summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h
blob: 36138101d74444dff15d38fe314b81621ec80246 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SUITESPARSEQRSUPPORT_H
#define EIGEN_SUITESPARSEQRSUPPORT_H

namespace Eigen {
  
  template<typename MatrixType> class SPQR; 
  template<typename SPQRType> struct SPQRMatrixQReturnType; 
  template<typename SPQRType> struct SPQRMatrixQTransposeReturnType; 
  template <typename SPQRType, typename Derived> struct SPQR_QProduct;
  namespace internal {
    template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
    {
      typedef typename SPQRType::MatrixType ReturnType;
    };
    template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
    {
      typedef typename SPQRType::MatrixType ReturnType;
    };
    template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
    {
      typedef typename Derived::PlainObject ReturnType;
    };
  } // End namespace internal
  
/**
 * \ingroup SPQRSupport_Module
 * \class SPQR
 * \brief Sparse QR factorization based on SuiteSparseQR library
 * 
 * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition 
 * of sparse matrices. The result is then used to solve linear leasts_square systems.
 * Clearly, a QR factorization is returned such that A*P = Q*R where :
 * 
 * P is the column permutation. Use colsPermutation() to get it.
 * 
 * Q is the orthogonal matrix represented as Householder reflectors. 
 * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
 * You can then apply it to a vector.
 * 
 * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
 * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index
 * 
 * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
 * NOTE 
 * 
 */
template<typename _MatrixType>
class SPQR
{
  public:
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
    typedef SuiteSparse_long Index ;
    typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType;
    typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
  public:
    SPQR() 
      : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
    { 
      cholmod_l_start(&m_cc);
    }
    
    SPQR(const _MatrixType& matrix)
    : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
    {
      cholmod_l_start(&m_cc);
      compute(matrix);
    }
    
    ~SPQR()
    {
      SPQR_free();
      cholmod_l_finish(&m_cc);
    }
    void SPQR_free()
    {
      cholmod_l_free_sparse(&m_H, &m_cc);
      cholmod_l_free_sparse(&m_cR, &m_cc);
      cholmod_l_free_dense(&m_HTau, &m_cc);
      std::free(m_E);
      std::free(m_HPinv);
    }

    void compute(const _MatrixType& matrix)
    {
      if(m_isInitialized) SPQR_free();

      MatrixType mat(matrix);
      
      /* Compute the default threshold as in MatLab, see:
       * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
       * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 
       */
      RealScalar pivotThreshold = m_tolerance;
      if(m_useDefaultThreshold) 
      {
        using std::max;
        RealScalar max2Norm = 0.0;
        for (int j = 0; j < mat.cols(); j++) max2Norm = (max)(max2Norm, mat.col(j).norm());
        if(max2Norm==RealScalar(0))
          max2Norm = RealScalar(1);
        pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
      }
      
      cholmod_sparse A; 
      A = viewAsCholmod(mat);
      Index col = matrix.cols();
      m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A, 
                             &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);

      if (!m_cR)
      {
        m_info = NumericalIssue; 
        m_isInitialized = false;
        return;
      }
      m_info = Success;
      m_isInitialized = true;
      m_isRUpToDate = false;
    }
    /** 
     * Get the number of rows of the input matrix and the Q matrix
     */
    inline Index rows() const {return m_cR->nrow; }
    
    /** 
     * Get the number of columns of the input matrix. 
     */
    inline Index cols() const { return m_cR->ncol; }
   
      /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const 
    {
      eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
      eigen_assert(this->rows()==B.rows()
                    && "SPQR::solve(): invalid number of rows of the right hand side matrix B");
          return internal::solve_retval<SPQR, Rhs>(*this, B.derived());
    }
    
    template<typename Rhs, typename Dest>
    void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
    {
      eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
      eigen_assert(b.cols()==1 && "This method is for vectors only");

      //Compute Q^T * b
      typename Dest::PlainObject y, y2;
      y = matrixQ().transpose() * b;
      
      // Solves with the triangular matrix R
      Index rk = this->rank();
      y2 = y;
      y.resize((std::max)(cols(),Index(y.rows())),y.cols());
      y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));

      // Apply the column permutation 
      // colsPermutation() performs a copy of the permutation,
      // so let's apply it manually:
      for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
      for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
      
