summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/SparseQR/SparseQR.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/Eigen/src/SparseQR/SparseQR.h')
-rw-r--r--eigen/Eigen/src/SparseQR/SparseQR.h714
1 files changed, 714 insertions, 0 deletions
diff --git a/eigen/Eigen/src/SparseQR/SparseQR.h b/eigen/Eigen/src/SparseQR/SparseQR.h
new file mode 100644
index 0000000..a00bd5d
--- /dev/null
+++ b/eigen/Eigen/src/SparseQR/SparseQR.h
@@ -0,0 +1,714 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
+// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_QR_H
+#define EIGEN_SPARSE_QR_H
+
+namespace Eigen {
+
+template<typename MatrixType, typename OrderingType> class SparseQR;
+template<typename SparseQRType> struct SparseQRMatrixQReturnType;
+template<typename SparseQRType> struct SparseQRMatrixQTransposeReturnType;
+template<typename SparseQRType, typename Derived> struct SparseQR_QProduct;
+namespace internal {
+ template <typename SparseQRType> struct traits<SparseQRMatrixQReturnType<SparseQRType> >
+ {
+ typedef typename SparseQRType::MatrixType ReturnType;
+ typedef typename ReturnType::Index Index;
+ typedef typename ReturnType::StorageKind StorageKind;
+ };
+ template <typename SparseQRType> struct traits<SparseQRMatrixQTransposeReturnType<SparseQRType> >
+ {
+ typedef typename SparseQRType::MatrixType ReturnType;
+ };
+ template <typename SparseQRType, typename Derived> struct traits<SparseQR_QProduct<SparseQRType, Derived> >
+ {
+ typedef typename Derived::PlainObject ReturnType;
+ };
+} // End namespace internal
+
+/**
+ * \ingroup SparseQR_Module
+ * \class SparseQR
+ * \brief Sparse left-looking rank-revealing QR factorization
+ *
+ * This class implements a left-looking rank-revealing QR decomposition
+ * of sparse matrices. When a column has a norm less than a given tolerance
+ * it is implicitly permuted to the end. The QR factorization thus obtained is
+ * given by A*P = Q*R where R is upper triangular or trapezoidal.
+ *
+ * P is the column permutation which is the product of the fill-reducing and the
+ * rank-revealing permutations. Use colsPermutation() to get it.
+ *
+ * Q is the orthogonal matrix represented as products of Householder reflectors.
+ * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
+ * You can then apply it to a vector.
+ *
+ * R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient.
+ * matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank.
+ *
+ * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
+ * \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
+ * OrderingMethods \endlink module for the list of built-in and external ordering methods.
+ *
+ * \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
+ *
+ */
+template<typename _MatrixType, typename _OrderingType>
+class SparseQR
+{
+ public:
+ typedef _MatrixType MatrixType;
+ typedef _OrderingType OrderingType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::Index Index;
+ typedef SparseMatrix<Scalar,ColMajor,Index> QRMatrixType;
+ typedef Matrix<Index, Dynamic, 1> IndexVector;
+ typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
+ typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
+ public:
+ SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
+ { }
+
+ /** Construct a QR factorization of the matrix \a mat.
+ *
+ * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
+ *
+ * \sa compute()
+ */
+ SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
+ {
+ compute(mat);
+ }
+
+ /** Computes the QR factorization of the sparse matrix \a mat.
+ *
+ * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
+ *
+ * \sa analyzePattern(), factorize()
+ */
+ void compute(const MatrixType& mat)
+ {
+ analyzePattern(mat);
+ factorize(mat);
+ }
+ void analyzePattern(const MatrixType& mat);
+ void factorize(const MatrixType& mat);
+
+ /** \returns the number of rows of the represented matrix.
+ */
+ inline Index rows() const { return m_pmat.rows(); }
+
+ /** \returns the number of columns of the represented matrix.
+ */
+ inline Index cols() const { return m_pmat.cols();}
+
+ /** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization.
+ */
+ const QRMatrixType& matrixR() const { return m_R; }
+
+ /** \returns the number of non linearly dependent columns as determined by the pivoting threshold.
+ *
+ * \sa setPivotThreshold()
+ */
+ Index rank() const
+ {
+ eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
+ return m_nonzeropivots;
+ }
+
+ /** \returns an expression of the matrix Q as products of sparse Householder reflectors.
