diff options
Diffstat (limited to 'eigen/Eigen/src/SVD/SVDBase.h')
-rw-r--r-- | eigen/Eigen/src/SVD/SVDBase.h | 312 |
1 files changed, 312 insertions, 0 deletions
diff --git a/eigen/Eigen/src/SVD/SVDBase.h b/eigen/Eigen/src/SVD/SVDBase.h new file mode 100644 index 0000000..4294147 --- /dev/null +++ b/eigen/Eigen/src/SVD/SVDBase.h @@ -0,0 +1,312 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> +// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> +// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> +// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> +// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SVDBASE_H +#define EIGEN_SVDBASE_H + +namespace Eigen { +/** \ingroup SVD_Module + * + * + * \class SVDBase + * + * \brief Base class of SVD algorithms + * + * \tparam Derived the type of the actual SVD decomposition + * + * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product + * \f[ A = U S V^* \f] + * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; + * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left + * and right \em singular \em vectors of \a A respectively. + * + * Singular values are always sorted in decreasing order. + * + * + * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the + * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual + * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, + * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. + * + * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to + * terminate in finite (and reasonable) time. + * \sa class BDCSVD, class JacobiSVD + */ +template<typename Derived> +class SVDBase +{ + +public: + typedef typename internal::traits<Derived>::MatrixType MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, + MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), + MatrixOptions = MatrixType::Options + }; + + typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType; + typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType; + typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; + + Derived& derived() { return *static_cast<Derived*>(this); } + const Derived& derived() const { return *static_cast<const Derived*>(this); } + + /** \returns the \a U matrix. + * + * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, + * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink. + * + * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. + * + * This method asserts that you asked for \a U to be computed. + */ + const MatrixUType& matrixU() const + { + eigen_assert(m_isInitialized && "SVD is not initialized."); + eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); + return m_matrixU; + } + + /** \returns the \a V matrix. + * + * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, + * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink. + * + * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. + * + * This method asserts that you asked for \a V to be computed. + */ + const MatrixVType& matrixV() const + { + eigen_assert(m_isInitialized && "SVD is not initialized."); + eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); + return m_matrixV; + } + + /** \returns the vector of singular values. + * + * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the + * returned vector has size \a m. Singular values are always sorted in decreasing order. + */ + const SingularValuesType& singularValues() const + { + eigen_assert(m_isInitialized && "SVD is not initialized."); + return m_singularValues; + } + + /** \returns the number of singular values that are not exactly 0 */ + Index nonzeroSingularValues() const + { + eigen_assert(m_isInitialized && "SVD is not initialized."); + return m_nonzeroSingularValues; + } + + /** \returns the rank of the matrix of which \c *this is the SVD. + * + * \note This method has to determine which singular values should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline Index rank() const + { + using std::abs; + eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); + if(m_singularValues.size()==0) return 0; + RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)()); + Index i = m_nonzeroSingularValues-1; + while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i; + return i+1; + } + + /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), + * which need to determine when singular values are to be considered nonzero. + * This is not used for the SVD decomposition itself. + * + * When it needs to get the threshold value, Eigen calls threshold(). + * The default is \c NumTraits<Scalar>::epsilon() + * + * \param threshold The new value to use as the threshold. + * + * A singular value will be considered nonzero if its value is strictly greater than + * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$. + * + * If you want to come back to the default behavior, call setThreshold(Default_t) + */ + Derived& setThreshold(const RealScalar& threshold) + { + m_usePrescribedThreshold = true; + m_prescribedThreshold = threshold; + return derived(); + } + + /** Allows to come back to the default behavior, letting Eigen use its default formula for + * determining the threshold. + * + * You should pass the special object Eigen::Default as parameter here. + * \code svd.setThreshold(Eigen::Default); \endcode + * + * See the documentation of setThreshold(const RealScalar&). + */ + Derived& setThreshold(Default_t) + { + m_usePrescribedThreshold = false; + return derived(); + } + + /** Returns the threshold that will be used by certain methods such as rank(). + * + * See the documentation of setThreshold(const RealScalar&). + */ + RealScalar threshold() const + { + eigen_assert(m_isInitialized || m_usePrescribedThreshold); + return m_usePrescribedThreshold ? m_prescribedThreshold + : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon(); + } + + /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ + inline bool computeU() const { return m_computeFullU || m_computeThinU; } + /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ + inline bool computeV() const { return m_computeFullV || m_computeThinV; } + + inline Index rows() const { return m_rows; } + inline Index cols() const { return m_cols; } + + /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. + * + * \param b the right-hand-side of the equation to solve. + * + * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. + * + * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. + * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. + */ + template<typename Rhs> + inline const Solve<Derived, Rhs> + solve(const MatrixBase<Rhs>& b) const + { + eigen_assert(m_isInitialized && "SVD is not initialized."); + eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."); + return Solve<Derived, Rhs>(derived(), b.derived()); + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template<typename RhsType, typename DstType> + void _solve_impl(const RhsType &rhs, DstType &dst) const; + #endif + +protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + // return true if already allocated + bool allocate(Index rows, Index cols, unsigned int computationOptions) ; + + MatrixUType m_matrixU; + MatrixVType m_matrixV; + SingularValuesType m_singularValues; + bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold; + bool m_computeFullU, m_computeThinU; + bool m_computeFullV, m_computeThinV; + unsigned int m_computationOptions; + Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; + RealScalar m_prescribedThreshold; + + /** \brief Default Constructor. + * + * Default constructor of SVDBase + */ + SVDBase() + : m_isInitialized(false), + m_isAllocated(false), + m_usePrescribedThreshold(false), + m_computationOptions(0), + m_rows(-1), m_cols(-1), m_diagSize(0) + { + check_template_parameters(); + } + + +}; + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template<typename Derived> +template<typename RhsType, typename DstType> +void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + eigen_assert(rhs.rows() == rows()); + + // A = U S V^* + // So A^{-1} = V S^{-1} U^* + + Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp; + Index l_rank = rank(); + tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs; + tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp; + dst = m_matrixV.leftCols(l_rank) * tmp; +} +#endif + +template<typename MatrixType> +bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions) +{ + eigen_assert(rows >= 0 && cols >= 0); + + if (m_isAllocated && + rows == m_rows && + cols == m_cols && + computationOptions == m_computationOptions) + { + return true; + } + + m_rows = rows; + m_cols = cols; + m_isInitialized = false; + m_isAllocated = true; + m_computationOptions = computationOptions; + m_computeFullU = (computationOptions & ComputeFullU) != 0; + m_computeThinU = (computationOptions & ComputeThinU) != 0; + m_computeFullV = (computationOptions & ComputeFullV) != 0; + m_computeThinV = (computationOptions & ComputeThinV) != 0; + eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U"); + eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V"); + eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && + "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns."); + + m_diagSize = (std::min)(m_rows, m_cols); + m_singularValues.resize(m_diagSize); + if(RowsAtCompileTime==Dynamic) + m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0); + if(ColsAtCompileTime==Dynamic) + m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0); + + return false; +} + +}// end namespace + +#endif // EIGEN_SVDBASE_H |