diff options
Diffstat (limited to 'eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h')
-rw-r--r-- | eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h | 338 |
1 files changed, 338 insertions, 0 deletions
diff --git a/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h b/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h new file mode 100644 index 0000000..3613810 --- /dev/null +++ b/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h @@ -0,0 +1,338 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SUITESPARSEQRSUPPORT_H +#define EIGEN_SUITESPARSEQRSUPPORT_H + +namespace Eigen { + + template<typename MatrixType> class SPQR; + template<typename SPQRType> struct SPQRMatrixQReturnType; + template<typename SPQRType> struct SPQRMatrixQTransposeReturnType; + template <typename SPQRType, typename Derived> struct SPQR_QProduct; + namespace internal { + template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> > + { + typedef typename SPQRType::MatrixType ReturnType; + }; + template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> > + { + typedef typename SPQRType::MatrixType ReturnType; + }; + template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> > + { + typedef typename Derived::PlainObject ReturnType; + }; + } // End namespace internal + +/** + * \ingroup SPQRSupport_Module + * \class SPQR + * \brief Sparse QR factorization based on SuiteSparseQR library + * + * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition + * of sparse matrices. The result is then used to solve linear leasts_square systems. + * Clearly, a QR factorization is returned such that A*P = Q*R where : + * + * P is the column permutation. Use colsPermutation() to get it. + * + * Q is the orthogonal matrix represented as Householder reflectors. + * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. + * You can then apply it to a vector. + * + * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. + * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index + * + * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> + * NOTE + * + */ +template<typename _MatrixType> +class SPQR +{ + public: + typedef typename _MatrixType::Scalar Scalar; + typedef typename _MatrixType::RealScalar RealScalar; + typedef SuiteSparse_long Index ; + typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType; + typedef PermutationMatrix<Dynamic, Dynamic> PermutationType; + public: + SPQR() + : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true) + { + cholmod_l_start(&m_cc); + } + + SPQR(const _MatrixType& matrix) + : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true) + { + cholmod_l_start(&m_cc); + compute(matrix); + } + + ~SPQR() + { + SPQR_free(); + cholmod_l_finish(&m_cc); + } + void SPQR_free() + { + cholmod_l_free_sparse(&m_H, &m_cc); + cholmod_l_free_sparse(&m_cR, &m_cc); + cholmod_l_free_dense(&m_HTau, &m_cc); + std::free(m_E); + std::free(m_HPinv); + } + + void compute(const _MatrixType& matrix) + { + if(m_isInitialized) SPQR_free(); + + MatrixType mat(matrix); + + /* Compute the default threshold as in MatLab, see: + * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing + * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 + */ + RealScalar pivotThreshold = m_tolerance; + if(m_useDefaultThreshold) + { + using std::max; + RealScalar max2Norm = 0.0; + for (int j = 0; j < mat.cols(); j++) max2Norm = (max)(max2Norm, mat.col(j).norm()); + if(max2Norm==RealScalar(0)) + max2Norm = RealScalar(1); + pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon(); + } + + cholmod_sparse A; + A = viewAsCholmod(mat); + Index col = matrix.cols(); + m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A, + &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc); + + if (!m_cR) + { + m_info = NumericalIssue; + m_isInitialized = false; + return; + } + m_info = Success; + m_isInitialized = true; + m_isRUpToDate = false; + } + /** + * Get the number of rows of the input matrix and the Q matrix + */ + inline Index rows() const {return m_cR->nrow; } + + /** + * Get the number of columns of the input matrix. + */ + inline Index cols() const { return m_cR->ncol; } + + /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. + * + * \sa compute() + */ + template<typename Rhs> + inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const + { + eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); + eigen_assert(this->rows()==B.rows() + && "SPQR::solve(): invalid number of rows of the right hand side matrix B"); + return internal::solve_retval<SPQR, Rhs>(*this, B.derived()); + } + + template<typename Rhs, typename Dest> + void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const + { + eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); + eigen_assert(b.cols()==1 && "This method is for vectors only"); + + //Compute Q^T * b + typename Dest::PlainObject y, y2; + y = matrixQ().transpose() * b; + + // Solves with the triangular matrix R + Index rk = this->rank(); + y2 = y; + y.resize((std::max)(cols(),Index(y.rows())),y.cols()); + y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk)); + + // Apply the column permutation + // colsPermutation() performs