summaryrefslogtreecommitdiffhomepage
path: root/eigen/blas/f2c
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/blas/f2c')
-rw-r--r--eigen/blas/f2c/chbmv.c487
-rw-r--r--eigen/blas/f2c/chpmv.c438
-rw-r--r--eigen/blas/f2c/complexdots.c84
-rw-r--r--eigen/blas/f2c/ctbmv.c647
-rw-r--r--eigen/blas/f2c/d_cnjg.c6
-rw-r--r--eigen/blas/f2c/datatypes.h24
-rw-r--r--eigen/blas/f2c/drotm.c215
-rw-r--r--eigen/blas/f2c/drotmg.c293
-rw-r--r--eigen/blas/f2c/dsbmv.c366
-rw-r--r--eigen/blas/f2c/dspmv.c316
-rw-r--r--eigen/blas/f2c/dtbmv.c428
-rw-r--r--eigen/blas/f2c/lsame.c117
-rw-r--r--eigen/blas/f2c/r_cnjg.c6
-rw-r--r--eigen/blas/f2c/srotm.c216
-rw-r--r--eigen/blas/f2c/srotmg.c295
-rw-r--r--eigen/blas/f2c/ssbmv.c368
-rw-r--r--eigen/blas/f2c/sspmv.c316
-rw-r--r--eigen/blas/f2c/stbmv.c428
-rw-r--r--eigen/blas/f2c/zhbmv.c488
-rw-r--r--eigen/blas/f2c/zhpmv.c438
-rw-r--r--eigen/blas/f2c/ztbmv.c647
21 files changed, 0 insertions, 6623 deletions
diff --git a/eigen/blas/f2c/chbmv.c b/eigen/blas/f2c/chbmv.c
deleted file mode 100644
index f218fe3..0000000
--- a/eigen/blas/f2c/chbmv.c
+++ /dev/null
@@ -1,487 +0,0 @@
-/* chbmv.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int chbmv_(char *uplo, integer *n, integer *k, complex *
- alpha, complex *a, integer *lda, complex *x, integer *incx, complex *
- beta, complex *y, integer *incy, ftnlen uplo_len)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- real r__1;
- complex q__1, q__2, q__3, q__4;
-
- /* Builtin functions */
- void r_cnjg(complex *, complex *);
-
- /* Local variables */
- integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
- complex temp1, temp2;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- integer kplus1;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* CHBMV performs the matrix-vector operation */
-
-/* y := alpha*A*x + beta*y, */
-
-/* where alpha and beta are scalars, x and y are n element vectors and */
-/* A is an n by n hermitian band matrix, with k super-diagonals. */
-
-/* Arguments */
-/* ========== */
-
-/* UPLO - CHARACTER*1. */
-/* On entry, UPLO specifies whether the upper or lower */
-/* triangular part of the band matrix A is being supplied as */
-/* follows: */
-
-/* UPLO = 'U' or 'u' The upper triangular part of A is */
-/* being supplied. */
-
-/* UPLO = 'L' or 'l' The lower triangular part of A is */
-/* being supplied. */
-
-/* Unchanged on exit. */
-
-/* N - INTEGER. */
-/* On entry, N specifies the order of the matrix A. */
-/* N must be at least zero. */
-/* Unchanged on exit. */
-
-/* K - INTEGER. */
-/* On entry, K specifies the number of super-diagonals of the */
-/* matrix A. K must satisfy 0 .le. K. */
-/* Unchanged on exit. */
-
-/* ALPHA - COMPLEX . */
-/* On entry, ALPHA specifies the scalar alpha. */
-/* Unchanged on exit. */
-
-/* A - COMPLEX array of DIMENSION ( LDA, n ). */
-/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
-/* by n part of the array A must contain the upper triangular */
-/* band part of the hermitian matrix, supplied column by */
-/* column, with the leading diagonal of the matrix in row */
-/* ( k + 1 ) of the array, the first super-diagonal starting at */
-/* position 2 in row k, and so on. The top left k by k triangle */
-/* of the array A is not referenced. */
-/* The following program segment will transfer the upper */
-/* triangular part of a hermitian band matrix from conventional */
-/* full matrix storage to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = K + 1 - J */
-/* DO 10, I = MAX( 1, J - K ), J */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
-/* by n part of the array A must contain the lower triangular */
-/* band part of the hermitian matrix, supplied column by */
-/* column, with the leading diagonal of the matrix in row 1 of */
-/* the array, the first sub-diagonal starting at position 1 in */
-/* row 2, and so on. The bottom right k by k triangle of the */
-/* array A is not referenced. */
-/* The following program segment will transfer the lower */
-/* triangular part of a hermitian band matrix from conventional */
-/* full matrix storage to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = 1 - J */
-/* DO 10, I = J, MIN( N, J + K ) */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Note that the imaginary parts of the diagonal elements need */
-/* not be set and are assumed to be zero. */
-/* Unchanged on exit. */
-
-/* LDA - INTEGER. */
-/* On entry, LDA specifies the first dimension of A as declared */
-/* in the calling (sub) program. LDA must be at least */
-/* ( k + 1 ). */
-/* Unchanged on exit. */
-
-/* X - COMPLEX array of DIMENSION at least */
-/* ( 1 + ( n - 1 )*abs( INCX ) ). */
-/* Before entry, the incremented array X must contain the */
-/* vector x. */
-/* Unchanged on exit. */
-
-/* INCX - INTEGER. */
-/* On entry, INCX specifies the increment for the elements of */
-/* X. INCX must not be zero. */
-/* Unchanged on exit. */
-
-/* BETA - COMPLEX . */
-/* On entry, BETA specifies the scalar beta. */
-/* Unchanged on exit. */
-
-/* Y - COMPLEX array of DIMENSION at least */
-/* ( 1 + ( n - 1 )*abs( INCY ) ). */
-/* Before entry, the incremented array Y must contain the */
-/* vector y. On exit, Y is overwritten by the updated vector y. */
-
-/* INCY - INTEGER. */
-/* On entry, INCY specifies the increment for the elements of */
-/* Y. INCY must not be zero. */
-/* Unchanged on exit. */
-
-/* Further Details */
-/* =============== */
-
-/* Level 2 Blas routine. */
-
-/* -- Written on 22-October-1986. */
-/* Jack Dongarra, Argonne National Lab. */
-/* Jeremy Du Croz, Nag Central Office. */
-/* Sven Hammarling, Nag Central Office. */
-/* Richard Hanson, Sandia National Labs. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-
-/* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --x;
- --y;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
- ftnlen)1, (ftnlen)1)) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*k < 0) {
- info = 3;
- } else if (*lda < *k + 1) {
- info = 6;
- } else if (*incx == 0) {
- info = 8;
- } else if (*incy == 0) {
- info = 11;
- }
- if (info != 0) {
- xerbla_("CHBMV ", &info, (ftnlen)6);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&
- beta->i == 0.f))) {
- return 0;
- }
-
-/* Set up the start points in X and Y. */
-
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
-
-/* Start the operations. In this version the elements of the array A */
-/* are accessed sequentially with one pass through A. */
-
-/* First form y := beta*y. */
-
- if (beta->r != 1.f || beta->i != 0.f) {
- if (*incy == 1) {
- if (beta->r == 0.f && beta->i == 0.f) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- y[i__2].r = 0.f, y[i__2].i = 0.f;
-/* L10: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = q__1.r, y[i__2].i = q__1.i;
-/* L20: */
- }
- }
- } else {
- iy = ky;
- if (beta->r == 0.f && beta->i == 0.f) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- y[i__2].r = 0.f, y[i__2].i = 0.f;
- iy += *incy;
-/* L30: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- i__3 = iy;
- q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = q__1.r, y[i__2].i = q__1.i;
- iy += *incy;
-/* L40: */
- }
- }
- }
- }
- if (alpha->r == 0.f && alpha->i == 0.f) {
- return 0;
- }
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
-
-/* Form y when upper triangle of A is stored. */
-
- kplus1 = *k + 1;
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- temp2.r = 0.f, temp2.i = 0.f;
- l = kplus1 - j;
-/* Computing MAX */
- i__2 = 1, i__3 = j - *k;
- i__4 = j - 1;
- for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
- i__2 = i__;
- i__3 = i__;
- i__5 = l + i__ + j * a_dim1;
- q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
- .r;
- q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
- y[i__2].r = q__1.r, y[i__2].i = q__1.i;
- r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
- i__2 = i__;
- q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, q__2.i =
- q__3.r * x[i__2].i + q__3.i * x[i__2].r;
- q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
- temp2.r = q__1.r, temp2.i = q__1.i;
-/* L50: */
- }
- i__4 = j;
- i__2 = j;
- i__3 = kplus1 + j * a_dim1;
- r__1 = a[i__3].r;
- q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
- q__2.r = y[i__2].r + q__3.r, q__2.i = y[i__2].i + q__3.i;
- q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
- y[i__4].r = q__1.r, y[i__4].i = q__1.i;
-/* L60: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__4 = jx;
- q__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, q__1.i =
- alpha->r * x[i__4].i + alpha->i * x[i__4].r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- temp2.r = 0.f, temp2.i = 0.f;
- ix = kx;
- iy = ky;
- l = kplus1 - j;
-/* Computing MAX */
- i__4 = 1, i__2 = j - *k;
- i__3 = j - 1;
- for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
- i__4 = iy;
- i__2 = iy;
- i__5 = l + i__ + j * a_dim1;
- q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
- .r;
- q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
- y[i__4].r = q__1.r, y[i__4].i = q__1.i;
- r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
- i__4 = ix;
- q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
- q__3.r * x[i__4].i + q__3.i * x[i__4].r;
- q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
- temp2.r = q__1.r, temp2.i = q__1.i;
- ix += *incx;
- iy += *incy;
-/* L70: */
- }
- i__3 = jy;
- i__4 = jy;
- i__2 = kplus1 + j * a_dim1;
- r__1 = a[i__2].r;
- q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
- q__2.r = y[i__4].r + q__3.r, q__2.i = y[i__4].i + q__3.i;
- q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
- y[i__3].r = q__1.r, y[i__3].i = q__1.i;
- jx += *incx;
- jy += *incy;
- if (j > *k) {
- kx += *incx;
- ky += *incy;
- }
-/* L80: */
- }
- }
- } else {
-
-/* Form y when lower triangle of A is stored. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__3 = j;
- q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i =
- alpha->r * x[i__3].i + alpha->i * x[i__3].r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- temp2.r = 0.f, temp2.i = 0.f;
- i__3 = j;
- i__4 = j;
- i__2 = j * a_dim1 + 1;
- r__1 = a[i__2].r;
- q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
- q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
- y[i__3].r = q__1.r, y[i__3].i = q__1.i;
- l = 1 - j;
-/* Computing MIN */
- i__4 = *n, i__2 = j + *k;
- i__3 = min(i__4,i__2);
- for (i__ = j + 1; i__ <= i__3; ++i__) {
- i__4 = i__;
- i__2 = i__;
- i__5 = l + i__ + j * a_dim1;
- q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
- .r;
- q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
- y[i__4].r = q__1.r, y[i__4].i = q__1.i;
- r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
- i__4 = i__;
- q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
- q__3.r * x[i__4].i + q__3.i * x[i__4].r;
- q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
- temp2.r = q__1.r, temp2.i = q__1.i;
-/* L90: */
- }
- i__3 = j;
- i__4 = j;
- q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
- y[i__3].r = q__1.r, y[i__3].i = q__1.i;
-/* L100: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__3 = jx;
- q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i =
- alpha->r * x[i__3].i + alpha->i * x[i__3].r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- temp2.r = 0.f, temp2.i = 0.f;
- i__3 = jy;
- i__4 = jy;
- i__2 = j * a_dim1 + 1;
- r__1 = a[i__2].r;
- q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
- q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
- y[i__3].r = q__1.r, y[i__3].i = q__1.i;
- l = 1 - j;
- ix = jx;
- iy = jy;
-/* Computing MIN */
- i__4 = *n, i__2 = j + *k;
- i__3 = min(i__4,i__2);
- for (i__ = j + 1; i__ <= i__3; ++i__) {
- ix += *incx;
- iy += *incy;
- i__4 = iy;
- i__2 = iy;
- i__5 = l + i__ + j * a_dim1;
- q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
- .r;
- q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
- y[i__4].r = q__1.r, y[i__4].i = q__1.i;
- r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
- i__4 = ix;
- q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
- q__3.r * x[i__4].i + q__3.i * x[i__4].r;
- q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
- temp2.r = q__1.r, temp2.i = q__1.i;
-/* L110: */
- }
- i__3 = jy;
- i__4 = jy;
- q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
- y[i__3].r = q__1.r, y[i__3].i = q__1.i;
- jx += *incx;
- jy += *incy;
-/* L120: */
- }
- }
- }
-
- return 0;
-
-/* End of CHBMV . */
-
-} /* chbmv_ */
-
diff --git a/eigen/blas/f2c/chpmv.c b/eigen/blas/f2c/chpmv.c
deleted file mode 100644
index 65bab1c..0000000
--- a/eigen/blas/f2c/chpmv.c
+++ /dev/null
@@ -1,438 +0,0 @@
-/* chpmv.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int chpmv_(char *uplo, integer *n, complex *alpha, complex *
- ap, complex *x, integer *incx, complex *beta, complex *y, integer *
- incy, ftnlen uplo_len)
-{
- /* System generated locals */
- integer i__1, i__2, i__3, i__4, i__5;
- real r__1;
- complex q__1, q__2, q__3, q__4;
-
- /* Builtin functions */
- void r_cnjg(complex *, complex *);
-
- /* Local variables */
- integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
- complex temp1, temp2;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* CHPMV performs the matrix-vector operation */
-
-/* y := alpha*A*x + beta*y, */
-
-/* where alpha and beta are scalars, x and y are n element vectors and */
-/* A is an n by n hermitian matrix, supplied in packed form. */
-
-/* Arguments */
-/* ========== */
-
-/* UPLO - CHARACTER*1. */
-/* On entry, UPLO specifies whether the upper or lower */
-/* triangular part of the matrix A is supplied in the packed */
-/* array AP as follows: */
-
-/* UPLO = 'U' or 'u' The upper triangular part of A is */
-/* supplied in AP. */
-
-/* UPLO = 'L' or 'l' The lower triangular part of A is */
-/* supplied in AP. */
-
-/* Unchanged on exit. */
-
-/* N - INTEGER. */
-/* On entry, N specifies the order of the matrix A. */
-/* N must be at least zero. */
-/* Unchanged on exit. */
-
-/* ALPHA - COMPLEX . */
-/* On entry, ALPHA specifies the scalar alpha. */
-/* Unchanged on exit. */
-
-/* AP - COMPLEX array of DIMENSION at least */
-/* ( ( n*( n + 1 ) )/2 ). */
-/* Before entry with UPLO = 'U' or 'u', the array AP must */
-/* contain the upper triangular part of the hermitian matrix */
-/* packed sequentially, column by column, so that AP( 1 ) */
-/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
-/* and a( 2, 2 ) respectively, and so on. */
-/* Before entry with UPLO = 'L' or 'l', the array AP must */
-/* contain the lower triangular part of the hermitian matrix */
-/* packed sequentially, column by column, so that AP( 1 ) */
-/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
-/* and a( 3, 1 ) respectively, and so on. */
-/* Note that the imaginary parts of the diagonal elements need */
-/* not be set and are assumed to be zero. */
-/* Unchanged on exit. */
-
-/* X - COMPLEX array of dimension at least */
-/* ( 1 + ( n - 1 )*abs( INCX ) ). */
-/* Before entry, the incremented array X must contain the n */
-/* element vector x. */
-/* Unchanged on exit. */
-
-/* INCX - INTEGER. */
-/* On entry, INCX specifies the increment for the elements of */
-/* X. INCX must not be zero. */
-/* Unchanged on exit. */
-
-/* BETA - COMPLEX . */
-/* On entry, BETA specifies the scalar beta. When BETA is */
-/* supplied as zero then Y need not be set on input. */
-/* Unchanged on exit. */
-
-/* Y - COMPLEX array of dimension at least */
-/* ( 1 + ( n - 1 )*abs( INCY ) ). */
-/* Before entry, the incremented array Y must contain the n */
-/* element vector y. On exit, Y is overwritten by the updated */
-/* vector y. */
-
-/* INCY - INTEGER. */
-/* On entry, INCY specifies the increment for the elements of */
-/* Y. INCY must not be zero. */
-/* Unchanged on exit. */
-
-/* Further Details */
-/* =============== */
-
-/* Level 2 Blas routine. */
-
-/* -- Written on 22-October-1986. */
-/* Jack Dongarra, Argonne National Lab. */
-/* Jeremy Du Croz, Nag Central Office. */
-/* Sven Hammarling, Nag Central Office. */
-/* Richard Hanson, Sandia National Labs. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-
-/* Test the input parameters. */
-
- /* Parameter adjustments */
- --y;
- --x;
- --ap;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
- ftnlen)1, (ftnlen)1)) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*incx == 0) {
- info = 6;
- } else if (*incy == 0) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("CHPMV ", &info, (ftnlen)6);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&
- beta->i == 0.f))) {
- return 0;
- }
-
-/* Set up the start points in X and Y. */
-
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
-
-/* Start the operations. In this version the elements of the array AP */
-/* are accessed sequentially with one pass through AP. */
-
-/* First form y := beta*y. */
-
- if (beta->r != 1.f || beta->i != 0.f) {
- if (*incy == 1) {
- if (beta->r == 0.f && beta->i == 0.f) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- y[i__2].r = 0.f, y[i__2].i = 0.f;
-/* L10: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = q__1.r, y[i__2].i = q__1.i;
-/* L20: */
- }
- }
- } else {
- iy = ky;
- if (beta->r == 0.f && beta->i == 0.f) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- y[i__2].r = 0.f, y[i__2].i = 0.f;
- iy += *incy;
-/* L30: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- i__3 = iy;
- q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = q__1.r, y[i__2].i = q__1.i;
- iy += *incy;
-/* L40: */
- }
- }
- }
- }
- if (alpha->r == 0.f && alpha->i == 0.f) {
- return 0;
- }
- kk = 1;
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
-
-/* Form y when AP contains the upper triangle. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- temp2.r = 0.f, temp2.i = 0.f;
- k = kk;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__;
- i__4 = i__;
- i__5 = k;
- q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
- q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
- .r;
- q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
- y[i__3].r = q__1.r, y[i__3].i = q__1.i;
- r_cnjg(&q__3, &ap[k]);
- i__3 = i__;
- q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
- q__3.r * x[i__3].i + q__3.i * x[i__3].r;
- q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
- temp2.r = q__1.r, temp2.i = q__1.i;
- ++k;
-/* L50: */
- }
- i__2 = j;
- i__3 = j;
- i__4 = kk + j - 1;
- r__1 = ap[i__4].r;
- q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
- q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
- q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
- y[i__2].r = q__1.r, y[i__2].i = q__1.i;
- kk += j;
-/* L60: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- temp2.r = 0.f, temp2.i = 0.f;
- ix = kx;
- iy = ky;
- i__2 = kk + j - 2;
- for (k = kk; k <= i__2; ++k) {
- i__3 = iy;
- i__4 = iy;
- i__5 = k;
- q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
- q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
- .r;
- q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
- y[i__3].r = q__1.r, y[i__3].i = q__1.i;
- r_cnjg(&q__3, &ap[k]);
- i__3 = ix;
- q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
- q__3.r * x[i__3].i + q__3.i * x[i__3].r;
- q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
- temp2.r = q__1.r, temp2.i = q__1.i;
- ix += *incx;
- iy += *incy;
-/* L70: */
- }
- i__2 = jy;
- i__3 = jy;
- i__4 = kk + j - 1;
- r__1 = ap[i__4].r;
- q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
- q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
- q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
- y[i__2].r = q__1.r, y[i__2].i = q__1.i;
- jx += *incx;
- jy += *incy;
- kk += j;
-/* L80: */
- }
- }
- } else {
-
-/* Form y when AP contains the lower triangle. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- temp2.r = 0.f, temp2.i = 0.f;
- i__2 = j;
- i__3 = j;
- i__4 = kk;
- r__1 = ap[i__4].r;
- q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
- q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
- y[i__2].r = q__1.r, y[i__2].i = q__1.i;
- k = kk + 1;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__;
- i__4 = i__;
- i__5 = k;
- q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
- q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
- .r;
- q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
- y[i__3].r = q__1.r, y[i__3].i = q__1.i;
- r_cnjg(&q__3, &ap[k]);
- i__3 = i__;
- q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
- q__3.r * x[i__3].i + q__3.i * x[i__3].r;
- q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
- temp2.r = q__1.r, temp2.i = q__1.i;
- ++k;
-/* L90: */
- }
- i__2 = j;
- i__3 = j;
- q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
- y[i__2].r = q__1.r, y[i__2].i = q__1.i;
- kk += *n - j + 1;
-/* L100: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- temp2.r = 0.f, temp2.i = 0.f;
- i__2 = jy;
- i__3 = jy;
- i__4 = kk;
- r__1 = ap[i__4].r;
- q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
- q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
- y[i__2].r = q__1.r, y[i__2].i = q__1.i;
- ix = jx;
- iy = jy;
- i__2 = kk + *n - j;
- for (k = kk + 1; k <= i__2; ++k) {
- ix += *incx;
- iy += *incy;
- i__3 = iy;
- i__4 = iy;
- i__5 = k;
- q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
- q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
- .r;
- q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
- y[i__3].r = q__1.r, y[i__3].i = q__1.i;
- r_cnjg(&q__3, &ap[k]);
- i__3 = ix;
- q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
- q__3.r * x[i__3].i + q__3.i * x[i__3].r;
- q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
- temp2.r = q__1.r, temp2.i = q__1.i;
-/* L110: */
- }
- i__2 = jy;
- i__3 = jy;
- q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
- y[i__2].r = q__1.r, y[i__2].i = q__1.i;
- jx += *incx;
- jy += *incy;
- kk += *n - j + 1;
-/* L120: */
- }
- }
- }
-
- return 0;
-
-/* End of CHPMV . */
-
-} /* chpmv_ */
-
diff --git a/eigen/blas/f2c/complexdots.c b/eigen/blas/f2c/complexdots.c
deleted file mode 100644
index a856a23..0000000
--- a/eigen/blas/f2c/complexdots.c
+++ /dev/null
@@ -1,84 +0,0 @@
-/* This file has been modified to use the standard gfortran calling
- convention, rather than the f2c calling convention.
