summaryrefslogtreecommitdiffhomepage
path: root/eigen/test/geo_quaternion.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/test/geo_quaternion.cpp')
-rw-r--r--eigen/test/geo_quaternion.cpp302
1 files changed, 0 insertions, 302 deletions
diff --git a/eigen/test/geo_quaternion.cpp b/eigen/test/geo_quaternion.cpp
deleted file mode 100644
index 8ee8fdb..0000000
--- a/eigen/test/geo_quaternion.cpp
+++ /dev/null
@@ -1,302 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#include "main.h"
-#include <Eigen/Geometry>
-#include <Eigen/LU>
-#include <Eigen/SVD>
-
-template<typename T> T bounded_acos(T v)
-{
- using std::acos;
- using std::min;
- using std::max;
- return acos((max)(T(-1),(min)(v,T(1))));
-}
-
-template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1)
-{
- using std::abs;
- typedef typename QuatType::Scalar Scalar;
- typedef AngleAxis<Scalar> AA;
-
- Scalar largeEps = test_precision<Scalar>();
-
- Scalar theta_tot = AA(q1*q0.inverse()).angle();
- if(theta_tot>Scalar(EIGEN_PI))
- theta_tot = Scalar(2.)*Scalar(EIGEN_PI)-theta_tot;
- for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1))
- {
- QuatType q = q0.slerp(t,q1);
- Scalar theta = AA(q*q0.inverse()).angle();
- VERIFY(abs(q.norm() - 1) < largeEps);
- if(theta_tot==0) VERIFY(theta_tot==0);
- else VERIFY(abs(theta - t * theta_tot) < largeEps);
- }
-}
-
-template<typename Scalar, int Options> void quaternion(void)
-{
- /* this test covers the following files:
- Quaternion.h
- */
- using std::abs;
- typedef Matrix<Scalar,3,1> Vector3;
- typedef Matrix<Scalar,3,3> Matrix3;
- typedef Quaternion<Scalar,Options> Quaternionx;
- typedef AngleAxis<Scalar> AngleAxisx;
-
- Scalar largeEps = test_precision<Scalar>();
- if (internal::is_same<Scalar,float>::value)
- largeEps = Scalar(1e-3);
-
- Scalar eps = internal::random<Scalar>() * Scalar(1e-2);
-
- Vector3 v0 = Vector3::Random(),
- v1 = Vector3::Random(),
- v2 = Vector3::Random(),
- v3 = Vector3::Random();
-
- Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)),
- b = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
-
- // Quaternion: Identity(), setIdentity();
- Quaternionx q1, q2;
- q2.setIdentity();
- VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
- q1.coeffs().setRandom();
- VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
-
- // concatenation
- q1 *= q2;
-
- q1 = AngleAxisx(a, v0.normalized());
- q2 = AngleAxisx(a, v1.normalized());
-
- // angular distance
- Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle());
- if (refangle>Scalar(EIGEN_PI))
- refangle = Scalar(2)*Scalar(EIGEN_PI) - refangle;
-
- if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
- {
- VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1));
- }
-
- // rotation matrix conversion
- VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
- VERIFY_IS_APPROX(q1 * q2 * v2,
- q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
-
- VERIFY( (q2*q1).isApprox(q1*q2, largeEps)
- || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
-
- q2 = q1.toRotationMatrix();
- VERIFY_IS_APPROX(q1*v1,q2*v1);
-
- Matrix3 rot1(q1);
- VERIFY_IS_APPROX(q1*v1,rot1*v1);
- Quaternionx q3(rot1.transpose()*rot1);
- VERIFY_IS_APPROX(q3*v1,v1);
-
-
- // angle-axis conversion
- AngleAxisx aa = AngleAxisx(q1);
- VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
-
- // Do not execute the test if the rotation angle is almost zero, or
- // the rotation axis and v1 are almost parallel.
- if (abs(aa.angle()) > 5*test_precision<Scalar>()
- && (aa.axis() - v1.normalized()).norm() < Scalar(1.99)
- && (aa.axis() + v1.normalized()).norm() < Scalar(1.99))
- {
- VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
- }
-
- // from two vector creation
- VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
- VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
- VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
- if (internal::is_same<Scalar,double>::value)
- {
- v3 = (v1.array()+eps).matrix();
- VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
- VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
- }
-
- // from two vector creation static function
- VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized());
- VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized());
- VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized());
- if (internal::is_same<Scalar,double>::value)
- {
- v3 = (v1.array()+eps).matrix();
- VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized());
- VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized());
- }
-
- // inverse and conjugate
- VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
- VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
-
- // test casting
- Quaternion<float> q1f = q1.template cast<float>();
- VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
- Quaternion<double> q1d = q1.template cast<double>();
- VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
-
- // test bug 369 - improper alignment.
