set A [row_start ... row_start + row_length-1].
- The columns under consideration are currently *not* in the degree lists,
- and have already been placed in the hash buckets.
-
- The hash bucket for columns whose hash function is equal to h is stored
- as follows:
-
- if head [h] is >= 0, then head [h] contains a degree list, so:
-
- head [h] is the first column in degree bucket h.
- Col [head [h]].headhash gives the first column in hash bucket h.
-
- otherwise, the degree list is empty, and:
-
- -(head [h] + 2) is the first column in hash bucket h.
-
- For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
- column" pointer. Col [c].shared3.hash is used instead as the hash number
- for that column. The value of Col [c].shared4.hash_next is the next column
- in the same hash bucket.
-
- Assuming no, or "few" hash collisions, the time taken by this routine is
- linear in the sum of the sizes (lengths) of each column whose score has
- just been computed in the approximate degree computation.
- Not user-callable.
-*/
-template <typename IndexType>
-static void detect_super_cols
-(
- /* === Parameters ======================================================= */
-
- colamd_col<IndexType> Col [], /* of size n_col+1 */
- IndexType A [], /* row indices of A */
- IndexType head [], /* head of degree lists and hash buckets */
- IndexType row_start, /* pointer to set of columns to check */
- IndexType row_length /* number of columns to check */
-)
-{
- /* === Local variables ================================================== */
-
- IndexType hash ; /* hash value for a column */
- IndexType *rp ; /* pointer to a row */
- IndexType c ; /* a column index */
- IndexType super_c ; /* column index of the column to absorb into */
- IndexType *cp1 ; /* column pointer for column super_c */
- IndexType *cp2 ; /* column pointer for column c */
- IndexType length ; /* length of column super_c */
- IndexType prev_c ; /* column preceding c in hash bucket */
- IndexType i ; /* loop counter */
- IndexType *rp_end ; /* pointer to the end of the row */
- IndexType col ; /* a column index in the row to check */
- IndexType head_column ; /* first column in hash bucket or degree list */
- IndexType first_col ; /* first column in hash bucket */
-
- /* === Consider each column in the row ================================== */
-
- rp = &A [row_start] ;
- rp_end = rp + row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- if (COL_IS_DEAD (col))
- {
- continue ;
- }
-
- /* get hash number for this column */
- hash = Col [col].shared3.hash ;
- COLAMD_ASSERT (hash <= n_col) ;
-
- /* === Get the first column in this hash bucket ===================== */
-
- head_column = head [hash] ;
- if (head_column > COLAMD_EMPTY)
- {
- first_col = Col [head_column].shared3.headhash ;
- }
- else
- {
- first_col = - (head_column + 2) ;
- }
-
- /* === Consider each column in the hash bucket ====================== */
-
- for (super_c = first_col ; super_c != COLAMD_EMPTY ;
- super_c = Col [super_c].shared4.hash_next)
- {
- COLAMD_ASSERT (COL_IS_ALIVE (super_c)) ;
- COLAMD_ASSERT (Col [super_c].shared3.hash == hash) ;
- length = Col [super_c].length ;
-
- /* prev_c is the column preceding column c in the hash bucket */
- prev_c = super_c ;
-
- /* === Compare super_c with all columns after it ================ */
-
- for (c = Col [super_c].shared4.hash_next ;
- c != COLAMD_EMPTY ; c = Col [c].shared4.hash_next)
- {
- COLAMD_ASSERT (c != super_c) ;
- COLAMD_ASSERT (COL_IS_ALIVE (c)) ;
- COLAMD_ASSERT (Col [c].shared3.hash == hash) ;
-
- /* not identical if lengths or scores are different */
- if (Col [c].length != length ||
- Col [c].shared2.score != Col [super_c].shared2.score)
- {
- prev_c = c ;
- continue ;
- }
-
- /* compare the two columns */
- cp1 = &A [Col [super_c].start] ;
- cp2 = &A [Col [c].start] ;
-
- for (i = 0 ; i < length ; i++)
- {
- /* the columns are "clean" (no dead rows) */
- COLAMD_ASSERT (ROW_IS_ALIVE (*cp1)) ;
- COLAMD_ASSERT (ROW_IS_ALIVE (*cp2)) ;
- /* row indices will same order for both supercols, */
- /* no gather scatter nessasary */
- if (*cp1++ != *cp2++)
- {
- break ;
- }
- }
-
- /* the two columns are different if the for-loop "broke" */
- if (i != length)
- {
- prev_c = c ;
- continue ;
- }
-
- /* === Got it! two columns are identical =================== */
-
- COLAMD_ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
-
- Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
- Col [c].shared1.parent = super_c ;
- KILL_NON_PRINCIPAL_COL (c) ;
- /* order c later, in order_children() */
- Col [c].shared2.order = COLAMD_EMPTY ;
- /* remove c from hash bucket */
- Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
- }
- }
-
- /* === Empty this hash bucket ======================================= */
-
- if (head_column > COLAMD_EMPTY)
- {
- /* corresponding degree list "hash" is not empty */
- Col [head_column].shared3.headhash = COLAMD_EMPTY ;
- }
- else
- {
- /* corresponding degree list "hash" is empty */
- head [hash] = COLAMD_EMPTY ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === garbage_collection =================================================== */
-/* ========================================================================== */
-
-/*
- Defragments and compacts columns and rows in the workspace A. Used when
- all avaliable memory has been used while performing row merging. Returns
- the index of the first free position in A, after garbage collection. The
- time taken by this routine is linear is the size of the array A, which is
- itself linear in the number of nonzeros in the input matrix.