//       y.bottomRows(y.rows()-rk).setZero();
//       dest = colsPermutation() * y.topRows(cols());
      
      m_info = Success;
    }
    
    /** \returns the sparse triangular factor R. It is a sparse matrix
     */
    const MatrixType matrixR() const
    {
      eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
      if(!m_isRUpToDate) {
        m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR);
        m_isRUpToDate = true;
      }
      return m_R;
    }
    /// Get an expression of the matrix Q
    SPQRMatrixQReturnType<SPQR> matrixQ() const
    {
      return SPQRMatrixQReturnType<SPQR>(*this);
    }
    /// Get the permutation that was applied to columns of A
    PermutationType colsPermutation() const
    { 
      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
      Index n = m_cR->ncol;
      PermutationType colsPerm(n);
      for(Index j = 0; j <n; j++) colsPerm.indices()(j) = m_E[j];
      return colsPerm; 
      
    }
    /**
     * Gets the rank of the matrix. 
     * It should be equal to matrixQR().cols if the matrix is full-rank
     */
    Index rank() const
    {
      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
      return m_cc.SPQR_istat[4];
    }
    /// Set the fill-reducing ordering method to be used
    void setSPQROrdering(int ord) { m_ordering = ord;}
    /// Set the tolerance tol to treat columns with 2-norm < =tol as zero
    void setPivotThreshold(const RealScalar& tol)
    {
      m_useDefaultThreshold = false;
      m_tolerance = tol;
    }
    
    /** \returns a pointer to the SPQR workspace */
    cholmod_common *cholmodCommon() const { return &m_cc; }
    
    
    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the sparse QR can not be computed
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
      return m_info;
    }
  protected:
    bool m_isInitialized;
    bool m_analysisIsOk;
    bool m_factorizationIsOk;
    mutable bool m_isRUpToDate;
    mutable ComputationInfo m_info;
    int m_ordering; // Ordering method to use, see SPQR's manual
    int m_allow_tol; // Allow to use some tolerance during numerical factorization.
    RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
    mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
    mutable MatrixType m_R; // The sparse matrix R in Eigen format
    mutable Index *m_E; // The permutation applied to columns
    mutable cholmod_sparse *m_H;  //The householder vectors
    mutable Index *m_HPinv; // The row permutation of H
    mutable cholmod_dense *m_HTau; // The Householder coefficients
    mutable Index m_rank; // The rank of the matrix
    mutable cholmod_common m_cc; // Workspace and parameters
    bool m_useDefaultThreshold;     // Use default threshold
    template<typename ,typename > friend struct SPQR_QProduct;
};

template <typename SPQRType, typename Derived>
struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
{
  typedef typename SPQRType::Scalar Scalar;
  typedef typename SPQRType::Index Index;
  //Define the constructor to get reference to argument types
  SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
  
  inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
  inline Index cols() const { return m_other.cols(); }
  // Assign to a vector
  template<typename ResType>
  void evalTo(ResType& res) const
  {
    cholmod_dense y_cd;
    cholmod_dense *x_cd; 
    int method = m_transpose ? SPQR_QTX : SPQR_QX; 
    cholmod_common *cc = m_spqr.cholmodCommon();
    y_cd = viewAsCholmod(m_other.const_cast_derived());
    x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
    res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
    cholmod_l_free_dense(&x_cd, cc);
  }
  const SPQRType& m_spqr; 
  const Derived& m_other; 
  bool m_transpose; 
  
};
template<typename SPQRType>
struct SPQRMatrixQReturnType{
  
  SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
  template<typename Derived>
  SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
  {
    return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
  }
  SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
  {
    return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
  }
  // To use for operations with the transpose of Q
  SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
  {
    return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
  }
  const SPQRType& m_spqr;
};

template<typename SPQRType>
struct SPQRMatrixQTransposeReturnType{
  SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
  template<typename Derived>
  SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
  {
    return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
  }
  const SPQRType& m_spqr;
};

namespace internal {
  
template<typename _MatrixType, typename Rhs>
struct solve_retval<SPQR<_MatrixType>, Rhs>
  : solve_retval_base<SPQR<_MatrixType>, Rhs>
{
  typedef SPQR<_MatrixType> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};

} // end namespace internal

}// End namespace Eigen
#endif