-
- It does not require -ff2c when compiled with gfortran.
-*/
-
-/* complexdots.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-complex cdotc_(integer *n, complex *cx, integer
- *incx, complex *cy, integer *incy)
-{
- complex res;
- extern /* Subroutine */ int cdotcw_(integer *, complex *, integer *,
- complex *, integer *, complex *);
-
- /* Parameter adjustments */
- --cy;
- --cx;
-
- /* Function Body */
- cdotcw_(n, &cx[1], incx, &cy[1], incy, &res);
- return res;
-} /* cdotc_ */
-
-complex cdotu_(integer *n, complex *cx, integer
- *incx, complex *cy, integer *incy)
-{
- complex res;
- extern /* Subroutine */ int cdotuw_(integer *, complex *, integer *,
- complex *, integer *, complex *);
-
- /* Parameter adjustments */
- --cy;
- --cx;
-
- /* Function Body */
- cdotuw_(n, &cx[1], incx, &cy[1], incy, &res);
- return res;
-} /* cdotu_ */
-
-doublecomplex zdotc_(integer *n, doublecomplex *cx, integer *incx,
- doublecomplex *cy, integer *incy)
-{
- doublecomplex res;
- extern /* Subroutine */ int zdotcw_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *);
-
- /* Parameter adjustments */
- --cy;
- --cx;
-
- /* Function Body */
- zdotcw_(n, &cx[1], incx, &cy[1], incy, &res);
- return res;
-} /* zdotc_ */
-
-doublecomplex zdotu_(integer *n, doublecomplex *cx, integer *incx,
- doublecomplex *cy, integer *incy)
-{
- doublecomplex res;
- extern /* Subroutine */ int zdotuw_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *);
-
- /* Parameter adjustments */
- --cy;
- --cx;
-
- /* Function Body */
- zdotuw_(n, &cx[1], incx, &cy[1], incy, &res);
- return res;
-} /* zdotu_ */
-
diff --git a/eigen/blas/f2c/ctbmv.c b/eigen/blas/f2c/ctbmv.c
deleted file mode 100644
index 790fd58..0000000
--- a/eigen/blas/f2c/ctbmv.c
+++ /dev/null
@@ -1,647 +0,0 @@
-/* ctbmv.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int ctbmv_(char *uplo, char *trans, char *diag, integer *n,
- integer *k, complex *a, integer *lda, complex *x, integer *incx,
- ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- complex q__1, q__2, q__3;
-
- /* Builtin functions */
- void r_cnjg(complex *, complex *);
-
- /* Local variables */
- integer i__, j, l, ix, jx, kx, info;
- complex temp;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- integer kplus1;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- logical noconj, nounit;
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* CTBMV performs one of the matrix-vector operations */
-
-/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
-
-/* where x is an n element vector and A is an n by n unit, or non-unit, */
-/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
-
-/* Arguments */
-/* ========== */
-
-/* UPLO - CHARACTER*1. */
-/* On entry, UPLO specifies whether the matrix is an upper or */
-/* lower triangular matrix as follows: */
-
-/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
-
-/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
-
-/* Unchanged on exit. */
-
-/* TRANS - CHARACTER*1. */
-/* On entry, TRANS specifies the operation to be performed as */
-/* follows: */
-
-/* TRANS = 'N' or 'n' x := A*x. */
-
-/* TRANS = 'T' or 't' x := A'*x. */
-
-/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
-
-/* Unchanged on exit. */
-
-/* DIAG - CHARACTER*1. */
-/* On entry, DIAG specifies whether or not A is unit */
-/* triangular as follows: */
-
-/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
-
-/* DIAG = 'N' or 'n' A is not assumed to be unit */
-/* triangular. */
-
-/* Unchanged on exit. */
-
-/* N - INTEGER. */
-/* On entry, N specifies the order of the matrix A. */
-/* N must be at least zero. */
-/* Unchanged on exit. */
-
-/* K - INTEGER. */
-/* On entry with UPLO = 'U' or 'u', K specifies the number of */
-/* super-diagonals of the matrix A. */
-/* On entry with UPLO = 'L' or 'l', K specifies the number of */
-/* sub-diagonals of the matrix A. */
-/* K must satisfy 0 .le. K. */
-/* Unchanged on exit. */
-
-/* A - COMPLEX array of DIMENSION ( LDA, n ). */
-/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
-/* by n part of the array A must contain the upper triangular */
-/* band part of the matrix of coefficients, supplied column by */
-/* column, with the leading diagonal of the matrix in row */
-/* ( k + 1 ) of the array, the first super-diagonal starting at */
-/* position 2 in row k, and so on. The top left k by k triangle */
-/* of the array A is not referenced. */
-/* The following program segment will transfer an upper */
-/* triangular band matrix from conventional full matrix storage */
-/* to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = K + 1 - J */
-/* DO 10, I = MAX( 1, J - K ), J */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
-/* by n part of the array A must contain the lower triangular */
-/* band part of the matrix of coefficients, supplied column by */
-/* column, with the leading diagonal of the matrix in row 1 of */
-/* the array, the first sub-diagonal starting at position 1 in */
-/* row 2, and so on. The bottom right k by k triangle of the */
-/* array A is not referenced. */
-/* The following program segment will transfer a lower */
-/* triangular band matrix from conventional full matrix storage */
-/* to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = 1 - J */
-/* DO 10, I = J, MIN( N, J + K ) */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Note that when DIAG = 'U' or 'u' the elements of the array A */
-/* corresponding to the diagonal elements of the matrix are not */
-/* referenced, but are assumed to be unity. */
-/* Unchanged on exit. */
-
-/* LDA - INTEGER. */
-/* On entry, LDA specifies the first dimension of A as declared */
-/* in the calling (sub) program. LDA must be at least */
-/* ( k + 1 ). */
-/* Unchanged on exit. */
-
-/* X - COMPLEX array of dimension at least */
-/* ( 1 + ( n - 1 )*abs( INCX ) ). */
-/* Before entry, the incremented array X must contain the n */
-/* element vector x. On exit, X is overwritten with the */
-/* tranformed vector x. */
-
-/* INCX - INTEGER. */
-/* On entry, INCX specifies the increment for the elements of */
-/* X. INCX must not be zero. */
-/* Unchanged on exit. */
-
-/* Further Details */
-/* =============== */
-
-/* Level 2 Blas routine. */
-
-/* -- Written on 22-October-1986. */
-/* Jack Dongarra, Argonne National Lab. */
-/* Jeremy Du Croz, Nag Central Office. */
-/* Sven Hammarling, Nag Central Office. */
-/* Richard Hanson, Sandia National Labs. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-
-/* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --x;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
- ftnlen)1, (ftnlen)1)) {
- info = 1;
- } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
- "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
- ftnlen)1)) {
- info = 2;
- } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
- "N", (ftnlen)1, (ftnlen)1)) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*k < 0) {
- info = 5;
- } else if (*lda < *k + 1) {
- info = 7;
- } else if (*incx == 0) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("CTBMV ", &info, (ftnlen)6);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
- noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
- nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
-
-/* Set up the start point in X if the increment is not unity. This */
-/* will be ( N - 1 )*INCX too small for descending loops. */
-
- if (*incx <= 0) {
- kx = 1 - (*n - 1) * *incx;
- } else if (*incx != 1) {
- kx = 1;
- }
-
-/* Start the operations. In this version the elements of A are */
-/* accessed sequentially with one pass through A. */
-
- if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
-
-/* Form x := A*x. */
-
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
- kplus1 = *k + 1;
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
- i__2 = j;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- l = kplus1 - j;
-/* Computing MAX */
- i__2 = 1, i__3 = j - *k;
- i__4 = j - 1;
- for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
- i__2 = i__;
- i__3 = i__;
- i__5 = l + i__ + j * a_dim1;
- q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- q__2.i = temp.r * a[i__5].i + temp.i * a[
- i__5].r;
- q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
- q__2.i;
- x[i__2].r = q__1.r, x[i__2].i = q__1.i;
-/* L10: */
- }
- if (nounit) {
- i__4 = j;
- i__2 = j;
- i__3 = kplus1 + j * a_dim1;
- q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
- i__3].i, q__1.i = x[i__2].r * a[i__3].i +
- x[i__2].i * a[i__3].r;
- x[i__4].r = q__1.r, x[i__4].i = q__1.i;
- }
- }
-/* L20: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__4 = jx;
- if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
- i__4 = jx;
- temp.r = x[i__4].r, temp.i = x[i__4].i;
- ix = kx;
- l = kplus1 - j;
-/* Computing MAX */
- i__4 = 1, i__2 = j - *k;
- i__3 = j - 1;
- for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
- i__4 = ix;
- i__2 = ix;
- i__5 = l + i__ + j * a_dim1;
- q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- q__2.i = temp.r * a[i__5].i + temp.i * a[
- i__5].r;
- q__1.r = x[i__2].r + q__2.r, q__1.i = x[i__2].i +
- q__2.i;
- x[i__4].r = q__1.r, x[i__4].i = q__1.i;
- ix += *incx;
-/* L30: */
- }
- if (nounit) {
- i__3 = jx;
- i__4 = jx;
- i__2 = kplus1 + j * a_dim1;
- q__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
- i__2].i, q__1.i = x[i__4].r * a[i__2].i +
- x[i__4].i * a[i__2].r;
- x[i__3].r = q__1.r, x[i__3].i = q__1.i;
- }
- }
- jx += *incx;
- if (j > *k) {
- kx += *incx;
- }
-/* L40: */
- }
- }
- } else {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- i__1 = j;
- if (x[i__1].r != 0.f || x[i__1].i != 0.f) {
- i__1 = j;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- l = 1 - j;
-/* Computing MIN */
- i__1 = *n, i__3 = j + *k;
- i__4 = j + 1;
- for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
- i__1 = i__;
- i__3 = i__;
- i__2 = l + i__ + j * a_dim1;
- q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
- q__2.i = temp.r * a[i__2].i + temp.i * a[
- i__2].r;
- q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
- q__2.i;
- x[i__1].r = q__1.r, x[i__1].i = q__1.i;
-/* L50: */
- }
- if (nounit) {
- i__4 = j;
- i__1 = j;
- i__3 = j * a_dim1 + 1;
- q__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
- i__3].i, q__1.i = x[i__1].r * a[i__3].i +
- x[i__1].i * a[i__3].r;
- x[i__4].r = q__1.r, x[i__4].i = q__1.i;
- }
- }
-/* L60: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- i__4 = jx;
- if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
- i__4 = jx;
- temp.r = x[i__4].r, temp.i = x[i__4].i;
- ix = kx;
- l = 1 - j;
-/* Computing MIN */
- i__4 = *n, i__1 = j + *k;
- i__3 = j + 1;
- for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
- i__4 = ix;
- i__1 = ix;
- i__2 = l + i__ + j * a_dim1;
- q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
- q__2.i = temp.r * a[i__2].i + temp.i * a[
- i__2].r;
- q__1.r = x[i__1].r + q__2.r, q__1.i = x[i__1].i +
- q__2.i;
- x[i__4].r = q__1.r, x[i__4].i = q__1.i;
- ix -= *incx;
-/* L70: */
- }
- if (nounit) {
- i__3 = jx;
- i__4 = jx;
- i__1 = j * a_dim1 + 1;
- q__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
- i__1].i, q__1.i = x[i__4].r * a[i__1].i +
- x[i__4].i * a[i__1].r;
- x[i__3].r = q__1.r, x[i__3].i = q__1.i;
- }
- }
- jx -= *incx;
- if (*n - j >= *k) {
- kx -= *incx;
- }
-/* L80: */
- }
- }
- }
- } else {
-
-/* Form x := A'*x or x := conjg( A' )*x. */
-
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
- kplus1 = *k + 1;
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- i__3 = j;
- temp.r = x[i__3].r, temp.i = x[i__3].i;
- l = kplus1 - j;
- if (noconj) {
- if (nounit) {
- i__3 = kplus1 + j * a_dim1;
- q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
- q__1.i = temp.r * a[i__3].i + temp.i * a[
- i__3].r;
- temp.r = q__1.r, temp.i = q__1.i;
- }
-/* Computing MAX */
- i__4 = 1, i__1 = j - *k;
- i__3 = max(i__4,i__1);
- for (i__ = j - 1; i__ >= i__3; --i__) {
- i__4 = l + i__ + j * a_dim1;
- i__1 = i__;
- q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
- i__1].i, q__2.i = a[i__4].r * x[i__1].i +
- a[i__4].i * x[i__1].r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i +
- q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
-/* L90: */
- }
- } else {
- if (nounit) {
- r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
- q__1.r = temp.r * q__2.r - temp.i * q__2.i,
- q__1.i = temp.r * q__2.i + temp.i *
- q__2.r;
- temp.r = q__1.r, temp.i = q__1.i;
- }
-/* Computing MAX */
- i__4 = 1, i__1 = j - *k;
- i__3 = max(i__4,i__1);
- for (i__ = j - 1; i__ >= i__3; --i__) {
- r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
- i__4 = i__;
- q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
- q__2.i = q__3.r * x[i__4].i + q__3.i * x[
- i__4].r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i +
- q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
-/* L100: */
- }
- }
- i__3 = j;
- x[i__3].r = temp.r, x[i__3].i = temp.i;
-/* L110: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- i__3 = jx;
- temp.r = x[i__3].r, temp.i = x[i__3].i;
- kx -= *incx;
- ix = kx;
- l = kplus1 - j;
- if (noconj) {
- if (nounit) {
- i__3 = kplus1 + j * a_dim1;
- q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
- q__1.i = temp.r * a[i__3].i + temp.i * a[
- i__3].r;
- temp.r = q__1.r, temp.i = q__1.i;
- }
-/* Computing MAX */
- i__4 = 1, i__1 = j - *k;
- i__3 = max(i__4,i__1);
- for (i__ = j - 1; i__ >= i__3; --i__) {
- i__4 = l + i__ + j * a_dim1;
- i__1 = ix;
- q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
- i__1].i, q__2.i = a[i__4].r * x[i__1].i +
- a[i__4].i * x[i__1].r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i +
- q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- ix -= *incx;
-/* L120: */
- }
- } else {
- if (nounit) {
- r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
- q__1.r = temp.r * q__2.r - temp.i * q__2.i,
- q__1.i = temp.r * q__2.i + temp.i *
- q__2.r;
- temp.r = q__1.r, temp.i = q__1.i;
- }
-/* Computing MAX */
- i__4 = 1, i__1 = j - *k;
- i__3 = max(i__4,i__1);
- for (i__ = j - 1; i__ >= i__3; --i__) {
- r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
- i__4 = ix;
- q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
- q__2.i = q__3.r * x[i__4].i + q__3.i * x[
- i__4].r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i +
- q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- ix -= *incx;
-/* L130: */
- }
- }
- i__3 = jx;
- x[i__3].r = temp.r, x[i__3].i = temp.i;
- jx -= *incx;
-/* L140: */
- }
- }
- } else {
- if (*incx == 1) {
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- i__4 = j;
- temp.r = x[i__4].r, temp.i = x[i__4].i;
- l = 1 - j;
- if (noconj) {
- if (nounit) {
- i__4 = j * a_dim1 + 1;
- q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
- q__1.i = temp.r * a[i__4].i + temp.i * a[
- i__4].r;
- temp.r = q__1.r, temp.i = q__1.i;
- }
-/* Computing MIN */
- i__1 = *n, i__2 = j + *k;
- i__4 = min(i__1,i__2);
- for (i__ = j + 1; i__ <= i__4; ++i__) {
- i__1 = l + i__ + j * a_dim1;
- i__2 = i__;
- q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
- i__2].i, q__2.i = a[i__1].r * x[i__2].i +
- a[i__1].i * x[i__2].r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i +
- q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
-/* L150: */
- }
- } else {
- if (nounit) {
- r_cnjg(&q__2, &a[j * a_dim1 + 1]);
- q__1.r = temp.r * q__2.r - temp.i * q__2.i,
- q__1.i = temp.r * q__2.i + temp.i *
- q__2.r;
- temp.r = q__1.r, temp.i = q__1.i;
- }
-/* Computing MIN */
- i__1 = *n, i__2 = j + *k;
- i__4 = min(i__1,i__2);
- for (i__ = j + 1; i__ <= i__4; ++i__) {
- r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
- i__1 = i__;
- q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
- q__2.i = q__3.r * x[i__1].i + q__3.i * x[
- i__1].r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i +
- q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
-/* L160: */
- }
- }
- i__4 = j;
- x[i__4].r = temp.r, x[i__4].i = temp.i;
-/* L170: */
- }
- } else {
- jx = kx;
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- i__4 = jx;
- temp.r = x[i__4].r, temp.i = x[i__4].i;
- kx += *incx;
- ix = kx;
- l = 1 - j;
- if (noconj) {
- if (nounit) {
- i__4 = j * a_dim1 + 1;
- q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
- q__1.i = temp.r * a[i__4].i + temp.i * a[
- i__4].r;
- temp.r = q__1.r, temp.i = q__1.i;
- }
-/* Computing MIN */
- i__1 = *n, i__2 = j + *k;
- i__4 = min(i__1,i__2);
- for (i__ = j + 1; i__ <= i__4; ++i__) {
- i__1 = l + i__ + j * a_dim1;
- i__2 = ix;
- q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
- i__2].i, q__2.i = a[i__1].r * x[i__2].i +
- a[i__1].i * x[i__2].r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i +
- q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- ix += *incx;
-/* L180: */
- }
- } else {
- if (nounit) {
- r_cnjg(&q__2, &a[j * a_dim1 + 1]);
- q__1.r = temp.r * q__2.r - temp.i * q__2.i,
- q__1.i = temp.r * q__2.i + temp.i *
- q__2.r;
- temp.r = q__1.r, temp.i = q__1.i;
- }
-/* Computing MIN */
- i__1 = *n, i__2 = j + *k;
- i__4 = min(i__1,i__2);
- for (i__ = j + 1; i__ <= i__4; ++i__) {
- r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
- i__1 = ix;
- q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
- q__2.i = q__3.r * x[i__1].i + q__3.i * x[
- i__1].r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i +
- q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- ix += *incx;
-/* L190: */
- }
- }
- i__4 = jx;
- x[i__4].r = temp.r, x[i__4].i = temp.i;
- jx += *incx;
-/* L200: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of CTBMV . */
-
-} /* ctbmv_ */
-
diff --git a/eigen/blas/f2c/d_cnjg.c b/eigen/blas/f2c/d_cnjg.c
deleted file mode 100644
index 623090c..0000000
--- a/eigen/blas/f2c/d_cnjg.c
+++ /dev/null
@@ -1,6 +0,0 @@
-#include "datatypes.h"
-
-void d_cnjg(doublecomplex *r, doublecomplex *z) {
- r->r = z->r;
- r->i = -(z->i);
-}
diff --git a/eigen/blas/f2c/datatypes.h b/eigen/blas/f2c/datatypes.h
deleted file mode 100644
index 63232b2..0000000
--- a/eigen/blas/f2c/datatypes.h
+++ /dev/null
@@ -1,24 +0,0 @@
-/* This contains a limited subset of the typedefs exposed by f2c
- for use by the Eigen BLAS C-only implementation.
