diff options
Diffstat (limited to 'eigen/bench/tensors/tensor_benchmarks.h')
-rw-r--r-- | eigen/bench/tensors/tensor_benchmarks.h | 478 |
1 files changed, 478 insertions, 0 deletions
diff --git a/eigen/bench/tensors/tensor_benchmarks.h b/eigen/bench/tensors/tensor_benchmarks.h new file mode 100644 index 0000000..c2fb3de --- /dev/null +++ b/eigen/bench/tensors/tensor_benchmarks.h @@ -0,0 +1,478 @@ +#ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ +#define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ + +typedef int TensorIndex; +#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int + +#include "unsupported/Eigen/CXX11/Tensor" +#include "benchmark.h" + +#define BENCHMARK_RANGE(bench, lo, hi) \ + BENCHMARK(bench)->Range(lo, hi) + +using Eigen::Tensor; +using Eigen::TensorMap; + +// TODO(bsteiner): also templatize on the input type since we have users +// for int8 as well as floats. +template <typename Device, typename T> class BenchmarkSuite { + public: + BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n) + : m_(m), k_(k), n_(n), device_(device) { + initialize(); + } + + BenchmarkSuite(const Device& device, size_t m) + : m_(m), k_(m), n_(m), device_(device) { + initialize(); + } + + ~BenchmarkSuite() { + device_.deallocate(a_); + device_.deallocate(b_); + device_.deallocate(c_); + } + + void memcpy(int num_iters) { + eigen_assert(m_ == k_ && k_ == n_); + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + device_.memcpy(c_, a_, m_ * m_ * sizeof(T)); + } + // Record the number of values copied per second + finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); + } + + void typeCasting(int num_iters) { + eigen_assert(m_ == n_); + Eigen::array<TensorIndex, 2> sizes; + if (sizeof(T) >= sizeof(int)) { + sizes[0] = m_; + sizes[1] = k_; + } else { + sizes[0] = m_ * sizeof(T) / sizeof(int); + sizes[1] = k_ * sizeof(T) / sizeof(int); + } + const TensorMap<Tensor<int, 2, 0, TensorIndex>, Eigen::Aligned> A((int*)a_, sizes); + TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, sizes); + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + B.device(device_) = A.template cast<T>(); + } + // Record the number of values copied per second + finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); + } + + void random(int num_iters) { + eigen_assert(m_ == k_ && k_ == n_); + Eigen::array<TensorIndex, 2> sizes; + sizes[0] = m_; + sizes[1] = m_; + TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.device(device_) = C.random(); + } + // Record the number of random numbers generated per second + finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); + } + + void slicing(int num_iters) { + eigen_assert(m_ == k_ && k_ == n_); + Eigen::array<TensorIndex, 2> sizes; + sizes[0] = m_; + sizes[1] = m_; + const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); + const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); + TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); + + const Eigen::DSizes<TensorIndex, 2> quarter_sizes(m_/2, m_/2); + const Eigen::DSizes<TensorIndex, 2> first_quadrant(0, 0); + const Eigen::DSizes<TensorIndex, 2> second_quadrant(0, m_/2); + const Eigen::DSizes<TensorIndex, 2> third_quadrant(m_/2, 0); + const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(m_/2, m_/2); + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.slice(first_quadrant, quarter_sizes).device(device_) = + A.slice(first_quadrant, quarter_sizes); + C.slice(second_quadrant, quarter_sizes).device(device_) = + B.slice(second_quadrant, quarter_sizes); + C.slice(third_quadrant, quarter_sizes).device(device_) = + A.slice(third_quadrant, quarter_sizes); + C.slice(fourth_quadrant, quarter_sizes).device(device_) = + B.slice(fourth_quadrant, quarter_sizes); + } + // Record the number of values copied from the rhs slice to the lhs slice + // each second + finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); + } + + void rowChip(int num_iters) { + Eigen::array<TensorIndex, 2> input_size; + input_size[0] = k_; + input_size[1] = n_; + const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); + Eigen::array<TensorIndex, 1> output_size; + output_size[0] = n_; + TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.device(device_) = B.chip(iter % k_, 0); + } + // Record the number of values copied from the rhs chip to the lhs. + finalizeBenchmark(static_cast<int64_t>(n_) * num_iters); + } + + void colChip(int num_iters) { + Eigen::array<TensorIndex, 2> input_size; + input_size[0] = k_; + input_size[1] = n_; + const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); + Eigen::array<TensorIndex, 1> output_size; + output_size[0] = n_; + TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.device(device_) = B.chip(iter % n_, 1); + } + // Record the number of values copied from the rhs chip to the lhs. + finalizeBenchmark(static_cast<int64_t>(n_) * num_iters); + } + + void shuffling(int num_iters) { + eigen_assert(m_ == n_); + Eigen::array<TensorIndex, 