summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h')
-rw-r--r--eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h199
1 files changed, 199 insertions, 0 deletions
diff --git a/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h b/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h
new file mode 100644
index 0000000..7aaf702
--- /dev/null
+++ b/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h
@@ -0,0 +1,199 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
+
+/*
+
+NOTE: thes functions vave been adapted from the LDL library:
+
+LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
+
+LDL License:
+
+ Your use or distribution of LDL or any modified version of
+ LDL implies that you agree to this License.
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this library; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
+ USA
+
+ Permission is hereby granted to use or copy this program under the
+ terms of the GNU LGPL, provided that the Copyright, this License,
+ and the Availability of the original version is retained on all copies.
+ User documentation of any code that uses this code or any modified
+ version of this code must cite the Copyright, this License, the
+ Availability note, and "Used by permission." Permission to modify
+ the code and to distribute modified code is granted, provided the
+ Copyright, this License, and the Availability note are retained,
+ and a notice that the code was modified is included.
+ */
+
+#include "../Core/util/NonMPL2.h"
+
+#ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
+#define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
+
+namespace Eigen {
+
+template<typename Derived>
+void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT)
+{
+ const Index size = ap.rows();
+ m_matrix.resize(size, size);
+ m_parent.resize(size);
+ m_nonZerosPerCol.resize(size);
+
+ ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0);
+
+ for(Index k = 0; k < size; ++k)
+ {
+ /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
+ m_parent[k] = -1; /* parent of k is not yet known */
+ tags[k] = k; /* mark node k as visited */
+ m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
+ for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
+ {
+ Index i = it.index();
+ if(i < k)
+ {
+ /* follow path from i to root of etree, stop at flagged node */
+ for(; tags[i] != k; i = m_parent[i])
+ {
+ /* find parent of i if not yet determined */
+ if (m_parent[i] == -1)
+ m_parent[i] = k;
+ m_nonZerosPerCol[i]++; /* L (k,i) is nonzero */
+ tags[i] = k; /* mark i as visited */
+ }
+ }
+ }
+ }
+
+ /* construct Lp index array from m_nonZerosPerCol column counts */
+ Index* Lp = m_matrix.outerIndexPtr();
+ Lp[0] = 0;
+ for(Index k = 0; k < size; ++k)
+ Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1);
+
+ m_matrix.resizeNonZeros(Lp[size]);
+
+ m_isInitialized = true;
+ m_info = Success;
+ m_analysisIsOk = true;
+ m_factorizationIsOk = false;
+}
+
+
+template<typename Derived>
+template<bool DoLDLT>
+void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap)
+{
+ using std::sqrt;
+
+ eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
+ eigen_assert(ap.rows()==ap.cols());
+ const Index size = ap.rows();
+ eigen_assert(m_parent.size()==size);
+ eigen_assert(m_nonZerosPerCol.size()==size);
+
+ const Index* Lp = m_matrix.outerIndexPtr();
+ Index* Li = m_matrix.innerIndexPtr();
+ Scalar* Lx = m_matrix.valuePtr();
+
+ ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0);
+ ei_declare_aligned_stack_constructed_variable(Index, pattern, size, 0);
+ ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0);
+
+ bool ok = true;
+ m_diag.resize(DoLDLT ? size : 0);
+
+ for(Index k = 0; k < size; ++k)
+ {
+ // compute nonzero pattern of kth row of L, in topological order
+ y[k] = 0.0; // Y(0:k) is now all zero
+ Index top = size; // stack for pattern is empty
+ tags[k] = k; // mark node k as visited
+ m_nonZerosPerCol[k] = 0; // count of nonzeros in column k of L
+ for(typename MatrixType::InnerIterator it(ap,k); it; ++it)
+ {
+ Index i = it.index();
+ if(i <= k)
+ {
+ y[i] += numext::conj(it.value()); /* scatter A(i,k) into Y (sum duplicates) */
+ Index len;
+ for(len = 0; tags[i] != k; i = m_parent[i])
+ {
+ pattern[len++] = i; /* L(k,i) is nonzero */
+ tags[i] = k; /* mark i as visited */
+ }
+ while(len > 0)
+ pattern[--top] = pattern[--len];
+ }
+ }
+
+ /* compute numerical values kth row of L (a sparse triangular solve) */
+
+ RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset; // get D(k,k), apply the shift function, and clear Y(k)
+ y[k] = 0.0;
+ for(; top < size; ++top)
+ {
+ Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */
+ Scalar yi = y[i]; /* get and clear Y(i) */
+ y[i] = 0.0;
+
+ /* the nonzero entry L(k,i) */
+ Scalar l_ki;
+ if(DoLDLT)
+ l_ki = yi / m_diag[i];
+ else
+ yi = l_ki = yi / Lx[Lp[i]];
+
+ Index p2 = Lp[i] + m_nonZerosPerCol[i];
+ Index p;
+ for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p)
+ y[Li[p]] -= numext::conj(Lx[p]) * yi;
+ d -= numext::real(l_ki * numext::conj(yi));
+ Li[p] = k; /* store L(k,i) in column form of L */
+ Lx[p] = l_ki;
+ ++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */
+ }
+ if(DoLDLT)
+ {
+ m_diag[k] = d;
+ if(d == RealScalar(0))
+ {
+ ok = false; /* failure, D(k,k) is zero */
+ break;
+ }
+ }
+ else
+ {
+ Index p = Lp[k] + m_nonZerosPerCol[k]++;
+ Li[p] = k ; /* store L(k,k) = sqrt (d) in column k */
+ if(d <= RealScalar(0)) {
+ ok = false; /* failure, matrix is not positive definite */
+ break;
+ }
+ Lx[p] = sqrt(d) ;
+ }
+ }
+
+ m_info = ok ? Success : NumericalIssue;
+ m_factorizationIsOk = true;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H