-*/
-
-#ifndef __EIGEN_DATATYPES_H__
-#define __EIGEN_DATATYPES_H__
-
-typedef int integer;
-typedef unsigned int uinteger;
-typedef float real;
-typedef double doublereal;
-typedef struct { real r, i; } complex;
-typedef struct { doublereal r, i; } doublecomplex;
-typedef int ftnlen;
-typedef int logical;
-
-#define abs(x) ((x) >= 0 ? (x) : -(x))
-#define dabs(x) (doublereal)abs(x)
-#define min(a,b) ((a) <= (b) ? (a) : (b))
-#define max(a,b) ((a) >= (b) ? (a) : (b))
-#define dmin(a,b) (doublereal)min(a,b)
-#define dmax(a,b) (doublereal)max(a,b)
-
-#endif
diff --git a/eigen/blas/f2c/drotm.c b/eigen/blas/f2c/drotm.c
deleted file mode 100644
index 17a779b..0000000
--- a/eigen/blas/f2c/drotm.c
+++ /dev/null
@@ -1,215 +0,0 @@
-/* drotm.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int drotm_(integer *n, doublereal *dx, integer *incx,
- doublereal *dy, integer *incy, doublereal *dparam)
-{
- /* Initialized data */
-
- static doublereal zero = 0.;
- static doublereal two = 2.;
-
- /* System generated locals */
- integer i__1, i__2;
-
- /* Local variables */
- integer i__;
- doublereal w, z__;
- integer kx, ky;
- doublereal dh11, dh12, dh21, dh22, dflag;
- integer nsteps;
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX */
-
-/* (DX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF DX ARE IN */
-/* (DY**T) */
-
-/* DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE */
-/* LX = (-INCX)*N, AND SIMILARLY FOR SY USING LY AND INCY. */
-/* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
-
-/* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 */
-
-/* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) */
-/* H=( ) ( ) ( ) ( ) */
-/* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). */
-/* SEE DROTMG FOR A DESCRIPTION OF DATA STORAGE IN DPARAM. */
-
-/* Arguments */
-/* ========= */
-
-/* N (input) INTEGER */
-/* number of elements in input vector(s) */
-
-/* DX (input/output) DOUBLE PRECISION array, dimension N */
-/* double precision vector with N elements */
-
-/* INCX (input) INTEGER */
-/* storage spacing between elements of DX */
-
-/* DY (input/output) DOUBLE PRECISION array, dimension N */
-/* double precision vector with N elements */
-
-/* INCY (input) INTEGER */
-/* storage spacing between elements of DY */
-
-/* DPARAM (input/output) DOUBLE PRECISION array, dimension 5 */
-/* DPARAM(1)=DFLAG */
-/* DPARAM(2)=DH11 */
-/* DPARAM(3)=DH21 */
-/* DPARAM(4)=DH12 */
-/* DPARAM(5)=DH22 */
-
-/* ===================================================================== */
-
-/* .. Local Scalars .. */
-/* .. */
-/* .. Data statements .. */
- /* Parameter adjustments */
- --dparam;
- --dy;
- --dx;
-
- /* Function Body */
-/* .. */
-
- dflag = dparam[1];
- if (*n <= 0 || dflag + two == zero) {
- goto L140;
- }
- if (! (*incx == *incy && *incx > 0)) {
- goto L70;
- }
-
- nsteps = *n * *incx;
- if (dflag < 0.) {
- goto L50;
- } else if (dflag == 0) {
- goto L10;
- } else {
- goto L30;
- }
-L10:
- dh12 = dparam[4];
- dh21 = dparam[3];
- i__1 = nsteps;
- i__2 = *incx;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- w = dx[i__];
- z__ = dy[i__];
- dx[i__] = w + z__ * dh12;
- dy[i__] = w * dh21 + z__;
-/* L20: */
- }
- goto L140;
-L30:
- dh11 = dparam[2];
- dh22 = dparam[5];
- i__2 = nsteps;
- i__1 = *incx;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
- w = dx[i__];
- z__ = dy[i__];
- dx[i__] = w * dh11 + z__;
- dy[i__] = -w + dh22 * z__;
-/* L40: */
- }
- goto L140;
-L50:
- dh11 = dparam[2];
- dh12 = dparam[4];
- dh21 = dparam[3];
- dh22 = dparam[5];
- i__1 = nsteps;
- i__2 = *incx;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- w = dx[i__];
- z__ = dy[i__];
- dx[i__] = w * dh11 + z__ * dh12;
- dy[i__] = w * dh21 + z__ * dh22;
-/* L60: */
- }
- goto L140;
-L70:
- kx = 1;
- ky = 1;
- if (*incx < 0) {
- kx = (1 - *n) * *incx + 1;
- }
- if (*incy < 0) {
- ky = (1 - *n) * *incy + 1;
- }
-
- if (dflag < 0.) {
- goto L120;
- } else if (dflag == 0) {
- goto L80;
- } else {
- goto L100;
- }
-L80:
- dh12 = dparam[4];
- dh21 = dparam[3];
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- w = dx[kx];
- z__ = dy[ky];
- dx[kx] = w + z__ * dh12;
- dy[ky] = w * dh21 + z__;
- kx += *incx;
- ky += *incy;
-/* L90: */
- }
- goto L140;
-L100:
- dh11 = dparam[2];
- dh22 = dparam[5];
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- w = dx[kx];
- z__ = dy[ky];
- dx[kx] = w * dh11 + z__;
- dy[ky] = -w + dh22 * z__;
- kx += *incx;
- ky += *incy;
-/* L110: */
- }
- goto L140;
-L120:
- dh11 = dparam[2];
- dh12 = dparam[4];
- dh21 = dparam[3];
- dh22 = dparam[5];
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- w = dx[kx];
- z__ = dy[ky];
- dx[kx] = w * dh11 + z__ * dh12;
- dy[ky] = w * dh21 + z__ * dh22;
- kx += *incx;
- ky += *incy;
-/* L130: */
- }
-L140:
- return 0;
-} /* drotm_ */
-
diff --git a/eigen/blas/f2c/drotmg.c b/eigen/blas/f2c/drotmg.c
deleted file mode 100644
index a63eb10..0000000
--- a/eigen/blas/f2c/drotmg.c
+++ /dev/null
@@ -1,293 +0,0 @@
-/* drotmg.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int drotmg_(doublereal *dd1, doublereal *dd2, doublereal *
- dx1, doublereal *dy1, doublereal *dparam)
-{
- /* Initialized data */
-
- static doublereal zero = 0.;
- static doublereal one = 1.;
- static doublereal two = 2.;
- static doublereal gam = 4096.;
- static doublereal gamsq = 16777216.;
- static doublereal rgamsq = 5.9604645e-8;
-
- /* Format strings */
- static char fmt_120[] = "";
- static char fmt_150[] = "";
- static char fmt_180[] = "";
- static char fmt_210[] = "";
-
- /* System generated locals */
- doublereal d__1;
-
- /* Local variables */
- doublereal du, dp1, dp2, dq1, dq2, dh11, dh12, dh21, dh22;
- integer igo;
- doublereal dflag, dtemp;
-
- /* Assigned format variables */
- static char *igo_fmt;
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS */
-/* THE SECOND COMPONENT OF THE 2-VECTOR (DSQRT(DD1)*DX1,DSQRT(DD2)* */
-/* DY2)**T. */
-/* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
-
-/* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 */
-
-/* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) */
-/* H=( ) ( ) ( ) ( ) */
-/* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). */
-/* LOCATIONS 2-4 OF DPARAM CONTAIN DH11, DH21, DH12, AND DH22 */
-/* RESPECTIVELY. (VALUES OF 1.D0, -1.D0, OR 0.D0 IMPLIED BY THE */
-/* VALUE OF DPARAM(1) ARE NOT STORED IN DPARAM.) */
-
-/* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE */
-/* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE */
-/* OF DD1 AND DD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. */
-
-
-/* Arguments */
-/* ========= */
-
-/* DD1 (input/output) DOUBLE PRECISION */
-
-/* DD2 (input/output) DOUBLE PRECISION */
-
-/* DX1 (input/output) DOUBLE PRECISION */
-
-/* DY1 (input) DOUBLE PRECISION */
-
-/* DPARAM (input/output) DOUBLE PRECISION array, dimension 5 */
-/* DPARAM(1)=DFLAG */
-/* DPARAM(2)=DH11 */
-/* DPARAM(3)=DH21 */
-/* DPARAM(4)=DH12 */
-/* DPARAM(5)=DH22 */
-
-/* ===================================================================== */
-
-/* .. Local Scalars .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-/* .. Data statements .. */
-
- /* Parameter adjustments */
- --dparam;
-
- /* Function Body */
-/* .. */
- if (! (*dd1 < zero)) {
- goto L10;
- }
-/* GO ZERO-H-D-AND-DX1.. */
- goto L60;
-L10:
-/* CASE-DD1-NONNEGATIVE */
- dp2 = *dd2 * *dy1;
- if (! (dp2 == zero)) {
- goto L20;
- }
- dflag = -two;
- goto L260;
-/* REGULAR-CASE.. */
-L20:
- dp1 = *dd1 * *dx1;
- dq2 = dp2 * *dy1;
- dq1 = dp1 * *dx1;
-
- if (! (abs(dq1) > abs(dq2))) {
- goto L40;
- }
- dh21 = -(*dy1) / *dx1;
- dh12 = dp2 / dp1;
-
- du = one - dh12 * dh21;
-
- if (! (du <= zero)) {
- goto L30;
- }
-/* GO ZERO-H-D-AND-DX1.. */
- goto L60;
-L30:
- dflag = zero;
- *dd1 /= du;
- *dd2 /= du;
- *dx1 *= du;
-/* GO SCALE-CHECK.. */
- goto L100;
-L40:
- if (! (dq2 < zero)) {
- goto L50;
- }
-/* GO ZERO-H-D-AND-DX1.. */
- goto L60;
-L50:
- dflag = one;
- dh11 = dp1 / dp2;
- dh22 = *dx1 / *dy1;
- du = one + dh11 * dh22;
- dtemp = *dd2 / du;
- *dd2 = *dd1 / du;
- *dd1 = dtemp;
- *dx1 = *dy1 * du;
-/* GO SCALE-CHECK */
- goto L100;
-/* PROCEDURE..ZERO-H-D-AND-DX1.. */
-L60:
- dflag = -one;
- dh11 = zero;
- dh12 = zero;
- dh21 = zero;
- dh22 = zero;
-
- *dd1 = zero;
- *dd2 = zero;
- *dx1 = zero;
-/* RETURN.. */
- goto L220;
-/* PROCEDURE..FIX-H.. */
-L70:
- if (! (dflag >= zero)) {
- goto L90;
- }
-
- if (! (dflag == zero)) {
- goto L80;
- }
- dh11 = one;
- dh22 = one;
- dflag = -one;
- goto L90;
-L80:
- dh21 = -one;
- dh12 = one;
- dflag = -one;
-L90:
- switch (igo) {
- case 0: goto L120;
- case 1: goto L150;
- case 2: goto L180;
- case 3: goto L210;
- }
-/* PROCEDURE..SCALE-CHECK */
-L100:
-L110:
- if (! (*dd1 <= rgamsq)) {
- goto L130;
- }
- if (*dd1 == zero) {
- goto L160;
- }
- igo = 0;
- igo_fmt = fmt_120;
-/* FIX-H.. */
- goto L70;
-L120:
-/* Computing 2nd power */
- d__1 = gam;
- *dd1 *= d__1 * d__1;
- *dx1 /= gam;
- dh11 /= gam;
- dh12 /= gam;
- goto L110;
-L130:
-L140:
- if (! (*dd1 >= gamsq)) {
- goto L160;
- }
- igo = 1;
- igo_fmt = fmt_150;
-/* FIX-H.. */
- goto L70;
-L150:
-/* Computing 2nd power */
- d__1 = gam;
- *dd1 /= d__1 * d__1;
- *dx1 *= gam;
- dh11 *= gam;
- dh12 *= gam;
- goto L140;
-L160:
-L170:
- if (! (abs(*dd2) <= rgamsq)) {
- goto L190;
- }
- if (*dd2 == zero) {
- goto L220;
- }
- igo = 2;
- igo_fmt = fmt_180;
-/* FIX-H.. */
- goto L70;
-L180:
-/* Computing 2nd power */
- d__1 = gam;
- *dd2 *= d__1 * d__1;
- dh21 /= gam;
- dh22 /= gam;
- goto L170;
-L190:
-L200:
- if (! (abs(*dd2) >= gamsq)) {
- goto L220;
- }
- igo = 3;
- igo_fmt = fmt_210;
-/* FIX-H.. */
- goto L70;
-L210:
-/* Computing 2nd power */
- d__1 = gam;
- *dd2 /= d__1 * d__1;
- dh21 *= gam;
- dh22 *= gam;
- goto L200;
-L220:
- if (dflag < 0.) {
- goto L250;
- } else if (dflag == 0) {
- goto L230;
- } else {
- goto L240;
- }
-L230:
- dparam[3] = dh21;
- dparam[4] = dh12;
- goto L260;
-L240:
- dparam[2] = dh11;
- dparam[5] = dh22;
- goto L260;
-L250:
- dparam[2] = dh11;
- dparam[3] = dh21;
- dparam[4] = dh12;
- dparam[5] = dh22;
-L260:
- dparam[1] = dflag;
- return 0;
-} /* drotmg_ */
-
diff --git a/eigen/blas/f2c/dsbmv.c b/eigen/blas/f2c/dsbmv.c
deleted file mode 100644
index c6b4b21..0000000
--- a/eigen/blas/f2c/dsbmv.c
+++ /dev/null
@@ -1,366 +0,0 @@
-/* dsbmv.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int dsbmv_(char *uplo, integer *n, integer *k, doublereal *
- alpha, doublereal *a, integer *lda, doublereal *x, integer *incx,
- doublereal *beta, doublereal *y, integer *incy, ftnlen uplo_len)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
- doublereal temp1, temp2;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- integer kplus1;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* DSBMV performs the matrix-vector operation */
-
-/* y := alpha*A*x + beta*y, */
-
-/* where alpha and beta are scalars, x and y are n element vectors and */
-/* A is an n by n symmetric band matrix, with k super-diagonals. */
-
-/* Arguments */
-/* ========== */
-
-/* UPLO - CHARACTER*1. */
-/* On entry, UPLO specifies whether the upper or lower */
-/* triangular part of the band matrix A is being supplied as */
-/* follows: */
-
-/* UPLO = 'U' or 'u' The upper triangular part of A is */
-/* being supplied. */
-
-/* UPLO = 'L' or 'l' The lower triangular part of A is */
-/* being supplied. */
-
-/* Unchanged on exit. */
-
-/* N - INTEGER. */
-/* On entry, N specifies the order of the matrix A. */
-/* N must be at least zero. */
-/* Unchanged on exit. */
-
-/* K - INTEGER. */
-/* On entry, K specifies the number of super-diagonals of the */
-/* matrix A. K must satisfy 0 .le. K. */
-/* Unchanged on exit. */
-
-/* ALPHA - DOUBLE PRECISION. */
-/* On entry, ALPHA specifies the scalar alpha. */
-/* Unchanged on exit. */
-
-/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
-/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
-/* by n part of the array A must contain the upper triangular */
-/* band part of the symmetric matrix, supplied column by */
-/* column, with the leading diagonal of the matrix in row */
-/* ( k + 1 ) of the array, the first super-diagonal starting at */
-/* position 2 in row k, and so on. The top left k by k triangle */
-/* of the array A is not referenced. */
-/* The following program segment will transfer the upper */
-/* triangular part of a symmetric band matrix from conventional */
-/* full matrix storage to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = K + 1 - J */
-/* DO 10, I = MAX( 1, J - K ), J */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
-/* by n part of the array A must contain the lower triangular */
-/* band part of the symmetric matrix, supplied column by */
-/* column, with the leading diagonal of the matrix in row 1 of */
-/* the array, the first sub-diagonal starting at position 1 in */
-/* row 2, and so on. The bottom right k by k triangle of the */
-/* array A is not referenced. */
-/* The following program segment will transfer the lower */
-/* triangular part of a symmetric band matrix from conventional */
-/* full matrix storage to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = 1 - J */
-/* DO 10, I = J, MIN( N, J + K ) */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Unchanged on exit. */
-
-/* LDA - INTEGER. */
-/* On entry, LDA specifies the first dimension of A as declared */
-/* in the calling (sub) program. LDA must be at least */
-/* ( k + 1 ). */
-/* Unchanged on exit. */
-
-/* X - DOUBLE PRECISION array of DIMENSION at least */
-/* ( 1 + ( n - 1 )*abs( INCX ) ). */
-/* Before entry, the incremented array X must contain the */
-/* vector x. */
-/* Unchanged on exit. */
-
-/* INCX - INTEGER. */
-/* On entry, INCX specifies the increment for the elements of */
-/* X. INCX must not be zero. */
-/* Unchanged on exit. */
-
-/* BETA - DOUBLE PRECISION. */
-/* On entry, BETA specifies the scalar beta. */
-/* Unchanged on exit. */
-
-/* Y - DOUBLE PRECISION array of DIMENSION at least */
-/* ( 1 + ( n - 1 )*abs( INCY ) ). */
-/* Before entry, the incremented array Y must contain the */
-/* vector y. On exit, Y is overwritten by the updated vector y. */
-
-/* INCY - INTEGER. */
-/* On entry, INCY specifies the increment for the elements of */
-/* Y. INCY must not be zero. */
-/* Unchanged on exit. */
-
-
-/* Level 2 Blas routine. */
-
-/* -- Written on 22-October-1986. */
-/* Jack Dongarra, Argonne National Lab. */
-/* Jeremy Du Croz, Nag Central Office. */
-/* Sven Hammarling, Nag Central Office. */
-/* Richard Hanson, Sandia National Labs. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-
-/* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --x;
- --y;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
- ftnlen)1, (ftnlen)1)) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*k < 0) {
- info = 3;
- } else if (*lda < *k + 1) {
- info = 6;
- } else if (*incx == 0) {
- info = 8;
- } else if (*incy == 0) {
- info = 11;
- }
- if (info != 0) {
- xerbla_("DSBMV ", &info, (ftnlen)6);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
- return 0;
- }
-
-/* Set up the start points in X and Y. */
-
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
-
-/* Start the operations. In this version the elements of the array A */
-/* are accessed sequentially with one pass through A. */
-
-/* First form y := beta*y. */
-
- if (*beta != 1.) {
- if (*incy == 1) {
- if (*beta == 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = 0.;
-/* L10: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = *beta * y[i__];
-/* L20: */
- }
- }
- } else {
- iy = ky;
- if (*beta == 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = 0.;
- iy += *incy;
-/* L30: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = *beta * y[iy];
- iy += *incy;
-/* L40: */
- }
- }
- }
- }
- if (*alpha == 0.) {
- return 0;
- }
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
-
-/* Form y when upper triangle of A is stored. */
-
- kplus1 = *k + 1;
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[j];
- temp2 = 0.;
- l = kplus1 - j;
-/* Computing MAX */
- i__2 = 1, i__3 = j - *k;
- i__4 = j - 1;
- for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
- y[i__] += temp1 * a[l + i__ + j * a_dim1];
- temp2 += a[l + i__ + j * a_dim1] * x[i__];
-/* L50: */
- }
- y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
-/* L60: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[jx];
- temp2 = 0.;
- ix = kx;
- iy = ky;
- l = kplus1 - j;
-/* Computing MAX */
- i__4 = 1, i__2 = j - *k;
- i__3 = j - 1;
- for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
- y[iy] += temp1 * a[l + i__ + j * a_dim1];
- temp2 += a[l + i__ + j * a_dim1] * x[ix];
- ix += *incx;
- iy += *incy;
-/* L70: */
- }
- y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha *
- temp2;
- jx += *incx;
- jy += *incy;
- if (j > *k) {
- kx += *incx;
- ky += *incy;
- }
-/* L80: */
- }
- }
- } else {
-
-/* Form y when lower triangle of A is stored. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[j];
- temp2 = 0.;
- y[j] += temp1 * a[j * a_dim1 + 1];
- l = 1 - j;
-/* Computing MIN */
- i__4 = *n, i__2 = j + *k;
- i__3 = min(i__4,i__2);
- for (i__ = j + 1; i__ <= i__3; ++i__) {
- y[i__] += temp1 * a[l + i__ + j * a_dim1];
- temp2 += a[l + i__ + j * a_dim1] * x[i__];
-/* L90: */
- }
- y[j] += *alpha * temp2;
-/* L100: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[jx];
- temp2 = 0.;
- y[jy] += temp1 * a[j * a_dim1 + 1];