+ * The common usage of this function is to apply it to a dense matrix or vector
+ * \code
+ * VectorXd B1, B2;
+ * // Initialize B1
+ * B2 = matrixQ() * B1;
+ * \endcode
+ *
+ * To get a plain SparseMatrix representation of Q:
+ * \code
+ * SparseMatrix<double> Q;
+ * Q = SparseQR<SparseMatrix<double> >(A).matrixQ();
+ * \endcode
+ * Internally, this call simply performs a sparse product between the matrix Q
+ * and a sparse identity matrix. However, due to the fact that the sparse
+ * reflectors are stored unsorted, two transpositions are needed to sort
+ * them before performing the product.
+ */
+ SparseQRMatrixQReturnType<SparseQR> matrixQ() const
+ { return SparseQRMatrixQReturnType<SparseQR>(*this); }
+
+ /** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R
+ * It is the combination of the fill-in reducing permutation and numerical column pivoting.
+ */
+ const PermutationType& colsPermutation() const
+ {
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
+ return m_outputPerm_c;
+ }
+
+ /** \returns A string describing the type of error.
+ * This method is provided to ease debugging, not to handle errors.
+ */
+ std::string lastErrorMessage() const { return m_lastError; }
+
+ /** \internal */
+ template<typename Rhs, typename Dest>
+ bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const
+ {
+ eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
+ eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
+
+ Index rank = this->rank();
+
+ // Compute Q^T * b;
+ typename Dest::PlainObject y, b;
+ y = this->matrixQ().transpose() * B;
+ b = y;
+
+ // Solve with the triangular matrix R
+ y.resize((std::max)(cols(),Index(y.rows())),y.cols());
+ y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(b.topRows(rank));
+ y.bottomRows(y.rows()-rank).setZero();
+
+ // Apply the column permutation
+ if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols());
+ else dest = y.topRows(cols());
+
+ m_info = Success;
+ return true;
+ }
+
+
+ /** Sets the threshold that is used to determine linearly dependent columns during the factorization.
+ *
+ * In practice, if during the factorization the norm of the column that has to be eliminated is below
+ * this threshold, then the entire column is treated as zero, and it is moved at the end.
+ */
+ void setPivotThreshold(const RealScalar& threshold)
+ {
+ m_useDefaultThreshold = false;
+ m_threshold = threshold;
+ }
+
+ /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs>
+ inline const internal::solve_retval<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const
+ {
+ eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
+ eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
+ return internal::solve_retval<SparseQR, Rhs>(*this, B.derived());
+ }
+ template<typename Rhs>
+ inline const internal::sparse_solve_retval<SparseQR, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
+ {
+ eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
+ eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
+ return internal::sparse_solve_retval<SparseQR, Rhs>(*this, B.derived());
+ }
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was successful,
+ * \c NumericalIssue if the QR factorization reports a numerical problem
+ * \c InvalidInput if the input matrix is invalid
+ *
+ * \sa iparm()
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
+ return m_info;
+ }
+
+ protected:
+ inline void sort_matrix_Q()
+ {
+ if(this->m_isQSorted) return;
+ // The matrix Q is sorted during the transposition
+ SparseMatrix<Scalar, RowMajor, Index> mQrm(this->m_Q);
+ this->m_Q = mQrm;
+ this->m_isQSorted = true;
+ }
+
+
+ protected:
+ bool m_isInitialized;
+ bool m_analysisIsok;
+ bool m_factorizationIsok;
+ mutable ComputationInfo m_info;
+ std::string m_lastError;
+ QRMatrixType m_pmat; // Temporary matrix
+ QRMatrixType m_R; // The triangular factor matrix
+ QRMatrixType m_Q; // The orthogonal reflectors
+ ScalarVector m_hcoeffs; // The Householder coefficients
+ PermutationType m_perm_c; // Fill-reducing Column permutation
+ PermutationType m_pivotperm; // The permutation for rank revealing
+ PermutationType m_outputPerm_c; // The final column permutation
+ RealScalar m_threshold; // Threshold to determine null Householder reflections
+ bool m_useDefaultThreshold; // Use default threshold
+ Index m_nonzeropivots; // Number of non zero pivots found
+ IndexVector m_etree; // Column elimination tree
+ IndexVector m_firstRowElt; // First element in each row
+ bool m_isQSorted; // whether Q is sorted or not
+ bool m_isEtreeOk; // whether the elimination tree match the initial input matrix
+
+ template <typename, typename > friend struct SparseQR_QProduct;
+ template <typename > friend struct SparseQRMatrixQReturnType;
+
+};
+
+/** \brief Preprocessing step of a QR factorization
+ *
+ * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
+ *
+ * In this step, the fill-reducing permutation is computed and applied to the columns of A
+ * and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited.
+ *
+ * \note In this step it is assumed that there is no empty row in the matrix \a mat.