2> size_a; + size_a[0] = m_; + size_a[1] = k_; + const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); + Eigen::array<TensorIndex, 2> size_b; + size_b[0] = k_; + size_b[1] = m_; + TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); + + Eigen::array<int, 2> shuffle; + shuffle[0] = 1; + shuffle[1] = 0; + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + B.device(device_) = A.shuffle(shuffle); + } + // Record the number of values shuffled from A and copied to B each second + finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); + } + + void padding(int num_iters) { + eigen_assert(m_ == k_); + Eigen::array<TensorIndex, 2> size_a; + size_a[0] = m_; + size_a[1] = k_-3; + const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); + Eigen::array<TensorIndex, 2> size_b; + size_b[0] = k_; + size_b[1] = m_; + TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); + +#if defined(EIGEN_HAS_INDEX_LIST) + Eigen::IndexPairList<Eigen::type2indexpair<0, 0>, + Eigen::type2indexpair<2, 1> > paddings; +#else + Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings; + paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0); + paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1); +#endif + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + B.device(device_) = A.pad(paddings); + } + // Record the number of values copied from the padded tensor A each second + finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); + } + + void striding(int num_iters) { + eigen_assert(m_ == k_); + Eigen::array<TensorIndex, 2> size_a; + size_a[0] = m_; + size_a[1] = k_; + const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); + Eigen::array<TensorIndex, 2> size_b; + size_b[0] = m_; + size_b[1] = k_/2; + TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); + +#ifndef EIGEN_HAS_INDEX_LIST + Eigen::array<TensorIndex, 2> strides; + strides[0] = 1; + strides[1] = 2; +#else + // Take advantage of cxx11 to give the compiler information it can use to + // optimize the code. + Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> > strides; +#endif + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + B.device(device_) = A.stride(strides); + } + // Record the number of values copied from the padded tensor A each second + finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); + } + + void broadcasting(int num_iters) { + Eigen::array<TensorIndex, 2> size_a; + size_a[0] = m_; + size_a[1] = 1; + const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); + Eigen::array<TensorIndex, 2> size_c; + size_c[0] = m_; + size_c[1] = n_; + TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, size_c); + +#ifndef EIGEN_HAS_INDEX_LIST + Eigen::array<int, 2> broadcast; + broadcast[0] = 1; + broadcast[1] = n_; +#else + // Take advantage of cxx11 to give the compiler information it can use to + // optimize the code. + Eigen::IndexList<Eigen::type2index<1>, int> broadcast; + broadcast.set(1, n_); +#endif + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.device(device_) = A.broadcast(broadcast); + } + // Record the number of values broadcasted from A and copied to C each second + finalizeBenchmark(static_cast<int64_t>(m_) * n_ * num_iters); + } + + void coeffWiseOp(int num_iters) { + eigen_assert(m_ == k_ && k_ == n_); + Eigen::array<TensorIndex, 2> sizes; + sizes[0] = m_; + sizes[1] = m_; + const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); + const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); + TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7)); + } + // Record the number of FLOP executed per second (2 multiplications and + // 1 addition per value) + finalizeBenchmark(static_cast<int64_t>(3) * m_ * m_ * num_iters); + } + + void algebraicFunc(int num_iters) { + eigen_assert(m_ == k_ && k_ == n_); + Eigen::array<TensorIndex, 2> sizes; + sizes[0] = m_; + sizes[1] = m_; + const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); + const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); + TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.device(device_) = A.rsqrt() + B.sqrt() * B.square(); + } + // Record the number of FLOP executed per second (assuming one operation + // per value) + finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); + } + + void transcendentalFunc(int num_iters) { + eigen_assert(m_ == k_ && k_ == n_); + Eigen::array<TensorIndex, 2> sizes; + sizes[0] = m_; + sizes[1] = m_; + const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); + const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); + TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.device(device_) = A.exp() + B.log(); + } + // Record the number of FLOP executed per second (assuming one operation + // per value) + finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); + } + + // Row reduction + void rowReduction(int num_iters) { + Eigen::array<TensorIndex, 2> input_size; + input_size[0] = k_; + input_size[1] = n_; + const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); + Eigen::array<TensorIndex, 