- Not user-callable.
-*/
-template <typename IndexType>
-static IndexType garbage_collection /* returns the new value of pfree */
- (
- /* === Parameters ======================================================= */
-
- IndexType n_row, /* number of rows */
- IndexType n_col, /* number of columns */
- Colamd_Row<IndexType> Row [], /* row info */
- colamd_col<IndexType> Col [], /* column info */
- IndexType A [], /* A [0 ... Alen-1] holds the matrix */
- IndexType *pfree /* &A [0] ... pfree is in use */
- )
-{
- /* === Local variables ================================================== */
-
- IndexType *psrc ; /* source pointer */
- IndexType *pdest ; /* destination pointer */
- IndexType j ; /* counter */
- IndexType r ; /* a row index */
- IndexType c ; /* a column index */
- IndexType length ; /* length of a row or column */
-
- /* === Defragment the columns =========================================== */
-
- pdest = &A[0] ;
- for (c = 0 ; c < n_col ; c++)
- {
- if (COL_IS_ALIVE (c))
- {
- psrc = &A [Col [c].start] ;
-
- /* move and compact the column */
- COLAMD_ASSERT (pdest <= psrc) ;
- Col [c].start = (IndexType) (pdest - &A [0]) ;
- length = Col [c].length ;
- for (j = 0 ; j < length ; j++)
- {
- r = *psrc++ ;
- if (ROW_IS_ALIVE (r))
- {
- *pdest++ = r ;
- }
- }
- Col [c].length = (IndexType) (pdest - &A [Col [c].start]) ;
- }
- }
-
- /* === Prepare to defragment the rows =================================== */
-
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_ALIVE (r))
- {
- if (Row [r].length == 0)
- {
- /* this row is of zero length. cannot compact it, so kill it */
- COLAMD_DEBUG3 (("Defrag row kill\n")) ;
- KILL_ROW (r) ;
- }
- else
- {
- /* save first column index in Row [r].shared2.first_column */
- psrc = &A [Row [r].start] ;
- Row [r].shared2.first_column = *psrc ;
- COLAMD_ASSERT (ROW_IS_ALIVE (r)) ;
- /* flag the start of the row with the one's complement of row */
- *psrc = ONES_COMPLEMENT (r) ;
-
- }
- }
- }
-
- /* === Defragment the rows ============================================== */
-
- psrc = pdest ;
- while (psrc < pfree)
- {
- /* find a negative number ... the start of a row */
- if (*psrc++ < 0)
- {
- psrc-- ;
- /* get the row index */
- r = ONES_COMPLEMENT (*psrc) ;
- COLAMD_ASSERT (r >= 0 && r < n_row) ;
- /* restore first column index */
- *psrc = Row [r].shared2.first_column ;
- COLAMD_ASSERT (ROW_IS_ALIVE (r)) ;
-
- /* move and compact the row */
- COLAMD_ASSERT (pdest <= psrc) ;
- Row [r].start = (IndexType) (pdest - &A [0]) ;
- length = Row [r].length ;
- for (j = 0 ; j < length ; j++)
- {
- c = *psrc++ ;
- if (COL_IS_ALIVE (c))
- {
- *pdest++ = c ;
- }
- }
- Row [r].length = (IndexType) (pdest - &A [Row [r].start]) ;
-
- }
- }
- /* ensure we found all the rows */
- COLAMD_ASSERT (debug_rows == 0) ;
-
- /* === Return the new value of pfree ==================================== */
-
- return ((IndexType) (pdest - &A [0])) ;
-}
-
-
-/* ========================================================================== */
-/* === clear_mark =========================================================== */
-/* ========================================================================== */
-
-/*
- Clears the Row [].shared2.mark array, and returns the new tag_mark.
- Return value is the new tag_mark. Not user-callable.
-*/
-template <typename IndexType>
-static inline IndexType clear_mark /* return the new value for tag_mark */
- (
- /* === Parameters ======================================================= */
-
- IndexType n_row, /* number of rows in A */
- Colamd_Row<IndexType> Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
- )
-{
- /* === Local variables ================================================== */
-
- IndexType r ;
-
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_ALIVE (r))
- {
- Row [r].shared2.mark = 0 ;
- }
- }
- return (1) ;
-}
-
-
-} // namespace internal
-#endif