+ */
+template <typename MatrixType, typename OrderingType>
+void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
+{
+ eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
+ // Copy to a column major matrix if the input is rowmajor
+ typename internal::conditional<MatrixType::IsRowMajor,QRMatrixType,const MatrixType&>::type matCpy(mat);
+ // Compute the column fill reducing ordering
+ OrderingType ord;
+ ord(matCpy, m_perm_c);
+ Index n = mat.cols();
+ Index m = mat.rows();
+ Index diagSize = (std::min)(m,n);
+
+ if (!m_perm_c.size())
+ {
+ m_perm_c.resize(n);
+ m_perm_c.indices().setLinSpaced(n, 0,n-1);
+ }
+
+ // Compute the column elimination tree of the permuted matrix
+ m_outputPerm_c = m_perm_c.inverse();
+ internal::coletree(matCpy, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
+ m_isEtreeOk = true;
+
+ m_R.resize(m, n);
+ m_Q.resize(m, diagSize);
+
+ // Allocate space for nonzero elements : rough estimation
+ m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
+ m_Q.reserve(2*mat.nonZeros());
+ m_hcoeffs.resize(diagSize);
+ m_analysisIsok = true;
+}
+
+/** \brief Performs the numerical QR factorization of the input matrix
+ *
+ * The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with
+ * a matrix having the same sparsity pattern than \a mat.
+ *
+ * \param mat The sparse column-major matrix
+ */
+template <typename MatrixType, typename OrderingType>
+void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
+{
+ using std::abs;
+ using std::max;
+
+ eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
+ Index m = mat.rows();
+ Index n = mat.cols();
+ Index diagSize = (std::min)(m,n);
+ IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes
+ IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
+ Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
+ ScalarVector tval(m); // The dense vector used to compute the current column
+ RealScalar pivotThreshold = m_threshold;
+
+ m_R.setZero();
+ m_Q.setZero();
+ m_pmat = mat;
+ if(!m_isEtreeOk)
+ {
+ m_outputPerm_c = m_perm_c.inverse();
+ internal::coletree(m_pmat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
+ m_isEtreeOk = true;
+ }
+
+ m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
+
+ // Apply the fill-in reducing permutation lazily:
+ {
+ // If the input is row major, copy the original column indices,
+ // otherwise directly use the input matrix
+ //
+ IndexVector originalOuterIndicesCpy;
+ const Index *originalOuterIndices = mat.outerIndexPtr();
+ if(MatrixType::IsRowMajor)
+ {
+ originalOuterIndicesCpy = IndexVector::Map(m_pmat.outerIndexPtr(),n+1);
+ originalOuterIndices = originalOuterIndicesCpy.data();
+ }
+
+ for (int i = 0; i < n; i++)
+ {
+ Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
+ m_pmat.outerIndexPtr()[p] = originalOuterIndices[i];
+ m_pmat.innerNonZeroPtr()[p] = originalOuterIndices[i+1] - originalOuterIndices[i];
+ }
+ }
+
+ /* Compute the default threshold as in MatLab, see:
+ * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
+ * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
+ */
+ if(m_useDefaultThreshold)
+ {
+ RealScalar max2Norm = 0.0;
+ for (int j = 0; j < n; j++) max2Norm = (max)(max2Norm, m_pmat.col(j).norm());
+ if(max2Norm==RealScalar(0))
+ max2Norm = RealScalar(1);
+ pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
+ }
+
+ // Initialize the numerical permutation
+ m_pivotperm.setIdentity(n);
+
+ Index nonzeroCol = 0; // Record the number of valid pivots
+ m_Q.startVec(0);
+
+ // Left looking rank-revealing QR factorization: compute a column of R and Q at a time
+ for (Index col = 0; col < n; ++col)
+ {
+ mark.setConstant(-1);
+ m_R.startVec(col);
+ mark(nonzeroCol) = col;
+ Qidx(0) = nonzeroCol;
+ nzcolR = 0; nzcolQ = 1;
+ bool found_diag = nonzeroCol>=m;
+ tval.setZero();
+
+ // Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
+ // all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k.
+ // Note: if the diagonal entry does not exist, then its contribution must be explicitly added,
+ // thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
+ for (typename QRMatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
+ {
+ Index curIdx = nonzeroCol;
+ if(itp) curIdx = itp.row();
+ if(curIdx == nonzeroCol) found_diag = true;
+
+ // Get the nonzeros indexes of the current column of R
+ Index st = m_firstRowElt(curIdx); // The traversal of the etree starts here
+ if (st < 0 )
+ {
+ m_lastError = "Empty row found during numerical factorization";
+ m_info = InvalidInput;
+ return;
+ }
+
+ // Traverse the etree
+ Index bi = nzcolR;
+ for (; mark(st) != col; st = m_etree(st))
+ {
+ Ridx(nzcolR) = st; // Add this row to the list,
+ mark(st) = col; // and mark this row as visited
+ nzcolR++;
+ }
+
+ // Reverse the list to get the topological ordering
+ Index nt = nzcolR-bi;
+ for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1));
+
+ // Copy the current (curIdx,pcol) value of the input matrix
+ if(itp) tval(curIdx) = itp.value();
+ else tval(curIdx) = Scalar(0);
+
+ // Compute the pattern of Q(:,k)
+ if(curIdx > nonzeroCol && mark(curIdx) != col )
+ {
+ Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q,
+ mark(curIdx) = col; // and mark it as visited
+ nzcolQ++;
+ }
+ }
+
+ // Browse all the indexes of R(:,col) in reverse order
+ for (Index i = nzcolR-1; i >= 0; i--)
+ {
+ Index curIdx = Ridx(i);
+
+ // Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
+ Scalar tdot(0);
+
+ // First compute q' * tval
+ tdot = m_Q.col(curIdx).dot(tval);
+
+ tdot *= m_hcoeffs(curIdx);
+
+ // Then update tval = tval - q * tau
+ // FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse")
+ for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
+ tval(itq.row()) -= itq.value() * tdot;
+
+ // Detect fill-in for the current column of Q
+ if(m_etree(Ridx(i)) == nonzeroCol)
+ {
+ for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
+ {
+ Index iQ = itq.row();
+ if (mark(iQ) != col)
+ {
+ Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q,
+ mark(iQ) = col; // and mark it as visited
+ }
+ }
+ }
+ } // End update current column
+
+ Scalar tau = 0;
+ RealScalar beta = 0;
+
+ if(nonzeroCol < diagSize)
+ {
+ // Compute the Householder reflection that eliminate the current column
+ // FIXME this step should call the Householder module.
+ Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
+
+ // First, the squared norm of Q((col+1):m, col)
+ RealScalar sqrNorm = 0.;
+ for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
+ if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
+ {
+ beta = numext::real(c0);
+ tval(Qidx(0)) = 1;
+ }
+ else
+ {
+ using std::sqrt;
+ beta = sqrt(numext::abs2(c0) + sqrNorm);
+ if(numext::real(c0) >= RealScalar(0))
+ beta = -beta;
+ tval(Qidx(0)) = 1;
+ for (Index itq = 1; itq < nzcolQ; ++itq)
+ tval(Qidx(itq)) /= (c0 - beta);
+ tau = numext::conj((beta-c0) / beta);
+
+ }
+ }
+
+ // Insert values in R
+ for (Index i = nzcolR-1; i >= 0; i--)
+ {
+ Index curIdx = Ridx(i);
+ if(curIdx < nonzeroCol)
+ {
+ m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx);
+ tval(curIdx) = Scalar(0.);
+ }
+ }
+
+ if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold)
+ {
+ m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
+ // The householder coefficient
+ m_hcoeffs(nonzeroCol) = tau;
+ // Record the householder reflections
+ for (Index itq = 0; itq < nzcolQ; ++itq)
+ {
+ Index iQ = Qidx(itq);
+ m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ);
+ tval(iQ) = Scalar(0.);
+ }
+ nonzeroCol++;
+ if(nonzeroCol<diagSize)
+ m_Q.startVec(nonzeroCol);
+ }
+ else
+ {
+ // Zero pivot found: move implicitly this column to the end
+ for (Index j = nonzeroCol; j < n-1; j++)
+ std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
+
+ // Recompute the column elimination tree
+ internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data());
+ m_isEtreeOk = false;
+ }
+ }
+
+ m_hcoeffs.tail(diagSize-nonzeroCol).setZero();
+
+ // Finalize the column pointers of the sparse matrices R and Q
+ m_Q.finalize();
+ m_Q.makeCompressed();
+ m_R.finalize();
+ m_R.makeCompressed();
+ m_isQSorted = false;
+
+ m_nonzeropivots = nonzeroCol;
+
+ if(nonzeroCol<n)
+ {
+ // Permute the triangular factor to put the 'dead' columns to the end
+ QRMatrixType tempR(m_R);
+ m_R = tempR * m_pivotperm;
+