- l = 1 - j;
- ix = jx;
- iy = jy;
-/* Computing MIN */
- i__4 = *n, i__2 = j + *k;
- i__3 = min(i__4,i__2);
- for (i__ = j + 1; i__ <= i__3; ++i__) {
- ix += *incx;
- iy += *incy;
- y[iy] += temp1 * a[l + i__ + j * a_dim1];
- temp2 += a[l + i__ + j * a_dim1] * x[ix];
-/* L110: */
- }
- y[jy] += *alpha * temp2;
- jx += *incx;
- jy += *incy;
-/* L120: */
- }
- }
- }
-
- return 0;
-
-/* End of DSBMV . */
-
-} /* dsbmv_ */
-
diff --git a/eigen/blas/f2c/dspmv.c b/eigen/blas/f2c/dspmv.c
deleted file mode 100644
index 0b4e92d..0000000
--- a/eigen/blas/f2c/dspmv.c
+++ /dev/null
@@ -1,316 +0,0 @@
-/* dspmv.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int dspmv_(char *uplo, integer *n, doublereal *alpha,
- doublereal *ap, doublereal *x, integer *incx, doublereal *beta,
- doublereal *y, integer *incy, ftnlen uplo_len)
-{
- /* System generated locals */
- integer i__1, i__2;
-
- /* Local variables */
- integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
- doublereal temp1, temp2;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* DSPMV performs the matrix-vector operation */
-
-/* y := alpha*A*x + beta*y, */
-
-/* where alpha and beta are scalars, x and y are n element vectors and */
-/* A is an n by n symmetric matrix, supplied in packed form. */
-
-/* Arguments */
-/* ========== */
-
-/* UPLO - CHARACTER*1. */
-/* On entry, UPLO specifies whether the upper or lower */
-/* triangular part of the matrix A is supplied in the packed */
-/* array AP as follows: */
-
-/* UPLO = 'U' or 'u' The upper triangular part of A is */
-/* supplied in AP. */
-
-/* UPLO = 'L' or 'l' The lower triangular part of A is */
-/* supplied in AP. */
-
-/* Unchanged on exit. */
-
-/* N - INTEGER. */
-/* On entry, N specifies the order of the matrix A. */
-/* N must be at least zero. */
-/* Unchanged on exit. */
-
-/* ALPHA - DOUBLE PRECISION. */
-/* On entry, ALPHA specifies the scalar alpha. */
-/* Unchanged on exit. */
-
-/* AP - DOUBLE PRECISION array of DIMENSION at least */
-/* ( ( n*( n + 1 ) )/2 ). */
-/* Before entry with UPLO = 'U' or 'u', the array AP must */
-/* contain the upper triangular part of the symmetric matrix */
-/* packed sequentially, column by column, so that AP( 1 ) */
-/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
-/* and a( 2, 2 ) respectively, and so on. */
-/* Before entry with UPLO = 'L' or 'l', the array AP must */
-/* contain the lower triangular part of the symmetric matrix */
-/* packed sequentially, column by column, so that AP( 1 ) */
-/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
-/* and a( 3, 1 ) respectively, and so on. */
-/* Unchanged on exit. */
-
-/* X - DOUBLE PRECISION array of dimension at least */
-/* ( 1 + ( n - 1 )*abs( INCX ) ). */
-/* Before entry, the incremented array X must contain the n */
-/* element vector x. */
-/* Unchanged on exit. */
-
-/* INCX - INTEGER. */
-/* On entry, INCX specifies the increment for the elements of */
-/* X. INCX must not be zero. */
-/* Unchanged on exit. */
-
-/* BETA - DOUBLE PRECISION. */
-/* On entry, BETA specifies the scalar beta. When BETA is */
-/* supplied as zero then Y need not be set on input. */
-/* Unchanged on exit. */
-
-/* Y - DOUBLE PRECISION array of dimension at least */
-/* ( 1 + ( n - 1 )*abs( INCY ) ). */
-/* Before entry, the incremented array Y must contain the n */
-/* element vector y. On exit, Y is overwritten by the updated */
-/* vector y. */
-
-/* INCY - INTEGER. */
-/* On entry, INCY specifies the increment for the elements of */
-/* Y. INCY must not be zero. */
-/* Unchanged on exit. */
-
-/* Further Details */
-/* =============== */
-
-/* Level 2 Blas routine. */
-
-/* -- Written on 22-October-1986. */
-/* Jack Dongarra, Argonne National Lab. */
-/* Jeremy Du Croz, Nag Central Office. */
-/* Sven Hammarling, Nag Central Office. */
-/* Richard Hanson, Sandia National Labs. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-
-/* Test the input parameters. */
-
- /* Parameter adjustments */
- --y;
- --x;
- --ap;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
- ftnlen)1, (ftnlen)1)) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*incx == 0) {
- info = 6;
- } else if (*incy == 0) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("DSPMV ", &info, (ftnlen)6);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
- return 0;
- }
-
-/* Set up the start points in X and Y. */
-
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
-
-/* Start the operations. In this version the elements of the array AP */
-/* are accessed sequentially with one pass through AP. */
-
-/* First form y := beta*y. */
-
- if (*beta != 1.) {
- if (*incy == 1) {
- if (*beta == 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = 0.;
-/* L10: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = *beta * y[i__];
-/* L20: */
- }
- }
- } else {
- iy = ky;
- if (*beta == 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = 0.;
- iy += *incy;
-/* L30: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = *beta * y[iy];
- iy += *incy;
-/* L40: */
- }
- }
- }
- }
- if (*alpha == 0.) {
- return 0;
- }
- kk = 1;
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
-
-/* Form y when AP contains the upper triangle. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[j];
- temp2 = 0.;
- k = kk;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- y[i__] += temp1 * ap[k];
- temp2 += ap[k] * x[i__];
- ++k;
-/* L50: */
- }
- y[j] = y[j] + temp1 * ap[kk + j - 1] + *alpha * temp2;
- kk += j;
-/* L60: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[jx];
- temp2 = 0.;
- ix = kx;
- iy = ky;
- i__2 = kk + j - 2;
- for (k = kk; k <= i__2; ++k) {
- y[iy] += temp1 * ap[k];
- temp2 += ap[k] * x[ix];
- ix += *incx;
- iy += *incy;
-/* L70: */
- }
- y[jy] = y[jy] + temp1 * ap[kk + j - 1] + *alpha * temp2;
- jx += *incx;
- jy += *incy;
- kk += j;
-/* L80: */
- }
- }
- } else {
-
-/* Form y when AP contains the lower triangle. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[j];
- temp2 = 0.;
- y[j] += temp1 * ap[kk];
- k = kk + 1;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- y[i__] += temp1 * ap[k];
- temp2 += ap[k] * x[i__];
- ++k;
-/* L90: */
- }
- y[j] += *alpha * temp2;
- kk += *n - j + 1;
-/* L100: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[jx];
- temp2 = 0.;
- y[jy] += temp1 * ap[kk];
- ix = jx;
- iy = jy;
- i__2 = kk + *n - j;
- for (k = kk + 1; k <= i__2; ++k) {
- ix += *incx;
- iy += *incy;
- y[iy] += temp1 * ap[k];
- temp2 += ap[k] * x[ix];
-/* L110: */
- }
- y[jy] += *alpha * temp2;
- jx += *incx;
- jy += *incy;
- kk += *n - j + 1;
-/* L120: */
- }
- }
- }
-
- return 0;
-
-/* End of DSPMV . */
-
-} /* dspmv_ */
-
diff --git a/eigen/blas/f2c/dtbmv.c b/eigen/blas/f2c/dtbmv.c
deleted file mode 100644
index fdf73eb..0000000
--- a/eigen/blas/f2c/dtbmv.c
+++ /dev/null
@@ -1,428 +0,0 @@
-/* dtbmv.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int dtbmv_(char *uplo, char *trans, char *diag, integer *n,
- integer *k, doublereal *a, integer *lda, doublereal *x, integer *incx,
- ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- integer i__, j, l, ix, jx, kx, info;
- doublereal temp;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- integer kplus1;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- logical nounit;
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* DTBMV performs one of the matrix-vector operations */
-
-/* x := A*x, or x := A'*x, */
-
-/* where x is an n element vector and A is an n by n unit, or non-unit, */
-/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
-
-/* Arguments */
-/* ========== */
-
-/* UPLO - CHARACTER*1. */
-/* On entry, UPLO specifies whether the matrix is an upper or */
-/* lower triangular matrix as follows: */
-
-/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
-
-/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
-
-/* Unchanged on exit. */
-
-/* TRANS - CHARACTER*1. */
-/* On entry, TRANS specifies the operation to be performed as */
-/* follows: */
-
-/* TRANS = 'N' or 'n' x := A*x. */
-
-/* TRANS = 'T' or 't' x := A'*x. */
-
-/* TRANS = 'C' or 'c' x := A'*x. */
-
-/* Unchanged on exit. */
-
-/* DIAG - CHARACTER*1. */
-/* On entry, DIAG specifies whether or not A is unit */
-/* triangular as follows: */
-
-/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
-
-/* DIAG = 'N' or 'n' A is not assumed to be unit */
-/* triangular. */
-
-/* Unchanged on exit. */
-
-/* N - INTEGER. */
-/* On entry, N specifies the order of the matrix A. */
-/* N must be at least zero. */
-/* Unchanged on exit. */
-
-/* K - INTEGER. */
-/* On entry with UPLO = 'U' or 'u', K specifies the number of */
-/* super-diagonals of the matrix A. */
-/* On entry with UPLO = 'L' or 'l', K specifies the number of */
-/* sub-diagonals of the matrix A. */
-/* K must satisfy 0 .le. K. */
-/* Unchanged on exit. */
-
-/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
-/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
-/* by n part of the array A must contain the upper triangular */
-/* band part of the matrix of coefficients, supplied column by */
-/* column, with the leading diagonal of the matrix in row */
-/* ( k + 1 ) of the array, the first super-diagonal starting at */
-/* position 2 in row k, and so on. The top left k by k triangle */
-/* of the array A is not referenced. */
-/* The following program segment will transfer an upper */
-/* triangular band matrix from conventional full matrix storage */
-/* to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = K + 1 - J */
-/* DO 10, I = MAX( 1, J - K ), J */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
-/* by n part of the array A must contain the lower triangular */
-/* band part of the matrix of coefficients, supplied column by */
-/* column, with the leading diagonal of the matrix in row 1 of */
-/* the array, the first sub-diagonal starting at position 1 in */
-/* row 2, and so on. The bottom right k by k triangle of the */
-/* array A is not referenced. */
-/* The following program segment will transfer a lower */
-/* triangular band matrix from conventional full matrix storage */
-/* to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = 1 - J */
-/* DO 10, I = J, MIN( N, J + K ) */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Note that when DIAG = 'U' or 'u' the elements of the array A */
-/* corresponding to the diagonal elements of the matrix are not */
-/* referenced, but are assumed to be unity. */
-/* Unchanged on exit. */
-
-/* LDA - INTEGER. */
-/* On entry, LDA specifies the first dimension of A as declared */
-/* in the calling (sub) program. LDA must be at least */
-/* ( k + 1 ). */
-/* Unchanged on exit. */
-
-/* X - DOUBLE PRECISION array of dimension at least */
-/* ( 1 + ( n - 1 )*abs( INCX ) ). */
-/* Before entry, the incremented array X must contain the n */
-/* element vector x. On exit, X is overwritten with the */
-/* tranformed vector x. */
-
-/* INCX - INTEGER. */
-/* On entry, INCX specifies the increment for the elements of */
-/* X. INCX must not be zero. */
-/* Unchanged on exit. */
-
-/* Further Details */
-/* =============== */
-
-/* Level 2 Blas routine. */
-
-/* -- Written on 22-October-1986. */
-/* Jack Dongarra, Argonne National Lab. */
-/* Jeremy Du Croz, Nag Central Office. */
-/* Sven Hammarling, Nag Central Office. */
-/* Richard Hanson, Sandia National Labs. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-
-/* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --x;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
- ftnlen)1, (ftnlen)1)) {
- info = 1;
- } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
- "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
- ftnlen)1)) {
- info = 2;
- } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
- "N", (ftnlen)1, (ftnlen)1)) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*k < 0) {
- info = 5;
- } else if (*lda < *k + 1) {
- info = 7;
- } else if (*incx == 0) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("DTBMV ", &info, (ftnlen)6);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
- nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
-
-/* Set up the start point in X if the increment is not unity. This */
-/* will be ( N - 1 )*INCX too small for descending loops. */
-
- if (*incx <= 0) {
- kx = 1 - (*n - 1) * *incx;
- } else if (*incx != 1) {
- kx = 1;
- }
-
-/* Start the operations. In this version the elements of A are */
-/* accessed sequentially with one pass through A. */
-
- if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
-
-/* Form x := A*x. */
-
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
- kplus1 = *k + 1;
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[j] != 0.) {
- temp = x[j];
- l = kplus1 - j;
-/* Computing MAX */
- i__2 = 1, i__3 = j - *k;
- i__4 = j - 1;
- for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
- x[i__] += temp * a[l + i__ + j * a_dim1];
-/* L10: */
- }
- if (nounit) {
- x[j] *= a[kplus1 + j * a_dim1];
- }
- }
-/* L20: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[jx] != 0.) {
- temp = x[jx];
- ix = kx;
- l = kplus1 - j;
-/* Computing MAX */
- i__4 = 1, i__2 = j - *k;
- i__3 = j - 1;
- for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
- x[ix] += temp * a[l + i__ + j * a_dim1];
- ix += *incx;
-/* L30: */
- }
- if (nounit) {
- x[jx] *= a[kplus1 + j * a_dim1];
- }
- }
- jx += *incx;
- if (j > *k) {
- kx += *incx;
- }
-/* L40: */
- }
- }
- } else {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- if (x[j] != 0.) {
- temp = x[j];
- l = 1 - j;
-/* Computing MIN */
- i__1 = *n, i__3 = j + *k;
- i__4 = j + 1;
- for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
- x[i__] += temp * a[l + i__ + j * a_dim1];
-/* L50: */
- }
- if (nounit) {
- x[j] *= a[j * a_dim1 + 1];
- }
- }
-/* L60: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- if (x[jx] != 0.) {
- temp = x[jx];
- ix = kx;
- l = 1 - j;
-/* Computing MIN */
- i__4 = *n, i__1 = j + *k;
- i__3 = j + 1;
- for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
- x[ix] += temp * a[l + i__ + j * a_dim1];
- ix -= *incx;
-/* L70: */
- }
- if (nounit) {
- x[jx] *= a[j * a_dim1 + 1];
- }
- }
- jx -= *incx;
- if (*n - j >= *k) {
- kx -= *incx;
- }
-/* L80: */
- }
- }
- }
- } else {
-
-/* Form x := A'*x. */
-
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
- kplus1 = *k + 1;
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- temp = x[j];
- l = kplus1 - j;
- if (nounit) {
- temp *= a[kplus1 + j * a_dim1];
- }
-/* Computing MAX */
- i__4 = 1, i__1 = j - *k;
- i__3 = max(i__4,i__1);
- for (i__ = j - 1; i__ >= i__3; --i__) {
- temp += a[l + i__ + j * a_dim1] * x[i__];
-/* L90: */
- }
- x[j] = temp;
-/* L100: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- temp = x[jx];
- kx -= *incx;
- ix = kx;
- l = kplus1 - j;
- if (nounit) {
- temp *= a[kplus1 + j * a_dim1];
- }
-/* Computing MAX */
- i__4 = 1, i__1 = j - *k;
- i__3 = max(i__4,i__1);
- for (i__ = j - 1; i__ >= i__3; --i__) {
- temp += a[l + i__ + j * a_dim1] * x[ix];
- ix -= *incx;
-/* L110: */
- }
- x[jx] = temp;
- jx -= *incx;
-/* L120: */
- }
- }
- } else {
- if (*incx == 1) {
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- temp = x[j];
- l = 1 - j;
- if (nounit) {
- temp *= a[j * a_dim1 + 1];
- }
-/* Computing MIN */
- i__1 = *n, i__2 = j + *k;
- i__4 = min(i__1,i__2);
- for (i__ = j + 1; i__ <= i__4; ++i__) {
- temp += a[l + i__ + j * a_dim1] * x[i__];
-/* L130: */
- }
- x[j] = temp;
-/* L140: */
- }
- } else {
- jx = kx;
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- temp = x[jx];
- kx += *incx;
- ix = kx;
- l = 1 - j;
- if (nounit) {
- temp *= a[j * a_dim1 + 1];
- }
-/* Computing MIN */
- i__1 = *n, i__2 = j + *k;
- i__4 = min(i__1,i__2);
- for (i__ = j + 1; i__ <= i__4; ++i__) {
- temp += a[l + i__ + j * a_dim1] * x[ix];
- ix += *incx;
-/* L150: */
- }
- x[jx] = temp;
- jx += *incx;
-/* L160: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of DTBMV . */
-
-} /* dtbmv_ */
-
diff --git a/eigen/blas/f2c/lsame.c b/eigen/blas/f2c/lsame.c
deleted file mode 100644
index 46324d9..0000000
--- a/eigen/blas/f2c/lsame.c
+++ /dev/null
@@ -1,117 +0,0 @@
-/* lsame.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-logical lsame_(char *ca, char *cb, ftnlen ca_len, ftnlen cb_len)
-{
- /* System generated locals */
- logical ret_val;
-
- /* Local variables */
- integer inta, intb, zcode;
-
-
-/* -- LAPACK auxiliary routine (version 3.1) -- */
-/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
-/* November 2006 */
-
-/* .. Scalar Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* LSAME returns .TRUE. if CA is the same letter as CB regardless of */
-/* case. */
-
-/* Arguments */
-/* ========= */
-
-/* CA (input) CHARACTER*1 */
-
-/* CB (input) CHARACTER*1 */
-/* CA and CB specify the single characters to be compared. */
-
-/* ===================================================================== */
-
-/* .. Intrinsic Functions .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-
-/* Test if the characters are equal */
-
- ret_val = *(unsigned char *)ca == *(unsigned char *)cb;
- if (ret_val) {
- return ret_val;
- }
-
-/* Now test for equivalence if both characters are alphabetic. */
-
- zcode = 'Z';
-
-/* Use 'Z' rather than 'A' so that ASCII can be detected on Prime */
-/* machines, on which ICHAR returns a value with bit 8 set. */
-/* ICHAR('A') on Prime machines returns 193 which is the same as */