a copy of the permutation, + // so let's apply it manually: + for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i); + for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero(); + +// y.bottomRows(y.rows()-rk).setZero(); +// dest = colsPermutation() * y.topRows(cols()); + + m_info = Success; + } + + /** \returns the sparse triangular factor R. It is a sparse matrix + */ + const MatrixType matrixR() const + { + eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); + if(!m_isRUpToDate) { + m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR); + m_isRUpToDate = true; + } + return m_R; + } + /// Get an expression of the matrix Q + SPQRMatrixQReturnType<SPQR> matrixQ() const + { + return SPQRMatrixQReturnType<SPQR>(*this); + } + /// Get the permutation that was applied to columns of A + PermutationType colsPermutation() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + Index n = m_cR->ncol; + PermutationType colsPerm(n); + for(Index j = 0; j <n; j++) colsPerm.indices()(j) = m_E[j]; + return colsPerm; + + } + /** + * Gets the rank of the matrix. + * It should be equal to matrixQR().cols if the matrix is full-rank + */ + Index rank() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_cc.SPQR_istat[4]; + } + /// Set the fill-reducing ordering method to be used + void setSPQROrdering(int ord) { m_ordering = ord;} + /// Set the tolerance tol to treat columns with 2-norm < =tol as zero + void setPivotThreshold(const RealScalar& tol) + { + m_useDefaultThreshold = false; + m_tolerance = tol; + } + + /** \returns a pointer to the SPQR workspace */ + cholmod_common *cholmodCommon() const { return &m_cc; } + + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was succesful, + * \c NumericalIssue if the sparse QR can not be computed + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + protected: + bool m_isInitialized; + bool m_analysisIsOk; + bool m_factorizationIsOk; + mutable bool m_isRUpToDate; + mutable ComputationInfo m_info; + int m_ordering; // Ordering method to use, see SPQR's manual + int m_allow_tol; // Allow to use some tolerance during numerical factorization. + RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero + mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format + mutable MatrixType m_R; // The sparse matrix R in Eigen format + mutable Index *m_E; // The permutation applied to columns + mutable cholmod_sparse *m_H; //The householder vectors + mutable Index *m_HPinv; // The row permutation of H + mutable cholmod_dense *m_HTau; // The Householder coefficients + mutable Index m_rank; // The rank of the matrix + mutable cholmod_common m_cc; // Workspace and parameters + bool m_useDefaultThreshold; // Use default threshold + template<typename ,typename > friend struct SPQR_QProduct; +}; + +template <typename SPQRType, typename Derived> +struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> > +{ + typedef typename SPQRType::Scalar Scalar; + typedef typename SPQRType::Index Index; + //Define the constructor to get reference to argument types + SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {} + + inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); } + inline Index cols() const { return m_other.cols(); } + // Assign to a vector + template<typename ResType> + void evalTo(ResType& res) const + { + cholmod_dense y_cd; + cholmod_dense *x_cd; + int method = m_transpose ? SPQR_QTX : SPQR_QX; + cholmod_common *cc = m_spqr.cholmodCommon(); + y_cd = viewAsCholmod(m_other.const_cast_derived()); + x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc); + res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol); + cholmod_l_free_dense(&x_cd, cc); + } + const SPQRType& m_spqr; + const Derived& m_other; + bool m_transpose; + +}; +template<typename SPQRType> +struct SPQRMatrixQReturnType{ + + SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {} + template<typename Derived> + SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other) + { + return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false); + } + SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const + { + return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); + } + // To use for operations with the transpose of Q + SPQRMatrixQTransposeReturnType<SPQRType> transpose() const + { + return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); + } + const SPQRType& m_spqr; +}; + +template<typename SPQRType> +struct SPQRMatrixQTransposeReturnType{ + SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {} + template<typename Derived> + SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other) + { + return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true); + } + const SPQRType& m_spqr; +}; + +namespace internal { + +template<typename _MatrixType, typename Rhs> +struct solve_retval<SPQR<_MatrixType>, Rhs> + : solve_retval_base<SPQR<_MatrixType>, Rhs> +{ + typedef SPQR<_MatrixType> Dec; + EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) + + template<typename Dest> void evalTo(Dest& dst) const + { + dec()._solve(rhs(),dst); + } +}; + +} // end namespace internal + +}// End namespace Eigen +#endif |