+ // Update the column permutation
+ m_outputPerm_c = m_outputPerm_c * m_pivotperm;
+ }
+
+ m_isInitialized = true;
+ m_factorizationIsok = true;
+ m_info = Success;
+}
+
+namespace internal {
+
+template<typename _MatrixType, typename OrderingType, typename Rhs>
+struct solve_retval<SparseQR<_MatrixType,OrderingType>, Rhs>
+ : solve_retval_base<SparseQR<_MatrixType,OrderingType>, Rhs>
+{
+ typedef SparseQR<_MatrixType,OrderingType> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+};
+template<typename _MatrixType, typename OrderingType, typename Rhs>
+struct sparse_solve_retval<SparseQR<_MatrixType, OrderingType>, Rhs>
+ : sparse_solve_retval_base<SparseQR<_MatrixType, OrderingType>, Rhs>
+{
+ typedef SparseQR<_MatrixType, OrderingType> Dec;
+ EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec, Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ this->defaultEvalTo(dst);
+ }
+};
+} // end namespace internal
+
+template <typename SparseQRType, typename Derived>
+struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived> >
+{
+ typedef typename SparseQRType::QRMatrixType MatrixType;
+ typedef typename SparseQRType::Scalar Scalar;
+ typedef typename SparseQRType::Index Index;
+ // Get the references
+ SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) :
+ m_qr(qr),m_other(other),m_transpose(transpose) {}
+ inline Index rows() const { return m_transpose ? m_qr.rows() : m_qr.cols(); }
+ inline Index cols() const { return m_other.cols(); }
+
+ // Assign to a vector
+ template<typename DesType>
+ void evalTo(DesType& res) const
+ {
+ Index m = m_qr.rows();
+ Index n = m_qr.cols();
+ Index diagSize = (std::min)(m,n);
+ res = m_other;
+ if (m_transpose)
+ {
+ eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
+ //Compute res = Q' * other column by column
+ for(Index j = 0; j < res.cols(); j++){
+ for (Index k = 0; k < diagSize; k++)
+ {
+ Scalar tau = Scalar(0);
+ tau = m_qr.m_Q.col(k).dot(res.col(j));
+ if(tau==Scalar(0)) continue;
+ tau = tau * m_qr.m_hcoeffs(k);
+ res.col(j) -= tau * m_qr.m_Q.col(k);
+ }
+ }
+ }
+ else
+ {
+ eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
+ // Compute res = Q * other column by column
+ for(Index j = 0; j < res.cols(); j++)
+ {
+ for (Index k = diagSize-1; k >=0; k--)
+ {
+ Scalar tau = Scalar(0);
+ tau = m_qr.m_Q.col(k).dot(res.col(j));
+ if(tau==Scalar(0)) continue;
+ tau = tau * m_qr.m_hcoeffs(k);
+ res.col(j) -= tau * m_qr.m_Q.col(k);
+ }
+ }
+ }
+ }
+
+ const SparseQRType& m_qr;
+ const Derived& m_other;
+ bool m_transpose;
+};
+
+template<typename SparseQRType>
+struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<SparseQRType> >
+{
+ typedef typename SparseQRType::Index Index;
+ typedef typename SparseQRType::Scalar Scalar;
+ typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
+ SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {}
+ template<typename Derived>
+ SparseQR_QProduct<SparseQRType, Derived> operator*(const MatrixBase<Derived>& other)
+ {
+ return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(),false);
+ }
+ SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const
+ {
+ return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
+ }
+ inline Index rows() const { return m_qr.rows(); }
+ inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
+ // To use for operations with the transpose of Q
+ SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
+ {
+ return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
+ }
+ template<typename Dest> void evalTo(MatrixBase<Dest>& dest) const
+ {
+ dest.derived() = m_qr.matrixQ() * Dest::Identity(m_qr.rows(), m_qr.rows());
+ }
+ template<typename Dest> void evalTo(SparseMatrixBase<Dest>& dest) const
+ {
+ Dest idMat(m_qr.rows(), m_qr.rows());
+ idMat.setIdentity();
+ // Sort the sparse householder reflectors if needed
+ const_cast<SparseQRType *>(&m_qr)->sort_matrix_Q();
+ dest.derived() = SparseQR_QProduct<SparseQRType, Dest>(m_qr, idMat, false);
+ }
+
+ const SparseQRType& m_qr;
+};
+
+template<typename SparseQRType>
+struct SparseQRMatrixQTransposeReturnType
+{
+ SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {}
+ template<typename Derived>
+ SparseQR_QProduct<SparseQRType,Derived> operator*(const MatrixBase<Derived>& other)
+ {
+ return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(), true);
+ }
+ const SparseQRType& m_qr;
+};
+
+} // end namespace Eigen
+
+#endif