diff options
Diffstat (limited to 'eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h')
-rw-r--r-- | eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h | 199 |
1 files changed, 199 insertions, 0 deletions
diff --git a/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h b/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h new file mode 100644 index 0000000..7aaf702 --- /dev/null +++ b/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h @@ -0,0 +1,199 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr> + +/* + +NOTE: thes functions vave been adapted from the LDL library: + +LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved. + +LDL License: + + Your use or distribution of LDL or any modified version of + LDL implies that you agree to this License. + + This library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + This library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with this library; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 + USA + + Permission is hereby granted to use or copy this program under the + terms of the GNU LGPL, provided that the Copyright, this License, + and the Availability of the original version is retained on all copies. + User documentation of any code that uses this code or any modified + version of this code must cite the Copyright, this License, the + Availability note, and "Used by permission." Permission to modify + the code and to distribute modified code is granted, provided the + Copyright, this License, and the Availability note are retained, + and a notice that the code was modified is included. + */ + +#include "../Core/util/NonMPL2.h" + +#ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H +#define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H + +namespace Eigen { + +template<typename Derived> +void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT) +{ + const Index size = ap.rows(); + m_matrix.resize(size, size); + m_parent.resize(size); + m_nonZerosPerCol.resize(size); + + ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0); + + for(Index k = 0; k < size; ++k) + { + /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */ + m_parent[k] = -1; /* parent of k is not yet known */ + tags[k] = k; /* mark node k as visited */ + m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */ + for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it) + { + Index i = it.index(); + if(i < k) + { + /* follow path from i to root of etree, stop at flagged node */ + for(; tags[i] != k; i = m_parent[i]) + { + /* find parent of i if not yet determined */ + if (m_parent[i] == -1) + m_parent[i] = k; + m_nonZerosPerCol[i]++; /* L (k,i) is nonzero */ + tags[i] = k; /* mark i as visited */ + } + } + } + } + + /* construct Lp index array from m_nonZerosPerCol column counts */ + Index* Lp = m_matrix.outerIndexPtr(); + Lp[0] = 0; + for(Index k = 0; k < size; ++k) + Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1); + + m_matrix.resizeNonZeros(Lp[size]); + + m_isInitialized = true; + m_info = Success; + m_analysisIsOk = true; + m_factorizationIsOk = false; +} + + +template<typename Derived> +template<bool DoLDLT> +void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap) +{ + using std::sqrt; + + eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); + eigen_assert(ap.rows()==ap.cols()); + const Index size = ap.rows(); + eigen_assert(m_parent.size()==size); + eigen_assert(m_nonZerosPerCol.size()==size); + + const Index* Lp = m_matrix.outerIndexPtr(); + Index* Li = m_matrix.innerIndexPtr(); + Scalar* Lx = m_matrix.valuePtr(); + + ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0); + ei_declare_aligned_stack_constructed_variable(Index, pattern, size, 0); + ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0); + + bool ok = true; + m_diag.resize(DoLDLT ? size : 0); + + for(Index k = 0; k < size; ++k) + { + // compute nonzero pattern of kth row of L, in topological order + y[k] = 0.0; // Y(0:k) is now all zero + Index top = size; // stack for pattern is empty + tags[k] = k; // mark node k as visited + m_nonZerosPerCol[k] = 0; // count of nonzeros in column k of L + for(typename MatrixType::InnerIterator it(ap,k); it; ++it) + { + Index i = it.index(); + if(i <= k) + { + y[i] += numext::conj(it.value()); /* scatter A(i,k) into Y (sum duplicates) */ + Index len; + for(len = 0; tags[i] != k; i = m_parent[i]) + { + pattern[len++] = i; /* L(k,i) is nonzero */ + tags[i] = k; /* mark i as visited */ + } + while(len > 0) + pattern[--top] = pattern[--len]; + } + } + + /* compute numerical values kth row of L (a sparse triangular solve) */ + + RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset; // get D(k,k), apply the shift function, and clear Y(k) + y[k] = 0.0; + for(; top < size; ++top) + { + Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */ + Scalar yi = y[i]; /* get and clear Y(i) */ + y[i] = 0.0; + + /* the nonzero entry L(k,i) */ + Scalar l_ki; + if(DoLDLT) + l_ki = yi / m_diag[i]; + else + yi = l_ki = yi / Lx[Lp[i]]; + + Index p2 = Lp[i] + m_nonZerosPerCol[i]; + Index p; + for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p) + y[Li[p]] -= numext::conj(Lx[p]) * yi; + d -= numext::real(l_ki * numext::conj(yi)); + Li[p] = k; /* store L(k,i) in column form of L */ + Lx[p] = l_ki; + ++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */ + } + if(DoLDLT) + { + m_diag[k] = d; + if(d == RealScalar(0)) + { + ok = false; /* failure, D(k,k) is zero */ + break; + } + } + else + { + Index p = Lp[k] + m_nonZerosPerCol[k]++; + Li[p] = k ; /* store L(k,k) = sqrt (d) in column k */ + if(d <= RealScalar(0)) { + ok = false; /* failure, matrix is not positive definite */ + break; + } + Lx[p] = sqrt(d) ; + } + } + + m_info = ok ? Success : NumericalIssue; + m_factorizationIsOk = true; +} + +} // end namespace Eigen + +#endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H |