-/* ICHAR('A') on an EBCDIC machine. */
-
- inta = *(unsigned char *)ca;
- intb = *(unsigned char *)cb;
-
- if (zcode == 90 || zcode == 122) {
-
-/* ASCII is assumed - ZCODE is the ASCII code of either lower or */
-/* upper case 'Z'. */
-
- if (inta >= 97 && inta <= 122) {
- inta += -32;
- }
- if (intb >= 97 && intb <= 122) {
- intb += -32;
- }
-
- } else if (zcode == 233 || zcode == 169) {
-
-/* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or */
-/* upper case 'Z'. */
-
- if ((inta >= 129 && inta <= 137) || (inta >= 145 && inta <= 153) ||
- (inta >= 162 && inta <= 169)) {
- inta += 64;
- }
- if ((intb >= 129 && intb <= 137) || (intb >= 145 && intb <= 153) ||
- (intb >= 162 && intb <= 169)) {
- intb += 64;
- }
-
- } else if (zcode == 218 || zcode == 250) {
-
-/* ASCII is assumed, on Prime machines - ZCODE is the ASCII code */
-/* plus 128 of either lower or upper case 'Z'. */
-
- if (inta >= 225 && inta <= 250) {
- inta += -32;
- }
- if (intb >= 225 && intb <= 250) {
- intb += -32;
- }
- }
- ret_val = inta == intb;
-
-/* RETURN */
-
-/* End of LSAME */
-
- return ret_val;
-} /* lsame_ */
-
diff --git a/eigen/blas/f2c/r_cnjg.c b/eigen/blas/f2c/r_cnjg.c
deleted file mode 100644
index c08182f..0000000
--- a/eigen/blas/f2c/r_cnjg.c
+++ /dev/null
@@ -1,6 +0,0 @@
-#include "datatypes.h"
-
-void r_cnjg(complex *r, complex *z) {
- r->r = z->r;
- r->i = -(z->i);
-}
diff --git a/eigen/blas/f2c/srotm.c b/eigen/blas/f2c/srotm.c
deleted file mode 100644
index bd5944a..0000000
--- a/eigen/blas/f2c/srotm.c
+++ /dev/null
@@ -1,216 +0,0 @@
-/* srotm.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int srotm_(integer *n, real *sx, integer *incx, real *sy,
- integer *incy, real *sparam)
-{
- /* Initialized data */
-
- static real zero = 0.f;
- static real two = 2.f;
-
- /* System generated locals */
- integer i__1, i__2;
-
- /* Local variables */
- integer i__;
- real w, z__;
- integer kx, ky;
- real sh11, sh12, sh21, sh22, sflag;
- integer nsteps;
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX */
-
-/* (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN */
-/* (DX**T) */
-
-/* SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE */
-/* LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY. */
-/* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
-
-/* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 */
-
-/* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) */
-/* H=( ) ( ) ( ) ( ) */
-/* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). */
-/* SEE SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM. */
-
-
-/* Arguments */
-/* ========= */
-
-/* N (input) INTEGER */
-/* number of elements in input vector(s) */
-
-/* SX (input/output) REAL array, dimension N */
-/* double precision vector with N elements */
-
-/* INCX (input) INTEGER */
-/* storage spacing between elements of SX */
-
-/* SY (input/output) REAL array, dimension N */
-/* double precision vector with N elements */
-
-/* INCY (input) INTEGER */
-/* storage spacing between elements of SY */
-
-/* SPARAM (input/output) REAL array, dimension 5 */
-/* SPARAM(1)=SFLAG */
-/* SPARAM(2)=SH11 */
-/* SPARAM(3)=SH21 */
-/* SPARAM(4)=SH12 */
-/* SPARAM(5)=SH22 */
-
-/* ===================================================================== */
-
-/* .. Local Scalars .. */
-/* .. */
-/* .. Data statements .. */
- /* Parameter adjustments */
- --sparam;
- --sy;
- --sx;
-
- /* Function Body */
-/* .. */
-
- sflag = sparam[1];
- if (*n <= 0 || sflag + two == zero) {
- goto L140;
- }
- if (! (*incx == *incy && *incx > 0)) {
- goto L70;
- }
-
- nsteps = *n * *incx;
- if (sflag < 0.f) {
- goto L50;
- } else if (sflag == 0) {
- goto L10;
- } else {
- goto L30;
- }
-L10:
- sh12 = sparam[4];
- sh21 = sparam[3];
- i__1 = nsteps;
- i__2 = *incx;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- w = sx[i__];
- z__ = sy[i__];
- sx[i__] = w + z__ * sh12;
- sy[i__] = w * sh21 + z__;
-/* L20: */
- }
- goto L140;
-L30:
- sh11 = sparam[2];
- sh22 = sparam[5];
- i__2 = nsteps;
- i__1 = *incx;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
- w = sx[i__];
- z__ = sy[i__];
- sx[i__] = w * sh11 + z__;
- sy[i__] = -w + sh22 * z__;
-/* L40: */
- }
- goto L140;
-L50:
- sh11 = sparam[2];
- sh12 = sparam[4];
- sh21 = sparam[3];
- sh22 = sparam[5];
- i__1 = nsteps;
- i__2 = *incx;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- w = sx[i__];
- z__ = sy[i__];
- sx[i__] = w * sh11 + z__ * sh12;
- sy[i__] = w * sh21 + z__ * sh22;
-/* L60: */
- }
- goto L140;
-L70:
- kx = 1;
- ky = 1;
- if (*incx < 0) {
- kx = (1 - *n) * *incx + 1;
- }
- if (*incy < 0) {
- ky = (1 - *n) * *incy + 1;
- }
-
- if (sflag < 0.f) {
- goto L120;
- } else if (sflag == 0) {
- goto L80;
- } else {
- goto L100;
- }
-L80:
- sh12 = sparam[4];
- sh21 = sparam[3];
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- w = sx[kx];
- z__ = sy[ky];
- sx[kx] = w + z__ * sh12;
- sy[ky] = w * sh21 + z__;
- kx += *incx;
- ky += *incy;
-/* L90: */
- }
- goto L140;
-L100:
- sh11 = sparam[2];
- sh22 = sparam[5];
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- w = sx[kx];
- z__ = sy[ky];
- sx[kx] = w * sh11 + z__;
- sy[ky] = -w + sh22 * z__;
- kx += *incx;
- ky += *incy;
-/* L110: */
- }
- goto L140;
-L120:
- sh11 = sparam[2];
- sh12 = sparam[4];
- sh21 = sparam[3];
- sh22 = sparam[5];
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- w = sx[kx];
- z__ = sy[ky];
- sx[kx] = w * sh11 + z__ * sh12;
- sy[ky] = w * sh21 + z__ * sh22;
- kx += *incx;
- ky += *incy;
-/* L130: */
- }
-L140:
- return 0;
-} /* srotm_ */
-
diff --git a/eigen/blas/f2c/srotmg.c b/eigen/blas/f2c/srotmg.c
deleted file mode 100644
index 75f789f..0000000
--- a/eigen/blas/f2c/srotmg.c
+++ /dev/null
@@ -1,295 +0,0 @@
-/* srotmg.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int srotmg_(real *sd1, real *sd2, real *sx1, real *sy1, real
- *sparam)
-{
- /* Initialized data */
-
- static real zero = 0.f;
- static real one = 1.f;
- static real two = 2.f;
- static real gam = 4096.f;
- static real gamsq = 16777200.f;
- static real rgamsq = 5.96046e-8f;
-
- /* Format strings */
- static char fmt_120[] = "";
- static char fmt_150[] = "";
- static char fmt_180[] = "";
- static char fmt_210[] = "";
-
- /* System generated locals */
- real r__1;
-
- /* Local variables */
- real su, sp1, sp2, sq1, sq2, sh11, sh12, sh21, sh22;
- integer igo;
- real sflag, stemp;
-
- /* Assigned format variables */
- static char *igo_fmt;
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS */
-/* THE SECOND COMPONENT OF THE 2-VECTOR (SQRT(SD1)*SX1,SQRT(SD2)* */
-/* SY2)**T. */
-/* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
-
-/* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 */
-
-/* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) */
-/* H=( ) ( ) ( ) ( ) */
-/* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). */
-/* LOCATIONS 2-4 OF SPARAM CONTAIN SH11,SH21,SH12, AND SH22 */
-/* RESPECTIVELY. (VALUES OF 1.E0, -1.E0, OR 0.E0 IMPLIED BY THE */
-/* VALUE OF SPARAM(1) ARE NOT STORED IN SPARAM.) */
-
-/* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE */
-/* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE */
-/* OF SD1 AND SD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. */
-
-
-/* Arguments */
-/* ========= */
-
-
-/* SD1 (input/output) REAL */
-
-/* SD2 (input/output) REAL */
-
-/* SX1 (input/output) REAL */
-
-/* SY1 (input) REAL */
-
-
-/* SPARAM (input/output) REAL array, dimension 5 */
-/* SPARAM(1)=SFLAG */
-/* SPARAM(2)=SH11 */
-/* SPARAM(3)=SH21 */
-/* SPARAM(4)=SH12 */
-/* SPARAM(5)=SH22 */
-
-/* ===================================================================== */
-
-/* .. Local Scalars .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-/* .. Data statements .. */
-
- /* Parameter adjustments */
- --sparam;
-
- /* Function Body */
-/* .. */
- if (! (*sd1 < zero)) {
- goto L10;
- }
-/* GO ZERO-H-D-AND-SX1.. */
- goto L60;
-L10:
-/* CASE-SD1-NONNEGATIVE */
- sp2 = *sd2 * *sy1;
- if (! (sp2 == zero)) {
- goto L20;
- }
- sflag = -two;
- goto L260;
-/* REGULAR-CASE.. */
-L20:
- sp1 = *sd1 * *sx1;
- sq2 = sp2 * *sy1;
- sq1 = sp1 * *sx1;
-
- if (! (dabs(sq1) > dabs(sq2))) {
- goto L40;
- }
- sh21 = -(*sy1) / *sx1;
- sh12 = sp2 / sp1;
-
- su = one - sh12 * sh21;
-
- if (! (su <= zero)) {
- goto L30;
- }
-/* GO ZERO-H-D-AND-SX1.. */
- goto L60;
-L30:
- sflag = zero;
- *sd1 /= su;
- *sd2 /= su;
- *sx1 *= su;
-/* GO SCALE-CHECK.. */
- goto L100;
-L40:
- if (! (sq2 < zero)) {
- goto L50;
- }
-/* GO ZERO-H-D-AND-SX1.. */
- goto L60;
-L50:
- sflag = one;
- sh11 = sp1 / sp2;
- sh22 = *sx1 / *sy1;
- su = one + sh11 * sh22;
- stemp = *sd2 / su;
- *sd2 = *sd1 / su;
- *sd1 = stemp;
- *sx1 = *sy1 * su;
-/* GO SCALE-CHECK */
- goto L100;
-/* PROCEDURE..ZERO-H-D-AND-SX1.. */
-L60:
- sflag = -one;
- sh11 = zero;
- sh12 = zero;
- sh21 = zero;
- sh22 = zero;
-
- *sd1 = zero;
- *sd2 = zero;
- *sx1 = zero;
-/* RETURN.. */
- goto L220;
-/* PROCEDURE..FIX-H.. */
-L70:
- if (! (sflag >= zero)) {
- goto L90;
- }
-
- if (! (sflag == zero)) {
- goto L80;
- }
- sh11 = one;
- sh22 = one;
- sflag = -one;
- goto L90;
-L80:
- sh21 = -one;
- sh12 = one;
- sflag = -one;
-L90:
- switch (igo) {
- case 0: goto L120;
- case 1: goto L150;
- case 2: goto L180;
- case 3: goto L210;
- }
-/* PROCEDURE..SCALE-CHECK */
-L100:
-L110:
- if (! (*sd1 <= rgamsq)) {
- goto L130;
- }
- if (*sd1 == zero) {
- goto L160;
- }
- igo = 0;
- igo_fmt = fmt_120;
-/* FIX-H.. */
- goto L70;
-L120:
-/* Computing 2nd power */
- r__1 = gam;
- *sd1 *= r__1 * r__1;
- *sx1 /= gam;
- sh11 /= gam;
- sh12 /= gam;
- goto L110;
-L130:
-L140:
- if (! (*sd1 >= gamsq)) {
- goto L160;
- }
- igo = 1;
- igo_fmt = fmt_150;
-/* FIX-H.. */
- goto L70;
-L150:
-/* Computing 2nd power */
- r__1 = gam;
- *sd1 /= r__1 * r__1;
- *sx1 *= gam;
- sh11 *= gam;
- sh12 *= gam;
- goto L140;
-L160:
-L170:
- if (! (dabs(*sd2) <= rgamsq)) {
- goto L190;
- }
- if (*sd2 == zero) {
- goto L220;
- }
- igo = 2;
- igo_fmt = fmt_180;
-/* FIX-H.. */
- goto L70;
-L180:
-/* Computing 2nd power */
- r__1 = gam;
- *sd2 *= r__1 * r__1;
- sh21 /= gam;
- sh22 /= gam;
- goto L170;
-L190:
-L200:
- if (! (dabs(*sd2) >= gamsq)) {
- goto L220;
- }
- igo = 3;
- igo_fmt = fmt_210;
-/* FIX-H.. */
- goto L70;
-L210:
-/* Computing 2nd power */
- r__1 = gam;
- *sd2 /= r__1 * r__1;
- sh21 *= gam;
- sh22 *= gam;
- goto L200;
-L220:
- if (sflag < 0.f) {
- goto L250;
- } else if (sflag == 0) {
- goto L230;
- } else {
- goto L240;
- }
-L230:
- sparam[3] = sh21;
- sparam[4] = sh12;
- goto L260;
-L240:
- sparam[2] = sh11;
- sparam[5] = sh22;
- goto L260;
-L250:
- sparam[2] = sh11;
- sparam[3] = sh21;
- sparam[4] = sh12;
- sparam[5] = sh22;
-L260:
- sparam[1] = sflag;
- return 0;
-} /* srotmg_ */
-
diff --git a/eigen/blas/f2c/ssbmv.c b/eigen/blas/f2c/ssbmv.c
deleted file mode 100644
index 8599325..0000000
--- a/eigen/blas/f2c/ssbmv.c
+++ /dev/null
@@ -1,368 +0,0 @@
-/* ssbmv.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int ssbmv_(char *uplo, integer *n, integer *k, real *alpha,
- real *a, integer *lda, real *x, integer *incx, real *beta, real *y,
- integer *incy, ftnlen uplo_len)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
- real temp1, temp2;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- integer kplus1;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* SSBMV performs the matrix-vector operation */
-
-/* y := alpha*A*x + beta*y, */
-
-/* where alpha and beta are scalars, x and y are n element vectors and */
-/* A is an n by n symmetric band matrix, with k super-diagonals. */
-
-/* Arguments */
-/* ========== */
-
-/* UPLO - CHARACTER*1. */
-/* On entry, UPLO specifies whether the upper or lower */
-/* triangular part of the band matrix A is being supplied as */
-/* follows: */
-
-/* UPLO = 'U' or 'u' The upper triangular part of A is */
-/* being supplied. */
-
-/* UPLO = 'L' or 'l' The lower triangular part of A is */
-/* being supplied. */
-
-/* Unchanged on exit. */
-
-/* N - INTEGER. */
-/* On entry, N specifies the order of the matrix A. */
-/* N must be at least zero. */
-/* Unchanged on exit. */
-
-/* K - INTEGER. */
-/* On entry, K specifies the number of super-diagonals of the */
-/* matrix A. K must satisfy 0 .le. K. */
-/* Unchanged on exit. */
-
-/* ALPHA - REAL . */
-/* On entry, ALPHA specifies the scalar alpha. */
-/* Unchanged on exit. */
-
-/* A - REAL array of DIMENSION ( LDA, n ). */
-/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
-/* by n part of the array A must contain the upper triangular */
-/* band part of the symmetric matrix, supplied column by */
-/* column, with the leading diagonal of the matrix in row */
-/* ( k + 1 ) of the array, the first super-diagonal starting at */
-/* position 2 in row k, and so on. The top left k by k triangle */
-/* of the array A is not referenced. */
-/* The following program segment will transfer the upper */
-/* triangular part of a symmetric band matrix from conventional */
-/* full matrix storage to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = K + 1 - J */
-/* DO 10, I = MAX( 1, J - K ), J */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
-/* by n part of the array A must contain the lower triangular */
-/* band part of the symmetric matrix, supplied column by */
-/* column, with the leading diagonal of the matrix in row 1 of */
-/* the array, the first sub-diagonal starting at position 1 in */
-/* row 2, and so on. The bottom right k by k triangle of the */
-/* array A is not referenced. */
-/* The following program segment will transfer the lower */
-/* triangular part of a symmetric band matrix from conventional */
-/* full matrix storage to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = 1 - J */
-/* DO 10, I = J, MIN( N, J + K ) */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Unchanged on exit. */
-
-/* LDA - INTEGER. */
-/* On entry, LDA specifies the first dimension of A as declared */
-/* in the calling (sub) program. LDA must be at least */
-/* ( k + 1 ). */
-/* Unchanged on exit. */
-
-/* X - REAL array of DIMENSION at least */
-/* ( 1 + ( n - 1 )*abs( INCX ) ). */
-/* Before entry, the incremented array X must contain the */
-/* vector x. */
-/* Unchanged on exit. */
-
-/* INCX - INTEGER. */
-/* On entry, INCX specifies the increment for the elements of */
-/* X. INCX must not be zero. */
-/* Unchanged on exit. */
-
-/* BETA - REAL . */
-/* On entry, BETA specifies the scalar beta. */
-/* Unchanged on exit. */
-
-/* Y - REAL array of DIMENSION at least */
-/* ( 1 + ( n - 1 )*abs( INCY ) ). */
-/* Before entry, the incremented array Y must contain the */
-/* vector y. On exit, Y is overwritten by the updated vector y. */
-
-/* INCY - INTEGER. */
-/* On entry, INCY specifies the increment for the elements of */
-/* Y. INCY must not be zero. */
-/* Unchanged on exit. */
-
-/* Further Details */
-/* =============== */
-
-/* Level 2 Blas routine. */
-
-/* -- Written on 22-October-1986. */
-/* Jack Dongarra, Argonne National Lab. */
-/* Jeremy Du Croz, Nag Central Office. */
-/* Sven Hammarling, Nag Central Office. */
-/* Richard Hanson, Sandia National Labs. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-
-/* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --x;
- --y;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
- ftnlen)1, (ftnlen)1)) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*k < 0) {
- info = 3;
- } else if (*lda < *k + 1) {
- info = 6;
- } else if (*incx == 0) {
- info = 8;
- } else if (*incy == 0) {
- info = 11;
- }
- if (info != 0) {
- xerbla_("SSBMV ", &info, (ftnlen)6);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
- return 0;
- }
-
-/* Set up the start points in X and Y. */
-
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
-
-/* Start the operations. In this version the elements of the array A */
-/* are accessed sequentially with one pass through A. */
-
-/* First form y := beta*y. */
-
- if (*beta != 1.f) {
- if (*incy == 1) {
- if (*beta == 0.f) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = 0.f;
-/* L10: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = *beta * y[i__];
-/* L20: */
- }
- }
- } else {
- iy = ky;
- if (*beta == 0.f) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = 0.f;
- iy += *incy;
-/* L30: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = *beta * y[iy];
- iy += *incy;
-/* L40: */
- }
- }
- }
- }
- if (*alpha == 0.f) {
- return 0;
- }
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
-
-/* Form y when upper triangle of A is stored. */
-
- kplus1 = *k + 1;
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[j];
- temp2 = 0.f;
- l = kplus1 - j;
-/* Computing MAX */
- i__2 = 1, i__3 = j - *k;
- i__4 = j - 1;
- for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
- y[i__] += temp1 * a[l + i__ + j * a_dim1];
- temp2 += a[l + i__ + j * a_dim1] * x[i__];
-/* L50: */
- }
- y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
-/* L60: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[jx];
- temp2 = 0.f;
- ix = kx;
- iy = ky;
- l = kplus1 - j;
-/* Computing MAX */
- i__4 = 1, i__2 = j - *k;
- i__3 = j - 1;
- for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
- y[iy] += temp1 * a[l + i__ + j * a_dim1];
- temp2 += a[l + i__ + j * a_dim1] * x[ix];
- ix += *incx;
- iy += *incy;
-/* L70: */
- }
- y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha *
- temp2;
- jx += *incx;
- jy += *incy;