1> output_size; + output_size[0] = n_; + TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); + +#ifndef EIGEN_HAS_INDEX_LIST + Eigen::array<TensorIndex, 1> sum_along_dim; + sum_along_dim[0] = 0; +#else + // Take advantage of cxx11 to give the compiler information it can use to + // optimize the code. + Eigen::IndexList<Eigen::type2index<0>> sum_along_dim; +#endif + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.device(device_) = B.sum(sum_along_dim); + } + // Record the number of FLOP executed per second (assuming one operation + // per value) + finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); + } + + // Column reduction + void colReduction(int num_iters) { + Eigen::array<TensorIndex, 2> input_size; + input_size[0] = k_; + input_size[1] = n_; + const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B( + b_, input_size); + Eigen::array<TensorIndex, 1> output_size; + output_size[0] = k_; + TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C( + c_, output_size); + +#ifndef EIGEN_HAS_INDEX_LIST + Eigen::array<TensorIndex, 1> sum_along_dim; + sum_along_dim[0] = 1; +#else + // Take advantage of cxx11 to give the compiler information it can use to + // optimize the code. + Eigen::IndexList<Eigen::type2index<1>> sum_along_dim; +#endif + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.device(device_) = B.sum(sum_along_dim); + } + // Record the number of FLOP executed per second (assuming one operation + // per value) + finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); + } + + // Full reduction + void fullReduction(int num_iters) { + Eigen::array<TensorIndex, 2> input_size; + input_size[0] = k_; + input_size[1] = n_; + const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B( + b_, input_size); + Eigen::array<TensorIndex, 0> output_size; + TensorMap<Tensor<T, 0, 0, TensorIndex>, Eigen::Aligned> C( + c_, output_size); + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.device(device_) = B.sum(); + } + // Record the number of FLOP executed per second (assuming one operation + // per value) + finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); + } + + // do a contraction which is equivalent to a matrix multiplication + void contraction(int num_iters) { + Eigen::array<TensorIndex, 2> sizeA; + sizeA[0] = m_; + sizeA[1] = k_; + Eigen::array<TensorIndex, 2> sizeB; + sizeB[0] = k_; + sizeB[1] = n_; + Eigen::array<TensorIndex, 2> sizeC; + sizeC[0] = m_; + sizeC[1] = n_; + + const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizeA); + const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizeB); + TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizeC); + + typedef typename Tensor<T, 2>::DimensionPair DimPair; + Eigen::array<DimPair, 1> dims; + dims[0] = DimPair(1, 0); + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.device(device_) = A.contract(B, dims); + } + // Record the number of FLOP executed per second (size_ multiplications and + // additions for each value in the resulting tensor) + finalizeBenchmark(static_cast<int64_t>(2) * m_ * n_ * k_ * num_iters); + } + + void convolution(int num_iters, int kernel_x, int kernel_y) { + Eigen::array<TensorIndex, 2> input_sizes; + input_sizes[0] = m_; + input_sizes[1] = n_; + TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, input_sizes); + Eigen::array<TensorIndex, 2> kernel_sizes; + kernel_sizes[0] = kernel_x; + kernel_sizes[1] = kernel_y; + TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, kernel_sizes); + Eigen::array<TensorIndex, 2> result_sizes; + result_sizes[0] = m_ - kernel_x + 1; + result_sizes[1] = n_ - kernel_y + 1; + TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, result_sizes); + Eigen::array<TensorIndex, 2> dims; + dims[0] = 0; + dims[1] = 1; + + StartBenchmarkTiming(); + for (int iter = 0; iter < num_iters; ++iter) { + C.device(device_) = A.convolve(B, dims); + } + // Record the number of FLOP executed per second (kernel_size + // multiplications and additions for each value in the resulting tensor) + finalizeBenchmark(static_cast<int64_t>(2) * + (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * num_iters); + } + + private: + void initialize() { + a_ = (T *) device_.allocate(m_ * k_ * sizeof(T)); + b_ = (T *) device_.allocate(k_ * n_ * sizeof(T)); + c_ = (T *) device_.allocate(m_ * n_ * sizeof(T)); + + // Initialize the content of the memory pools to prevent asan from + // complaining. + device_.memset(a_, 12, m_ * k_ * sizeof(T)); + device_.memset(b_, 23, k_ * n_ * sizeof(T)); + device_.memset(c_, 31, m_ * n_ * sizeof(T)); + + //BenchmarkUseRealTime(); + } + + inline void finalizeBenchmark(int64_t num_items) { +#if defined(EIGEN_USE_GPU) && defined(__CUDACC__) + if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) { + device_.synchronize(); + } +#endif + StopBenchmarkTiming(); + SetBenchmarkFlopsProcessed(num_items); + } + + + TensorIndex m_; + TensorIndex k_; + TensorIndex n_; + T* a_; + T* b_; + T* c_; + Device device_; +}; +#endif // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |