summaryrefslogtreecommitdiffhomepage
path: root/eigen/lapack/slarft.f
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/lapack/slarft.f')
-rw-r--r--eigen/lapack/slarft.f326
1 files changed, 326 insertions, 0 deletions
diff --git a/eigen/lapack/slarft.f b/eigen/lapack/slarft.f
new file mode 100644
index 0000000..30b0668
--- /dev/null
+++ b/eigen/lapack/slarft.f
@@ -0,0 +1,326 @@
+*> \brief \b SLARFT
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SLARFT + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarft.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarft.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarft.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
+*
+* .. Scalar Arguments ..
+* CHARACTER DIRECT, STOREV
+* INTEGER K, LDT, LDV, N
+* ..
+* .. Array Arguments ..
+* REAL T( LDT, * ), TAU( * ), V( LDV, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SLARFT forms the triangular factor T of a real block reflector H
+*> of order n, which is defined as a product of k elementary reflectors.
+*>
+*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
+*>
+*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
+*>
+*> If STOREV = 'C', the vector which defines the elementary reflector
+*> H(i) is stored in the i-th column of the array V, and
+*>
+*> H = I - V * T * V**T
+*>
+*> If STOREV = 'R', the vector which defines the elementary reflector
+*> H(i) is stored in the i-th row of the array V, and
+*>
+*> H = I - V**T * T * V
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] DIRECT
+*> \verbatim
+*> DIRECT is CHARACTER*1
+*> Specifies the order in which the elementary reflectors are
+*> multiplied to form the block reflector:
+*> = 'F': H = H(1) H(2) . . . H(k) (Forward)
+*> = 'B': H = H(k) . . . H(2) H(1) (Backward)
+*> \endverbatim
+*>
+*> \param[in] STOREV
+*> \verbatim
+*> STOREV is CHARACTER*1
+*> Specifies how the vectors which define the elementary
+*> reflectors are stored (see also Further Details):
+*> = 'C': columnwise
+*> = 'R': rowwise
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the block reflector H. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] K
+*> \verbatim
+*> K is INTEGER
+*> The order of the triangular factor T (= the number of
+*> elementary reflectors). K >= 1.
+*> \endverbatim
+*>
+*> \param[in] V
+*> \verbatim
+*> V is REAL array, dimension
+*> (LDV,K) if STOREV = 'C'
+*> (LDV,N) if STOREV = 'R'
+*> The matrix V. See further details.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V.
+*> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
+*> \endverbatim
+*>
+*> \param[in] TAU
+*> \verbatim
+*> TAU is REAL array, dimension (K)
+*> TAU(i) must contain the scalar factor of the elementary
+*> reflector H(i).
+*> \endverbatim
+*>
+*> \param[out] T
+*> \verbatim
+*> T is REAL array, dimension (LDT,K)
+*> The k by k triangular factor T of the block reflector.
+*> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
+*> lower triangular. The rest of the array is not used.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T. LDT >= K.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date April 2012
+*
+*> \ingroup realOTHERauxiliary
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> The shape of the matrix V and the storage of the vectors which define
+*> the H(i) is best illustrated by the following example with n = 5 and
+*> k = 3. The elements equal to 1 are not stored.
+*>
+*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
+*>
+*> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
+*> ( v1 1 ) ( 1 v2 v2 v2 )
+*> ( v1 v2 1 ) ( 1 v3 v3 )
+*> ( v1 v2 v3 )
+*> ( v1 v2 v3 )
+*>
+*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
+*>
+*> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
+*> ( v1 v2 v3 ) ( v2 v2 v2 1 )
+*> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
+*> ( 1 v3 )
+*> ( 1 )
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
+*
+* -- LAPACK auxiliary routine (version 3.4.1) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* April 2012
+*
+* .. Scalar Arguments ..
+ CHARACTER DIRECT, STOREV
+ INTEGER K, LDT, LDV, N
+* ..
+* .. Array Arguments ..
+ REAL T( LDT, * ), TAU( * ), V( LDV, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE, ZERO
+ PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER I, J, PREVLASTV, LASTV
+* ..
+* .. External Subroutines ..
+ EXTERNAL SGEMV, STRMV
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. Executable Statements ..
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+ IF( LSAME( DIRECT, 'F' ) ) THEN
+ PREVLASTV = N
+ DO I = 1, K
+ PREVLASTV = MAX( I, PREVLASTV )
+ IF( TAU( I ).EQ.ZERO ) THEN
+*
+* H(i) = I
+*
+ DO J = 1, I
+ T( J, I ) = ZERO
+ END DO
+ ELSE
+*
+* general case
+*
+ IF( LSAME( STOREV, 'C' ) ) THEN
+* Skip any trailing zeros.
+ DO LASTV = N, I+1, -1
+ IF( V( LASTV, I ).NE.ZERO ) EXIT
+ END DO
+ DO J = 1, I-1
+ T( J, I ) = -TAU( I ) * V( I , J )
+ END DO
+ J = MIN( LASTV, PREVLASTV )
+*
+* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i)
+*
+ CALL SGEMV( 'Transpose', J-I, I-1, -TAU( I ),
+ $ V( I+1, 1 ), LDV, V( I+1, I ), 1, ONE,
+ $ T( 1, I ), 1 )
+ ELSE
+* Skip any trailing zeros.
+ DO LASTV = N, I+1, -1
+ IF( V( I, LASTV ).NE.ZERO ) EXIT
+ END DO
+ DO J = 1, I-1
+ T( J, I ) = -TAU( I ) * V( J , I )
+ END DO
+ J = MIN( LASTV, PREVLASTV )
+*
+* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T
+*
+ CALL SGEMV( 'No transpose', I-1, J-I, -TAU( I ),
+ $ V( 1, I+1 ), LDV, V( I, I+1 ), LDV,
+ $ ONE, T( 1, I ), 1 )
+ END IF
+*
+* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
+*
+ CALL STRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
+ $ LDT, T( 1, I ), 1 )
+ T( I, I ) = TAU( I )
+ IF( I.GT.1 ) THEN
+ PREVLASTV = MAX( PREVLASTV, LASTV )
+ ELSE
+ PREVLASTV = LASTV
+ END IF
+ END IF
+ END DO
+ ELSE
+ PREVLASTV = 1
+ DO I = K, 1, -1
+ IF( TAU( I ).EQ.ZERO ) THEN
+*
+* H(i) = I
+*
+ DO J = I, K
+ T( J, I ) = ZERO
+ END DO
+ ELSE
+*
+* general case
+*
+ IF( I.LT.K ) THEN
+ IF( LSAME( STOREV, 'C' ) ) THEN
+* Skip any leading zeros.
+ DO LASTV = 1, I-1
+ IF( V( LASTV, I ).NE.ZERO ) EXIT
+ END DO
+ DO J = I+1, K
+ T( J, I ) = -TAU( I ) * V( N-K+I , J )
+ END DO
+ J = MAX( LASTV, PREVLASTV )
+*
+* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i)
+*
+ CALL SGEMV( 'Transpose', N-K+I-J, K-I, -TAU( I ),
+ $ V( J, I+1 ), LDV, V( J, I ), 1, ONE,
+ $ T( I+1, I ), 1 )
+ ELSE
+* Skip any leading zeros.
+ DO LASTV = 1, I-1
+ IF( V( I, LASTV ).NE.ZERO ) EXIT
+ END DO
+ DO J = I+1, K
+ T( J, I ) = -TAU( I ) * V( J, N-K+I )
+ END DO
+ J = MAX( LASTV, PREVLASTV )
+*
+* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T
+*
+ CALL SGEMV( 'No transpose', K-I, N-K+I-J,
+ $ -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV,
+ $ ONE, T( I+1, I ), 1 )
+ END IF
+*
+* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
+*
+ CALL STRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
+ $ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
+ IF( I.GT.1 ) THEN
+ PREVLASTV = MIN( PREVLASTV, LASTV )
+ ELSE
+ PREVLASTV = LASTV
+ END IF
+ END IF
+ T( I, I ) = TAU( I )
+ END IF
+ END DO
+ END IF
+ RETURN
+*
+* End of SLARFT
+*
+ END