- if (j > *k) {
- kx += *incx;
- ky += *incy;
- }
-/* L80: */
- }
- }
- } else {
-
-/* Form y when lower triangle of A is stored. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[j];
- temp2 = 0.f;
- y[j] += temp1 * a[j * a_dim1 + 1];
- l = 1 - j;
-/* Computing MIN */
- i__4 = *n, i__2 = j + *k;
- i__3 = min(i__4,i__2);
- for (i__ = j + 1; i__ <= i__3; ++i__) {
- y[i__] += temp1 * a[l + i__ + j * a_dim1];
- temp2 += a[l + i__ + j * a_dim1] * x[i__];
-/* L90: */
- }
- y[j] += *alpha * temp2;
-/* L100: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[jx];
- temp2 = 0.f;
- y[jy] += temp1 * a[j * a_dim1 + 1];
- l = 1 - j;
- ix = jx;
- iy = jy;
-/* Computing MIN */
- i__4 = *n, i__2 = j + *k;
- i__3 = min(i__4,i__2);
- for (i__ = j + 1; i__ <= i__3; ++i__) {
- ix += *incx;
- iy += *incy;
- y[iy] += temp1 * a[l + i__ + j * a_dim1];
- temp2 += a[l + i__ + j * a_dim1] * x[ix];
-/* L110: */
- }
- y[jy] += *alpha * temp2;
- jx += *incx;
- jy += *incy;
-/* L120: */
- }
- }
- }
-
- return 0;
-
-/* End of SSBMV . */
-
-} /* ssbmv_ */
-
diff --git a/eigen/blas/f2c/sspmv.c b/eigen/blas/f2c/sspmv.c
deleted file mode 100644
index 47858ec..0000000
--- a/eigen/blas/f2c/sspmv.c
+++ /dev/null
@@ -1,316 +0,0 @@
-/* sspmv.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int sspmv_(char *uplo, integer *n, real *alpha, real *ap,
- real *x, integer *incx, real *beta, real *y, integer *incy, ftnlen
- uplo_len)
-{
- /* System generated locals */
- integer i__1, i__2;
-
- /* Local variables */
- integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
- real temp1, temp2;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* SSPMV performs the matrix-vector operation */
-
-/* y := alpha*A*x + beta*y, */
-
-/* where alpha and beta are scalars, x and y are n element vectors and */
-/* A is an n by n symmetric matrix, supplied in packed form. */
-
-/* Arguments */
-/* ========== */
-
-/* UPLO - CHARACTER*1. */
-/* On entry, UPLO specifies whether the upper or lower */
-/* triangular part of the matrix A is supplied in the packed */
-/* array AP as follows: */
-
-/* UPLO = 'U' or 'u' The upper triangular part of A is */
-/* supplied in AP. */
-
-/* UPLO = 'L' or 'l' The lower triangular part of A is */
-/* supplied in AP. */
-
-/* Unchanged on exit. */
-
-/* N - INTEGER. */
-/* On entry, N specifies the order of the matrix A. */
-/* N must be at least zero. */
-/* Unchanged on exit. */
-
-/* ALPHA - REAL . */
-/* On entry, ALPHA specifies the scalar alpha. */
-/* Unchanged on exit. */
-
-/* AP - REAL array of DIMENSION at least */
-/* ( ( n*( n + 1 ) )/2 ). */
-/* Before entry with UPLO = 'U' or 'u', the array AP must */
-/* contain the upper triangular part of the symmetric matrix */
-/* packed sequentially, column by column, so that AP( 1 ) */
-/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
-/* and a( 2, 2 ) respectively, and so on. */
-/* Before entry with UPLO = 'L' or 'l', the array AP must */
-/* contain the lower triangular part of the symmetric matrix */
-/* packed sequentially, column by column, so that AP( 1 ) */
-/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
-/* and a( 3, 1 ) respectively, and so on. */
-/* Unchanged on exit. */
-
-/* X - REAL array of dimension at least */
-/* ( 1 + ( n - 1 )*abs( INCX ) ). */
-/* Before entry, the incremented array X must contain the n */
-/* element vector x. */
-/* Unchanged on exit. */
-
-/* INCX - INTEGER. */
-/* On entry, INCX specifies the increment for the elements of */
-/* X. INCX must not be zero. */
-/* Unchanged on exit. */
-
-/* BETA - REAL . */
-/* On entry, BETA specifies the scalar beta. When BETA is */
-/* supplied as zero then Y need not be set on input. */
-/* Unchanged on exit. */
-
-/* Y - REAL array of dimension at least */
-/* ( 1 + ( n - 1 )*abs( INCY ) ). */
-/* Before entry, the incremented array Y must contain the n */
-/* element vector y. On exit, Y is overwritten by the updated */
-/* vector y. */
-
-/* INCY - INTEGER. */
-/* On entry, INCY specifies the increment for the elements of */
-/* Y. INCY must not be zero. */
-/* Unchanged on exit. */
-
-/* Further Details */
-/* =============== */
-
-/* Level 2 Blas routine. */
-
-/* -- Written on 22-October-1986. */
-/* Jack Dongarra, Argonne National Lab. */
-/* Jeremy Du Croz, Nag Central Office. */
-/* Sven Hammarling, Nag Central Office. */
-/* Richard Hanson, Sandia National Labs. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-
-/* Test the input parameters. */
-
- /* Parameter adjustments */
- --y;
- --x;
- --ap;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
- ftnlen)1, (ftnlen)1)) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*incx == 0) {
- info = 6;
- } else if (*incy == 0) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("SSPMV ", &info, (ftnlen)6);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
- return 0;
- }
-
-/* Set up the start points in X and Y. */
-
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
-
-/* Start the operations. In this version the elements of the array AP */
-/* are accessed sequentially with one pass through AP. */
-
-/* First form y := beta*y. */
-
- if (*beta != 1.f) {
- if (*incy == 1) {
- if (*beta == 0.f) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = 0.f;
-/* L10: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = *beta * y[i__];
-/* L20: */
- }
- }
- } else {
- iy = ky;
- if (*beta == 0.f) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = 0.f;
- iy += *incy;
-/* L30: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = *beta * y[iy];
- iy += *incy;
-/* L40: */
- }
- }
- }
- }
- if (*alpha == 0.f) {
- return 0;
- }
- kk = 1;
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
-
-/* Form y when AP contains the upper triangle. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[j];
- temp2 = 0.f;
- k = kk;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- y[i__] += temp1 * ap[k];
- temp2 += ap[k] * x[i__];
- ++k;
-/* L50: */
- }
- y[j] = y[j] + temp1 * ap[kk + j - 1] + *alpha * temp2;
- kk += j;
-/* L60: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[jx];
- temp2 = 0.f;
- ix = kx;
- iy = ky;
- i__2 = kk + j - 2;
- for (k = kk; k <= i__2; ++k) {
- y[iy] += temp1 * ap[k];
- temp2 += ap[k] * x[ix];
- ix += *incx;
- iy += *incy;
-/* L70: */
- }
- y[jy] = y[jy] + temp1 * ap[kk + j - 1] + *alpha * temp2;
- jx += *incx;
- jy += *incy;
- kk += j;
-/* L80: */
- }
- }
- } else {
-
-/* Form y when AP contains the lower triangle. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[j];
- temp2 = 0.f;
- y[j] += temp1 * ap[kk];
- k = kk + 1;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- y[i__] += temp1 * ap[k];
- temp2 += ap[k] * x[i__];
- ++k;
-/* L90: */
- }
- y[j] += *alpha * temp2;
- kk += *n - j + 1;
-/* L100: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * x[jx];
- temp2 = 0.f;
- y[jy] += temp1 * ap[kk];
- ix = jx;
- iy = jy;
- i__2 = kk + *n - j;
- for (k = kk + 1; k <= i__2; ++k) {
- ix += *incx;
- iy += *incy;
- y[iy] += temp1 * ap[k];
- temp2 += ap[k] * x[ix];
-/* L110: */
- }
- y[jy] += *alpha * temp2;
- jx += *incx;
- jy += *incy;
- kk += *n - j + 1;
-/* L120: */
- }
- }
- }
-
- return 0;
-
-/* End of SSPMV . */
-
-} /* sspmv_ */
-
diff --git a/eigen/blas/f2c/stbmv.c b/eigen/blas/f2c/stbmv.c
deleted file mode 100644
index fcf9ce3..0000000
--- a/eigen/blas/f2c/stbmv.c
+++ /dev/null
@@ -1,428 +0,0 @@
-/* stbmv.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int stbmv_(char *uplo, char *trans, char *diag, integer *n,
- integer *k, real *a, integer *lda, real *x, integer *incx, ftnlen
- uplo_len, ftnlen trans_len, ftnlen diag_len)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- integer i__, j, l, ix, jx, kx, info;
- real temp;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- integer kplus1;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- logical nounit;
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* STBMV performs one of the matrix-vector operations */
-
-/* x := A*x, or x := A'*x, */
-
-/* where x is an n element vector and A is an n by n unit, or non-unit, */
-/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
-
-/* Arguments */
-/* ========== */
-
-/* UPLO - CHARACTER*1. */
-/* On entry, UPLO specifies whether the matrix is an upper or */
-/* lower triangular matrix as follows: */
-
-/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
-
-/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
-
-/* Unchanged on exit. */
-
-/* TRANS - CHARACTER*1. */
-/* On entry, TRANS specifies the operation to be performed as */
-/* follows: */
-
-/* TRANS = 'N' or 'n' x := A*x. */
-
-/* TRANS = 'T' or 't' x := A'*x. */
-
-/* TRANS = 'C' or 'c' x := A'*x. */
-
-/* Unchanged on exit. */
-
-/* DIAG - CHARACTER*1. */
-/* On entry, DIAG specifies whether or not A is unit */
-/* triangular as follows: */
-
-/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
-
-/* DIAG = 'N' or 'n' A is not assumed to be unit */
-/* triangular. */
-
-/* Unchanged on exit. */
-
-/* N - INTEGER. */
-/* On entry, N specifies the order of the matrix A. */
-/* N must be at least zero. */
-/* Unchanged on exit. */
-
-/* K - INTEGER. */
-/* On entry with UPLO = 'U' or 'u', K specifies the number of */
-/* super-diagonals of the matrix A. */
-/* On entry with UPLO = 'L' or 'l', K specifies the number of */
-/* sub-diagonals of the matrix A. */
-/* K must satisfy 0 .le. K. */
-/* Unchanged on exit. */
-
-/* A - REAL array of DIMENSION ( LDA, n ). */
-/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
-/* by n part of the array A must contain the upper triangular */
-/* band part of the matrix of coefficients, supplied column by */
-/* column, with the leading diagonal of the matrix in row */
-/* ( k + 1 ) of the array, the first super-diagonal starting at */
-/* position 2 in row k, and so on. The top left k by k triangle */
-/* of the array A is not referenced. */
-/* The following program segment will transfer an upper */
-/* triangular band matrix from conventional full matrix storage */
-/* to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = K + 1 - J */
-/* DO 10, I = MAX( 1, J - K ), J */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
-/* by n part of the array A must contain the lower triangular */
-/* band part of the matrix of coefficients, supplied column by */
-/* column, with the leading diagonal of the matrix in row 1 of */
-/* the array, the first sub-diagonal starting at position 1 in */
-/* row 2, and so on. The bottom right k by k triangle of the */
-/* array A is not referenced. */
-/* The following program segment will transfer a lower */
-/* triangular band matrix from conventional full matrix storage */
-/* to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = 1 - J */
-/* DO 10, I = J, MIN( N, J + K ) */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Note that when DIAG = 'U' or 'u' the elements of the array A */
-/* corresponding to the diagonal elements of the matrix are not */
-/* referenced, but are assumed to be unity. */
-/* Unchanged on exit. */
-
-/* LDA - INTEGER. */
-/* On entry, LDA specifies the first dimension of A as declared */
-/* in the calling (sub) program. LDA must be at least */
-/* ( k + 1 ). */
-/* Unchanged on exit. */
-
-/* X - REAL array of dimension at least */
-/* ( 1 + ( n - 1 )*abs( INCX ) ). */
-/* Before entry, the incremented array X must contain the n */
-/* element vector x. On exit, X is overwritten with the */
-/* tranformed vector x. */
-
-/* INCX - INTEGER. */
-/* On entry, INCX specifies the increment for the elements of */
-/* X. INCX must not be zero. */
-/* Unchanged on exit. */
-
-/* Further Details */
-/* =============== */
-
-/* Level 2 Blas routine. */
-
-/* -- Written on 22-October-1986. */
-/* Jack Dongarra, Argonne National Lab. */
-/* Jeremy Du Croz, Nag Central Office. */
-/* Sven Hammarling, Nag Central Office. */
-/* Richard Hanson, Sandia National Labs. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-
-/* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --x;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
- ftnlen)1, (ftnlen)1)) {
- info = 1;
- } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
- "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
- ftnlen)1)) {
- info = 2;
- } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
- "N", (ftnlen)1, (ftnlen)1)) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*k < 0) {
- info = 5;
- } else if (*lda < *k + 1) {
- info = 7;
- } else if (*incx == 0) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("STBMV ", &info, (ftnlen)6);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
- nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
-
-/* Set up the start point in X if the increment is not unity. This */
-/* will be ( N - 1 )*INCX too small for descending loops. */
-
- if (*incx <= 0) {
- kx = 1 - (*n - 1) * *incx;
- } else if (*incx != 1) {
- kx = 1;
- }
-
-/* Start the operations. In this version the elements of A are */
-/* accessed sequentially with one pass through A. */
-
- if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
-
-/* Form x := A*x. */
-
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
- kplus1 = *k + 1;
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[j] != 0.f) {
- temp = x[j];
- l = kplus1 - j;
-/* Computing MAX */
- i__2 = 1, i__3 = j - *k;
- i__4 = j - 1;
- for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
- x[i__] += temp * a[l + i__ + j * a_dim1];
-/* L10: */
- }
- if (nounit) {
- x[j] *= a[kplus1 + j * a_dim1];
- }
- }
-/* L20: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[jx] != 0.f) {
- temp = x[jx];
- ix = kx;
- l = kplus1 - j;
-/* Computing MAX */
- i__4 = 1, i__2 = j - *k;
- i__3 = j - 1;
- for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
- x[ix] += temp * a[l + i__ + j * a_dim1];
- ix += *incx;
-/* L30: */
- }
- if (nounit) {
- x[jx] *= a[kplus1 + j * a_dim1];
- }
- }
- jx += *incx;
- if (j > *k) {
- kx += *incx;
- }
-/* L40: */
- }
- }
- } else {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- if (x[j] != 0.f) {
- temp = x[j];
- l = 1 - j;
-/* Computing MIN */
- i__1 = *n, i__3 = j + *k;
- i__4 = j + 1;
- for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
- x[i__] += temp * a[l + i__ + j * a_dim1];
-/* L50: */
- }
- if (nounit) {
- x[j] *= a[j * a_dim1 + 1];
- }
- }
-/* L60: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- if (x[jx] != 0.f) {
- temp = x[jx];
- ix = kx;
- l = 1 - j;
-/* Computing MIN */
- i__4 = *n, i__1 = j + *k;
- i__3 = j + 1;
- for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
- x[ix] += temp * a[l + i__ + j * a_dim1];
- ix -= *incx;
-/* L70: */
- }
- if (nounit) {
- x[jx] *= a[j * a_dim1 + 1];
- }
- }
- jx -= *incx;
- if (*n - j >= *k) {
- kx -= *incx;
- }
-/* L80: */
- }
- }
- }
- } else {
-
-/* Form x := A'*x. */
-
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
- kplus1 = *k + 1;
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- temp = x[j];
- l = kplus1 - j;
- if (nounit) {
- temp *= a[kplus1 + j * a_dim1];
- }
-/* Computing MAX */
- i__4 = 1, i__1 = j - *k;
- i__3 = max(i__4,i__1);
- for (i__ = j - 1; i__ >= i__3; --i__) {
- temp += a[l + i__ + j * a_dim1] * x[i__];
-/* L90: */
- }
- x[j] = temp;
-/* L100: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- temp = x[jx];
- kx -= *incx;
- ix = kx;
- l = kplus1 - j;
- if (nounit) {
- temp *= a[kplus1 + j * a_dim1];
- }
-/* Computing MAX */
- i__4 = 1, i__1 = j - *k;
- i__3 = max(i__4,i__1);
- for (i__ = j - 1; i__ >= i__3; --i__) {
- temp += a[l + i__ + j * a_dim1] * x[ix];
- ix -= *incx;
-/* L110: */
- }
- x[jx] = temp;
- jx -= *incx;
-/* L120: */
- }
- }
- } else {
- if (*incx == 1) {
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- temp = x[j];
- l = 1 - j;
- if (nounit) {
- temp *= a[j * a_dim1 + 1];
- }
-/* Computing MIN */
- i__1 = *n, i__2 = j + *k;
- i__4 = min(i__1,i__2);
- for (i__ = j + 1; i__ <= i__4; ++i__) {
- temp += a[l + i__ + j * a_dim1] * x[i__];
-/* L130: */
- }
- x[j] = temp;
-/* L140: */
- }
- } else {
- jx = kx;
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- temp = x[jx];
- kx += *incx;
- ix = kx;
- l = 1 - j;
- if (nounit) {
- temp *= a[j * a_dim1 + 1];
- }
-/* Computing MIN */
- i__1 = *n, i__2 = j + *k;
- i__4 = min(i__1,i__2);
- for (i__ = j + 1; i__ <= i__4; ++i__) {
- temp += a[l + i__ + j * a_dim1] * x[ix];
- ix += *incx;
-/* L150: */
- }
- x[jx] = temp;
- jx += *incx;
-/* L160: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of STBMV . */
-
-} /* stbmv_ */
-
diff --git a/eigen/blas/f2c/zhbmv.c b/eigen/blas/f2c/zhbmv.c
deleted file mode 100644
index 42da13d..0000000
--- a/eigen/blas/f2c/zhbmv.c
+++ /dev/null
@@ -1,488 +0,0 @@
-/* zhbmv.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int zhbmv_(char *uplo, integer *n, integer *k, doublecomplex
- *alpha, doublecomplex *a, integer *lda, doublecomplex *x, integer *
- incx, doublecomplex *beta, doublecomplex *y, integer *incy, ftnlen
- uplo_len)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
- doublecomplex temp1, temp2;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- integer kplus1;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* ZHBMV performs the matrix-vector operation */
-
-/* y := alpha*A*x + beta*y, */
-
-/* where alpha and beta are scalars, x and y are n element vectors and */
-/* A is an n by n hermitian band matrix, with k super-diagonals. */
-