- Quaternionx *q = new Quaternionx;
- delete q;
-
- q1 = Quaternionx::UnitRandom();
- q2 = Quaternionx::UnitRandom();
- check_slerp(q1,q2);
-
- q1 = AngleAxisx(b, v1.normalized());
- q2 = AngleAxisx(b+Scalar(EIGEN_PI), v1.normalized());
- check_slerp(q1,q2);
-
- q1 = AngleAxisx(b, v1.normalized());
- q2 = AngleAxisx(-b, -v1.normalized());
- check_slerp(q1,q2);
-
- q1 = Quaternionx::UnitRandom();
- q2.coeffs() = -q1.coeffs();
- check_slerp(q1,q2);
-}
-
-template<typename Scalar> void mapQuaternion(void){
- typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
- typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA;
- typedef Map<Quaternion<Scalar> > MQuaternionUA;
- typedef Map<const Quaternion<Scalar> > MCQuaternionUA;
- typedef Quaternion<Scalar> Quaternionx;
- typedef Matrix<Scalar,3,1> Vector3;
- typedef AngleAxis<Scalar> AngleAxisx;
-
- Vector3 v0 = Vector3::Random(),
- v1 = Vector3::Random();
- Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
-
- EIGEN_ALIGN_MAX Scalar array1[4];
- EIGEN_ALIGN_MAX Scalar array2[4];
- EIGEN_ALIGN_MAX Scalar array3[4+1];
- Scalar* array3unaligned = array3+1;
-
- MQuaternionA mq1(array1);
- MCQuaternionA mcq1(array1);
- MQuaternionA mq2(array2);
- MQuaternionUA mq3(array3unaligned);
- MCQuaternionUA mcq3(array3unaligned);
-
-// std::cerr << array1 << " " << array2 << " " << array3 << "\n";
- mq1 = AngleAxisx(a, v0.normalized());
- mq2 = mq1;
- mq3 = mq1;
-
- Quaternionx q1 = mq1;
- Quaternionx q2 = mq2;
- Quaternionx q3 = mq3;
- Quaternionx q4 = MCQuaternionUA(array3unaligned);
-
- VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
- VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
- VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
- #ifdef EIGEN_VECTORIZE
- if(internal::packet_traits<Scalar>::Vectorizable)
- VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
- #endif
-
- VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1);
- VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1);
-
- VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1);
- VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1);
-
- VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1);
- VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1);
-
- VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1);
- VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1);
-
- VERIFY_IS_APPROX(mq1*mq2, q1*q2);
- VERIFY_IS_APPROX(mq3*mq2, q3*q2);
- VERIFY_IS_APPROX(mcq1*mq2, q1*q2);
- VERIFY_IS_APPROX(mcq3*mq2, q3*q2);
-
- // Bug 1461, compilation issue with Map<const Quat>::w(), and other reference/constness checks:
- VERIFY_IS_APPROX(mcq3.coeffs().x() + mcq3.coeffs().y() + mcq3.coeffs().z() + mcq3.coeffs().w(), mcq3.coeffs().sum());
- VERIFY_IS_APPROX(mcq3.x() + mcq3.y() + mcq3.z() + mcq3.w(), mcq3.coeffs().sum());
- mq3.w() = 1;
- const Quaternionx& cq3(q3);
- VERIFY( &cq3.x() == &q3.x() );
- const MQuaternionUA& cmq3(mq3);
- VERIFY( &cmq3.x() == &mq3.x() );
- // FIXME the following should be ok. The problem is that currently the LValueBit flag
- // is used to determine wether we can return a coeff by reference or not, which is not enough for Map<const ...>.
- //const MCQuaternionUA& cmcq3(mcq3);
- //VERIFY( &cmcq3.x() == &mcq3.x() );
-}
-
-template<typename Scalar> void quaternionAlignment(void){
- typedef Quaternion<Scalar,AutoAlign> QuaternionA;
- typedef Quaternion<Scalar,DontAlign> QuaternionUA;
-
- EIGEN_ALIGN_MAX Scalar array1[4];
- EIGEN_ALIGN_MAX Scalar array2[4];
- EIGEN_ALIGN_MAX Scalar array3[4+1];
- Scalar* arrayunaligned = array3+1;
-
- QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA;
- QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA;
- QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA;
-
- q1->coeffs().setRandom();
- *q2 = *q1;
- *q3 = *q1;
-
- VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
- VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
- #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0
- if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
- VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA));
- #endif
-}
-
-template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
-{
- // there's a lot that we can't test here while still having this test compile!
- // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
- // CMake can help with that.
-
- // verify that map-to-const don't have LvalueBit
- typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
- VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
- VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
- VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
- VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
-}
-
-void test_geo_quaternion()
-{
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1(( quaternion<float,AutoAlign>() ));
- CALL_SUBTEST_1( check_const_correctness(Quaternionf()) );
- CALL_SUBTEST_2(( quaternion<double,AutoAlign>() ));
- CALL_SUBTEST_2( check_const_correctness(Quaterniond()) );
- CALL_SUBTEST_3(( quaternion<float,DontAlign>() ));
- CALL_SUBTEST_4(( quaternion<double,DontAlign>() ));
- CALL_SUBTEST_5(( quaternionAlignment<float>() ));
- CALL_SUBTEST_6(( quaternionAlignment<double>() ));
- CALL_SUBTEST_1( mapQuaternion<float>() );
- CALL_SUBTEST_2( mapQuaternion<double>() );
- }
-}