-/* Arguments */
-/* ========== */
-
-/* UPLO - CHARACTER*1. */
-/* On entry, UPLO specifies whether the upper or lower */
-/* triangular part of the band matrix A is being supplied as */
-/* follows: */
-
-/* UPLO = 'U' or 'u' The upper triangular part of A is */
-/* being supplied. */
-
-/* UPLO = 'L' or 'l' The lower triangular part of A is */
-/* being supplied. */
-
-/* Unchanged on exit. */
-
-/* N - INTEGER. */
-/* On entry, N specifies the order of the matrix A. */
-/* N must be at least zero. */
-/* Unchanged on exit. */
-
-/* K - INTEGER. */
-/* On entry, K specifies the number of super-diagonals of the */
-/* matrix A. K must satisfy 0 .le. K. */
-/* Unchanged on exit. */
-
-/* ALPHA - COMPLEX*16 . */
-/* On entry, ALPHA specifies the scalar alpha. */
-/* Unchanged on exit. */
-
-/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
-/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
-/* by n part of the array A must contain the upper triangular */
-/* band part of the hermitian matrix, supplied column by */
-/* column, with the leading diagonal of the matrix in row */
-/* ( k + 1 ) of the array, the first super-diagonal starting at */
-/* position 2 in row k, and so on. The top left k by k triangle */
-/* of the array A is not referenced. */
-/* The following program segment will transfer the upper */
-/* triangular part of a hermitian band matrix from conventional */
-/* full matrix storage to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = K + 1 - J */
-/* DO 10, I = MAX( 1, J - K ), J */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
-/* by n part of the array A must contain the lower triangular */
-/* band part of the hermitian matrix, supplied column by */
-/* column, with the leading diagonal of the matrix in row 1 of */
-/* the array, the first sub-diagonal starting at position 1 in */
-/* row 2, and so on. The bottom right k by k triangle of the */
-/* array A is not referenced. */
-/* The following program segment will transfer the lower */
-/* triangular part of a hermitian band matrix from conventional */
-/* full matrix storage to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = 1 - J */
-/* DO 10, I = J, MIN( N, J + K ) */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Note that the imaginary parts of the diagonal elements need */
-/* not be set and are assumed to be zero. */
-/* Unchanged on exit. */
-
-/* LDA - INTEGER. */
-/* On entry, LDA specifies the first dimension of A as declared */
-/* in the calling (sub) program. LDA must be at least */
-/* ( k + 1 ). */
-/* Unchanged on exit. */
-
-/* X - COMPLEX*16 array of DIMENSION at least */
-/* ( 1 + ( n - 1 )*abs( INCX ) ). */
-/* Before entry, the incremented array X must contain the */
-/* vector x. */
-/* Unchanged on exit. */
-
-/* INCX - INTEGER. */
-/* On entry, INCX specifies the increment for the elements of */
-/* X. INCX must not be zero. */
-/* Unchanged on exit. */
-
-/* BETA - COMPLEX*16 . */
-/* On entry, BETA specifies the scalar beta. */
-/* Unchanged on exit. */
-
-/* Y - COMPLEX*16 array of DIMENSION at least */
-/* ( 1 + ( n - 1 )*abs( INCY ) ). */
-/* Before entry, the incremented array Y must contain the */
-/* vector y. On exit, Y is overwritten by the updated vector y. */
-
-/* INCY - INTEGER. */
-/* On entry, INCY specifies the increment for the elements of */
-/* Y. INCY must not be zero. */
-/* Unchanged on exit. */
-
-/* Further Details */
-/* =============== */
-
-/* Level 2 Blas routine. */
-
-/* -- Written on 22-October-1986. */
-/* Jack Dongarra, Argonne National Lab. */
-/* Jeremy Du Croz, Nag Central Office. */
-/* Sven Hammarling, Nag Central Office. */
-/* Richard Hanson, Sandia National Labs. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-
-/* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --x;
- --y;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
- ftnlen)1, (ftnlen)1)) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*k < 0) {
- info = 3;
- } else if (*lda < *k + 1) {
- info = 6;
- } else if (*incx == 0) {
- info = 8;
- } else if (*incy == 0) {
- info = 11;
- }
- if (info != 0) {
- xerbla_("ZHBMV ", &info, (ftnlen)6);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
- beta->i == 0.))) {
- return 0;
- }
-
-/* Set up the start points in X and Y. */
-
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
-
-/* Start the operations. In this version the elements of the array A */
-/* are accessed sequentially with one pass through A. */
-
-/* First form y := beta*y. */
-
- if (beta->r != 1. || beta->i != 0.) {
- if (*incy == 1) {
- if (beta->r == 0. && beta->i == 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- y[i__2].r = 0., y[i__2].i = 0.;
-/* L10: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
-/* L20: */
- }
- }
- } else {
- iy = ky;
- if (beta->r == 0. && beta->i == 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- y[i__2].r = 0., y[i__2].i = 0.;
- iy += *incy;
-/* L30: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- i__3 = iy;
- z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- iy += *incy;
-/* L40: */
- }
- }
- }
- }
- if (alpha->r == 0. && alpha->i == 0.) {
- return 0;
- }
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
-
-/* Form y when upper triangle of A is stored. */
-
- kplus1 = *k + 1;
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- l = kplus1 - j;
-/* Computing MAX */
- i__2 = 1, i__3 = j - *k;
- i__4 = j - 1;
- for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
- i__2 = i__;
- i__3 = i__;
- i__5 = l + i__ + j * a_dim1;
- z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
- .r;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
- i__2 = i__;
- z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, z__2.i =
- z__3.r * x[i__2].i + z__3.i * x[i__2].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
-/* L50: */
- }
- i__4 = j;
- i__2 = j;
- i__3 = kplus1 + j * a_dim1;
- d__1 = a[i__3].r;
- z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
- z__2.r = y[i__2].r + z__3.r, z__2.i = y[i__2].i + z__3.i;
- z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- y[i__4].r = z__1.r, y[i__4].i = z__1.i;
-/* L60: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__4 = jx;
- z__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, z__1.i =
- alpha->r * x[i__4].i + alpha->i * x[i__4].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- ix = kx;
- iy = ky;
- l = kplus1 - j;
-/* Computing MAX */
- i__4 = 1, i__2 = j - *k;
- i__3 = j - 1;
- for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
- i__4 = iy;
- i__2 = iy;
- i__5 = l + i__ + j * a_dim1;
- z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
- .r;
- z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
- y[i__4].r = z__1.r, y[i__4].i = z__1.i;
- d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
- i__4 = ix;
- z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
- z__3.r * x[i__4].i + z__3.i * x[i__4].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
- ix += *incx;
- iy += *incy;
-/* L70: */
- }
- i__3 = jy;
- i__4 = jy;
- i__2 = kplus1 + j * a_dim1;
- d__1 = a[i__2].r;
- z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
- z__2.r = y[i__4].r + z__3.r, z__2.i = y[i__4].i + z__3.i;
- z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- jx += *incx;
- jy += *incy;
- if (j > *k) {
- kx += *incx;
- ky += *incy;
- }
-/* L80: */
- }
- }
- } else {
-
-/* Form y when lower triangle of A is stored. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__3 = j;
- z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
- alpha->r * x[i__3].i + alpha->i * x[i__3].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- i__3 = j;
- i__4 = j;
- i__2 = j * a_dim1 + 1;
- d__1 = a[i__2].r;
- z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- l = 1 - j;
-/* Computing MIN */
- i__4 = *n, i__2 = j + *k;
- i__3 = min(i__4,i__2);
- for (i__ = j + 1; i__ <= i__3; ++i__) {
- i__4 = i__;
- i__2 = i__;
- i__5 = l + i__ + j * a_dim1;
- z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
- .r;
- z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
- y[i__4].r = z__1.r, y[i__4].i = z__1.i;
- d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
- i__4 = i__;
- z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
- z__3.r * x[i__4].i + z__3.i * x[i__4].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
-/* L90: */
- }
- i__3 = j;
- i__4 = j;
- z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
-/* L100: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__3 = jx;
- z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
- alpha->r * x[i__3].i + alpha->i * x[i__3].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- i__3 = jy;
- i__4 = jy;
- i__2 = j * a_dim1 + 1;
- d__1 = a[i__2].r;
- z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- l = 1 - j;
- ix = jx;
- iy = jy;
-/* Computing MIN */
- i__4 = *n, i__2 = j + *k;
- i__3 = min(i__4,i__2);
- for (i__ = j + 1; i__ <= i__3; ++i__) {
- ix += *incx;
- iy += *incy;
- i__4 = iy;
- i__2 = iy;
- i__5 = l + i__ + j * a_dim1;
- z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
- .r;
- z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
- y[i__4].r = z__1.r, y[i__4].i = z__1.i;
- d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
- i__4 = ix;
- z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
- z__3.r * x[i__4].i + z__3.i * x[i__4].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
-/* L110: */
- }
- i__3 = jy;
- i__4 = jy;
- z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- jx += *incx;
- jy += *incy;
-/* L120: */
- }
- }
- }
-
- return 0;
-
-/* End of ZHBMV . */
-
-} /* zhbmv_ */
-
diff --git a/eigen/blas/f2c/zhpmv.c b/eigen/blas/f2c/zhpmv.c
deleted file mode 100644
index fbe2f42..0000000
--- a/eigen/blas/f2c/zhpmv.c
+++ /dev/null
@@ -1,438 +0,0 @@
-/* zhpmv.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int zhpmv_(char *uplo, integer *n, doublecomplex *alpha,
- doublecomplex *ap, doublecomplex *x, integer *incx, doublecomplex *
- beta, doublecomplex *y, integer *incy, ftnlen uplo_len)
-{
- /* System generated locals */
- integer i__1, i__2, i__3, i__4, i__5;
- doublereal d__1;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
- doublecomplex temp1, temp2;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* ZHPMV performs the matrix-vector operation */
-
-/* y := alpha*A*x + beta*y, */
-
-/* where alpha and beta are scalars, x and y are n element vectors and */
-/* A is an n by n hermitian matrix, supplied in packed form. */
-
-/* Arguments */
-/* ========== */
-
-/* UPLO - CHARACTER*1. */
-/* On entry, UPLO specifies whether the upper or lower */
-/* triangular part of the matrix A is supplied in the packed */
-/* array AP as follows: */
-
-/* UPLO = 'U' or 'u' The upper triangular part of A is */
-/* supplied in AP. */
-
-/* UPLO = 'L' or 'l' The lower triangular part of A is */
-/* supplied in AP. */
-
-/* Unchanged on exit. */
-
-/* N - INTEGER. */
-/* On entry, N specifies the order of the matrix A. */
-/* N must be at least zero. */
-/* Unchanged on exit. */
-
-/* ALPHA - COMPLEX*16 . */
-/* On entry, ALPHA specifies the scalar alpha. */
-/* Unchanged on exit. */
-
-/* AP - COMPLEX*16 array of DIMENSION at least */
-/* ( ( n*( n + 1 ) )/2 ). */
-/* Before entry with UPLO = 'U' or 'u', the array AP must */
-/* contain the upper triangular part of the hermitian matrix */
-/* packed sequentially, column by column, so that AP( 1 ) */
-/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
-/* and a( 2, 2 ) respectively, and so on. */
-/* Before entry with UPLO = 'L' or 'l', the array AP must */
-/* contain the lower triangular part of the hermitian matrix */
-/* packed sequentially, column by column, so that AP( 1 ) */
-/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
-/* and a( 3, 1 ) respectively, and so on. */
-/* Note that the imaginary parts of the diagonal elements need */
-/* not be set and are assumed to be zero. */
-/* Unchanged on exit. */
-
-/* X - COMPLEX*16 array of dimension at least */
-/* ( 1 + ( n - 1 )*abs( INCX ) ). */
-/* Before entry, the incremented array X must contain the n */
-/* element vector x. */
-/* Unchanged on exit. */
-
-/* INCX - INTEGER. */
-/* On entry, INCX specifies the increment for the elements of */
-/* X. INCX must not be zero. */
-/* Unchanged on exit. */
-
-/* BETA - COMPLEX*16 . */
-/* On entry, BETA specifies the scalar beta. When BETA is */
-/* supplied as zero then Y need not be set on input. */
-/* Unchanged on exit. */
-
-/* Y - COMPLEX*16 array of dimension at least */
-/* ( 1 + ( n - 1 )*abs( INCY ) ). */
-/* Before entry, the incremented array Y must contain the n */
-/* element vector y. On exit, Y is overwritten by the updated */
-/* vector y. */
-
-/* INCY - INTEGER. */
-/* On entry, INCY specifies the increment for the elements of */
-/* Y. INCY must not be zero. */
-/* Unchanged on exit. */
-
-/* Further Details */
-/* =============== */
-
-/* Level 2 Blas routine. */
-
-/* -- Written on 22-October-1986. */
-/* Jack Dongarra, Argonne National Lab. */
-/* Jeremy Du Croz, Nag Central Office. */
-/* Sven Hammarling, Nag Central Office. */
-/* Richard Hanson, Sandia National Labs. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-
-/* Test the input parameters. */
-
- /* Parameter adjustments */
- --y;
- --x;
- --ap;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
- ftnlen)1, (ftnlen)1)) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*incx == 0) {
- info = 6;
- } else if (*incy == 0) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("ZHPMV ", &info, (ftnlen)6);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
- beta->i == 0.))) {
- return 0;
- }
-
-/* Set up the start points in X and Y. */
-
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (*n - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (*n - 1) * *incy;
- }
-
-/* Start the operations. In this version the elements of the array AP */
-/* are accessed sequentially with one pass through AP. */
-
-/* First form y := beta*y. */
-
- if (beta->r != 1. || beta->i != 0.) {
- if (*incy == 1) {
- if (beta->r == 0. && beta->i == 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- y[i__2].r = 0., y[i__2].i = 0.;
-/* L10: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__;
- i__3 = i__;
- z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
-/* L20: */
- }
- }
- } else {
- iy = ky;
- if (beta->r == 0. && beta->i == 0.) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- y[i__2].r = 0., y[i__2].i = 0.;
- iy += *incy;
-/* L30: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = iy;
- i__3 = iy;
- z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
- z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
- .r;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- iy += *incy;
-/* L40: */
- }
- }
- }
- }
- if (alpha->r == 0. && alpha->i == 0.) {
- return 0;
- }
- kk = 1;
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
-
-/* Form y when AP contains the upper triangle. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- k = kk;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__;
- i__4 = i__;
- i__5 = k;
- z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
- z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- d_cnjg(&z__3, &ap[k]);
- i__3 = i__;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
- z__3.r * x[i__3].i + z__3.i * x[i__3].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
- ++k;
-/* L50: */
- }
- i__2 = j;
- i__3 = j;
- i__4 = kk + j - 1;
- d__1 = ap[i__4].r;
- z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
- z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
- z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- kk += j;
-/* L60: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- ix = kx;
- iy = ky;
- i__2 = kk + j - 2;
- for (k = kk; k <= i__2; ++k) {
- i__3 = iy;
- i__4 = iy;
- i__5 = k;
- z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
- z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- d_cnjg(&z__3, &ap[k]);
- i__3 = ix;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
- z__3.r * x[i__3].i + z__3.i * x[i__3].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
- ix += *incx;
- iy += *incy;
-/* L70: */
- }
- i__2 = jy;
- i__3 = jy;
- i__4 = kk + j - 1;
- d__1 = ap[i__4].r;
- z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
- z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
- z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- jx += *incx;
- jy += *incy;
- kk += j;
-/* L80: */
- }
- }
- } else {
-
-/* Form y when AP contains the lower triangle. */
-
- if (*incx == 1 && *incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- i__2 = j;
- i__3 = j;
- i__4 = kk;
- d__1 = ap[i__4].r;
- z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- k = kk + 1;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__;
- i__4 = i__;
- i__5 = k;
- z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
- z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- d_cnjg(&z__3, &ap[k]);
- i__3 = i__;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
- z__3.r * x[i__3].i + z__3.i * x[i__3].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
- ++k;
-/* L90: */
- }
- i__2 = j;
- i__3 = j;
- z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- kk += *n - j + 1;
-/* L100: */
- }
- } else {
- jx = kx;
- jy = ky;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
- alpha->r * x[i__2].i + alpha->i * x[i__2].r;
- temp1.r = z__1.r, temp1.i = z__1.i;
- temp2.r = 0., temp2.i = 0.;
- i__2 = jy;
- i__3 = jy;
- i__4 = kk;
- d__1 = ap[i__4].r;
- z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- ix = jx;
- iy = jy;
- i__2 = kk + *n - j;
- for (k = kk + 1; k <= i__2; ++k) {
- ix += *incx;
- iy += *incy;
- i__3 = iy;
- i__4 = iy;
- i__5 = k;
- z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
- z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
- .r;
- z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
- y[i__3].r = z__1.r, y[i__3].i = z__1.i;
- d_cnjg(&z__3, &ap[k]);
- i__3 = ix;
- z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
- z__3.r * x[i__3].i + z__3.i * x[i__3].r;
- z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
- temp2.r = z__1.r, temp2.i = z__1.i;
-/* L110: */
- }
- i__2 = jy;
- i__3 = jy;
- z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
- alpha->r * temp2.i + alpha->i * temp2.r;
- z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
- y[i__2].r = z__1.r, y[i__2].i = z__1.i;
- jx += *incx;
- jy += *incy;
- kk += *n - j + 1;
-/* L120: */
- }
- }
- }
-
- return 0;
-
-/* End of ZHPMV . */
-
-} /* zhpmv_ */
-
diff --git a/eigen/blas/f2c/ztbmv.c b/eigen/blas/f2c/ztbmv.c
deleted file mode 100644
index 4cdcd7f..0000000
--- a/eigen/blas/f2c/ztbmv.c
+++ /dev/null
@@ -1,647 +0,0 @@
-/* ztbmv.f -- translated by f2c (version 20100827).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
-
- http://www.netlib.org/f2c/libf2c.zip
-*/
-
-#include "datatypes.h"
-
-/* Subroutine */ int ztbmv_(char *uplo, char *trans, char *diag, integer *n,
- integer *k, doublecomplex *a, integer *lda, doublecomplex *x, integer
- *incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
-{
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublecomplex z__1, z__2, z__3;
-
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
-
- /* Local variables */
- integer i__, j, l, ix, jx, kx, info;
- doublecomplex temp;
- extern logical lsame_(char *, char *, ftnlen, ftnlen);
- integer kplus1;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- logical noconj, nounit;
-
-/* .. Scalar Arguments .. */
-/* .. */
-/* .. Array Arguments .. */
-/* .. */
-
-/* Purpose */
-/* ======= */
-
-/* ZTBMV performs one of the matrix-vector operations */
-
-/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
-
-/* where x is an n element vector and A is an n by n unit, or non-unit, */
-/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
-
-/* Arguments */
-/* ========== */
-
-/* UPLO - CHARACTER*1. */
-/* On entry, UPLO specifies whether the matrix is an upper or */
-/* lower triangular matrix as follows: */
-
-/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
-
-/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
-
-/* Unchanged on exit. */
-
-/* TRANS - CHARACTER*1. */
-/* On entry, TRANS specifies the operation to be performed as */
-/* follows: */
-
-/* TRANS = 'N' or 'n' x := A*x. */
-
-/* TRANS = 'T' or 't' x := A'*x. */
-
-/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
-
-/* Unchanged on exit. */
-
-/* DIAG - CHARACTER*1. */
-/* On entry, DIAG specifies whether or not A is unit */
-/* triangular as follows: */
-
-/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
-
-/* DIAG = 'N' or 'n' A is not assumed to be unit */
-/* triangular. */
-
-/* Unchanged on exit. */
-
-/* N - INTEGER. */
-/* On entry, N specifies the order of the matrix A. */
-/* N must be at least zero. */
-/* Unchanged on exit. */
-
-/* K - INTEGER. */
-/* On entry with UPLO = 'U' or 'u', K specifies the number of */
-/* super-diagonals of the matrix A. */
-/* On entry with UPLO = 'L' or 'l', K specifies the number of */
-/* sub-diagonals of the matrix A. */
-/* K must satisfy 0 .le. K. */
-/* Unchanged on exit. */
-
-/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
-/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
-/* by n part of the array A must contain the upper triangular */
-/* band part of the matrix of coefficients, supplied column by */
-/* column, with the leading diagonal of the matrix in row */
-/* ( k + 1 ) of the array, the first super-diagonal starting at */
-/* position 2 in row k, and so on. The top left k by k triangle */
-/* of the array A is not referenced. */
-/* The following program segment will transfer an upper */
-/* triangular band matrix from conventional full matrix storage */
-/* to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = K + 1 - J */
-/* DO 10, I = MAX( 1, J - K ), J */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
-/* by n part of the array A must contain the lower triangular */
-/* band part of the matrix of coefficients, supplied column by */
-/* column, with the leading diagonal of the matrix in row 1 of */
-/* the array, the first sub-diagonal starting at position 1 in */
-/* row 2, and so on. The bottom right k by k triangle of the */
-/* array A is not referenced. */
-/* The following program segment will transfer a lower */
-/* triangular band matrix from conventional full matrix storage */
-/* to band storage: */
-
-/* DO 20, J = 1, N */
-/* M = 1 - J */
-/* DO 10, I = J, MIN( N, J + K ) */
-/* A( M + I, J ) = matrix( I, J ) */
-/* 10 CONTINUE */
-/* 20 CONTINUE */
-
-/* Note that when DIAG = 'U' or 'u' the elements of the array A */
-/* corresponding to the diagonal elements of the matrix are not */
-/* referenced, but are assumed to be unity. */
-/* Unchanged on exit. */
-
-/* LDA - INTEGER. */
-/* On entry, LDA specifies the first dimension of A as declared */
-/* in the calling (sub) program. LDA must be at least */
-/* ( k + 1 ). */
-/* Unchanged on exit. */
-
-/* X - COMPLEX*16 array of dimension at least */
-/* ( 1 + ( n - 1 )*abs( INCX ) ). */
-/* Before entry, the incremented array X must contain the n */
-/* element vector x. On exit, X is overwritten with the */
-/* tranformed vector x. */
-
-/* INCX - INTEGER. */
-/* On entry, INCX specifies the increment for the elements of */
-/* X. INCX must not be zero. */
-/* Unchanged on exit. */
-
-/* Further Details */
-/* =============== */
-
-/* Level 2 Blas routine. */
-
-/* -- Written on 22-October-1986. */
-/* Jack Dongarra, Argonne National Lab. */
-/* Jeremy Du Croz, Nag Central Office. */
-/* Sven Hammarling, Nag Central Office. */
-/* Richard Hanson, Sandia National Labs. */
-
-/* ===================================================================== */
-
-/* .. Parameters .. */
-/* .. */
-/* .. Local Scalars .. */
-/* .. */
-/* .. External Functions .. */
-/* .. */
-/* .. External Subroutines .. */
-/* .. */
-/* .. Intrinsic Functions .. */
-/* .. */
-
-/* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --x;
-
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
- ftnlen)1, (ftnlen)1)) {
- info = 1;
- } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
- "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
- ftnlen)1)) {
- info = 2;
- } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
- "N", (ftnlen)1, (ftnlen)1)) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*k < 0) {
- info = 5;
- } else if (*lda < *k + 1) {
- info = 7;
- } else if (*incx == 0) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("ZTBMV ", &info, (ftnlen)6);
- return 0;
- }
-
-/* Quick return if possible. */
-
- if (*n == 0) {
- return 0;
- }
-
- noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
- nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
-
-/* Set up the start point in X if the increment is not unity. This */
-/* will be ( N - 1 )*INCX too small for descending loops. */
-
- if (*incx <= 0) {
- kx = 1 - (*n - 1) * *incx;
- } else if (*incx != 1) {
- kx = 1;
- }
-
-/* Start the operations. In this version the elements of A are */
-/* accessed sequentially with one pass through A. */
-
- if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
-
-/* Form x := A*x. */
-
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
- kplus1 = *k + 1;
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- i__2 = j;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- l = kplus1 - j;
-/* Computing MAX */
- i__2 = 1, i__3 = j - *k;
- i__4 = j - 1;
- for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
- i__2 = i__;
- i__3 = i__;
- i__5 = l + i__ + j * a_dim1;
- z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- z__2.i = temp.r * a[i__5].i + temp.i * a[
- i__5].r;
- z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
- z__2.i;
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
-/* L10: */
- }
- if (nounit) {
- i__4 = j;
- i__2 = j;
- i__3 = kplus1 + j * a_dim1;
- z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
- i__3].i, z__1.i = x[i__2].r * a[i__3].i +
- x[i__2].i * a[i__3].r;
- x[i__4].r = z__1.r, x[i__4].i = z__1.i;
- }
- }
-/* L20: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__4 = jx;
- if (x[i__4].r != 0. || x[i__4].i != 0.) {
- i__4 = jx;
- temp.r = x[i__4].r, temp.i = x[i__4].i;
- ix = kx;
- l = kplus1 - j;
-/* Computing MAX */
- i__4 = 1, i__2 = j - *k;
- i__3 = j - 1;
- for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
- i__4 = ix;
- i__2 = ix;
- i__5 = l + i__ + j * a_dim1;
- z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- z__2.i = temp.r * a[i__5].i + temp.i * a[
- i__5].r;
- z__1.r = x[i__2].r + z__2.r, z__1.i = x[i__2].i +
- z__2.i;
- x[i__4].r = z__1.r, x[i__4].i = z__1.i;
- ix += *incx;
-/* L30: */
- }
- if (nounit) {
- i__3 = jx;
- i__4 = jx;
- i__2 = kplus1 + j * a_dim1;
- z__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
- i__2].i, z__1.i = x[i__4].r * a[i__2].i +
- x[i__4].i * a[i__2].r;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- }
- }
- jx += *incx;
- if (j > *k) {
- kx += *incx;
- }
-/* L40: */
- }
- }
- } else {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- i__1 = j;
- if (x[i__1].r != 0. || x[i__1].i != 0.) {
- i__1 = j;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- l = 1 - j;
-/* Computing MIN */
- i__1 = *n, i__3 = j + *k;
- i__4 = j + 1;
- for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
- i__1 = i__;
- i__3 = i__;
- i__2 = l + i__ + j * a_dim1;
- z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
- z__2.i = temp.r * a[i__2].i + temp.i * a[
- i__2].r;
- z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
- z__2.i;
- x[i__1].r = z__1.r, x[i__1].i = z__1.i;
-/* L50: */
- }
- if (nounit) {
- i__4 = j;
- i__1 = j;
- i__3 = j * a_dim1 + 1;
- z__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
- i__3].i, z__1.i = x[i__1].r * a[i__3].i +
- x[i__1].i * a[i__3].r;
- x[i__4].r = z__1.r, x[i__4].i = z__1.i;
- }
- }
-/* L60: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- i__4 = jx;
- if (x[i__4].r != 0. || x[i__4].i != 0.) {
- i__4 = jx;
- temp.r = x[i__4].r, temp.i = x[i__4].i;
- ix = kx;
- l = 1 - j;
-/* Computing MIN */
- i__4 = *n, i__1 = j + *k;
- i__3 = j + 1;
- for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
- i__4 = ix;
- i__1 = ix;
- i__2 = l + i__ + j * a_dim1;
- z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
- z__2.i = temp.r * a[i__2].i + temp.i * a[
- i__2].r;
- z__1.r = x[i__1].r + z__2.r, z__1.i = x[i__1].i +
- z__2.i;
- x[i__4].r = z__1.r, x[i__4].i = z__1.i;
- ix -= *incx;
-/* L70: */
- }
- if (nounit) {
- i__3 = jx;
- i__4 = jx;
- i__1 = j * a_dim1 + 1;
- z__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
- i__1].i, z__1.i = x[i__4].r * a[i__1].i +
- x[i__4].i * a[i__1].r;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- }
- }
- jx -= *incx;
- if (*n - j >= *k) {
- kx -= *incx;
- }
-/* L80: */
- }
- }
- }
- } else {
-
-/* Form x := A'*x or x := conjg( A' )*x. */
-
- if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
- kplus1 = *k + 1;
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- i__3 = j;
- temp.r = x[i__3].r, temp.i = x[i__3].i;
- l = kplus1 - j;
- if (noconj) {
- if (nounit) {
- i__3 = kplus1 + j * a_dim1;
- z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
- z__1.i = temp.r * a[i__3].i + temp.i * a[
- i__3].r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
-/* Computing MAX */
- i__4 = 1, i__1 = j - *k;
- i__3 = max(i__4,i__1);
- for (i__ = j - 1; i__ >= i__3; --i__) {
- i__4 = l + i__ + j * a_dim1;
- i__1 = i__;
- z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
- i__1].i, z__2.i = a[i__4].r * x[i__1].i +
- a[i__4].i * x[i__1].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L90: */
- }
- } else {
- if (nounit) {
- d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
- z__1.r = temp.r * z__2.r - temp.i * z__2.i,
- z__1.i = temp.r * z__2.i + temp.i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
-/* Computing MAX */
- i__4 = 1, i__1 = j - *k;
- i__3 = max(i__4,i__1);
- for (i__ = j - 1; i__ >= i__3; --i__) {
- d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
- i__4 = i__;
- z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
- z__2.i = z__3.r * x[i__4].i + z__3.i * x[
- i__4].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L100: */
- }
- }
- i__3 = j;
- x[i__3].r = temp.r, x[i__3].i = temp.i;
-/* L110: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- i__3 = jx;
- temp.r = x[i__3].r, temp.i = x[i__3].i;
- kx -= *incx;
- ix = kx;
- l = kplus1 - j;
- if (noconj) {
- if (nounit) {
- i__3 = kplus1 + j * a_dim1;
- z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
- z__1.i = temp.r * a[i__3].i + temp.i * a[
- i__3].r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
-/* Computing MAX */
- i__4 = 1, i__1 = j - *k;
- i__3 = max(i__4,i__1);
- for (i__ = j - 1; i__ >= i__3; --i__) {
- i__4 = l + i__ + j * a_dim1;
- i__1 = ix;
- z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
- i__1].i, z__2.i = a[i__4].r * x[i__1].i +
- a[i__4].i * x[i__1].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix -= *incx;
-/* L120: */
- }
- } else {
- if (nounit) {
- d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
- z__1.r = temp.r * z__2.r - temp.i * z__2.i,
- z__1.i = temp.r * z__2.i + temp.i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
-/* Computing MAX */
- i__4 = 1, i__1 = j - *k;
- i__3 = max(i__4,i__1);
- for (i__ = j - 1; i__ >= i__3; --i__) {
- d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
- i__4 = ix;
- z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
- z__2.i = z__3.r * x[i__4].i + z__3.i * x[
- i__4].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix -= *incx;
-/* L130: */
- }
- }
- i__3 = jx;
- x[i__3].r = temp.r, x[i__3].i = temp.i;
- jx -= *incx;
-/* L140: */
- }
- }
- } else {
- if (*incx == 1) {
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- i__4 = j;
- temp.r = x[i__4].r, temp.i = x[i__4].i;
- l = 1 - j;
- if (noconj) {
- if (nounit) {
- i__4 = j * a_dim1 + 1;
- z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
- z__1.i = temp.r * a[i__4].i + temp.i * a[
- i__4].r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
-/* Computing MIN */
- i__1 = *n, i__2 = j + *k;
- i__4 = min(i__1,i__2);
- for (i__ = j + 1; i__ <= i__4; ++i__) {
- i__1 = l + i__ + j * a_dim1;
- i__2 = i__;
- z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
- i__2].i, z__2.i = a[i__1].r * x[i__2].i +
- a[i__1].i * x[i__2].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L150: */
- }
- } else {
- if (nounit) {
- d_cnjg(&z__2, &a[j * a_dim1 + 1]);
- z__1.r = temp.r * z__2.r - temp.i * z__2.i,
- z__1.i = temp.r * z__2.i + temp.i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
-/* Computing MIN */
- i__1 = *n, i__2 = j + *k;
- i__4 = min(i__1,i__2);
- for (i__ = j + 1; i__ <= i__4; ++i__) {
- d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
- i__1 = i__;
- z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
- z__2.i = z__3.r * x[i__1].i + z__3.i * x[
- i__1].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
-/* L160: */
- }
- }
- i__4 = j;
- x[i__4].r = temp.r, x[i__4].i = temp.i;
-/* L170: */
- }
- } else {
- jx = kx;
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- i__4 = jx;
- temp.r = x[i__4].r, temp.i = x[i__4].i;
- kx += *incx;
- ix = kx;
- l = 1 - j;
- if (noconj) {
- if (nounit) {
- i__4 = j * a_dim1 + 1;
- z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
- z__1.i = temp.r * a[i__4].i + temp.i * a[
- i__4].r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
-/* Computing MIN */
- i__1 = *n, i__2 = j + *k;
- i__4 = min(i__1,i__2);
- for (i__ = j + 1; i__ <= i__4; ++i__) {
- i__1 = l + i__ + j * a_dim1;
- i__2 = ix;
- z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
- i__2].i, z__2.i = a[i__1].r * x[i__2].i +
- a[i__1].i * x[i__2].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix += *incx;
-/* L180: */
- }
- } else {
- if (nounit) {
- d_cnjg(&z__2, &a[j * a_dim1 + 1]);
- z__1.r = temp.r * z__2.r - temp.i * z__2.i,
- z__1.i = temp.r * z__2.i + temp.i *
- z__2.r;
- temp.r = z__1.r, temp.i = z__1.i;
- }
-/* Computing MIN */
- i__1 = *n, i__2 = j + *k;
- i__4 = min(i__1,i__2);
- for (i__ = j + 1; i__ <= i__4; ++i__) {
- d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
- i__1 = ix;
- z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
- z__2.i = z__3.r * x[i__1].i + z__3.i * x[
- i__1].r;
- z__1.r = temp.r + z__2.r, z__1.i = temp.i +
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix += *incx;
-/* L190: */
- }
- }
- i__4 = jx;
- x[i__4].r = temp.r, x[i__4].i = temp.i;
- jx += *incx;
-/* L200: */
- }
- }
- }
- }
-
- return 0;
-
-/* End of ZTBMV . */
-
-} /* ztbmv_ */
-