diff options
Diffstat (limited to 'eigen/test/geo_quaternion.cpp')
-rw-r--r-- | eigen/test/geo_quaternion.cpp | 302 |
1 files changed, 0 insertions, 302 deletions
diff --git a/eigen/test/geo_quaternion.cpp b/eigen/test/geo_quaternion.cpp deleted file mode 100644 index 8ee8fdb..0000000 --- a/eigen/test/geo_quaternion.cpp +++ /dev/null @@ -1,302 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> -// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include <Eigen/Geometry> -#include <Eigen/LU> -#include <Eigen/SVD> - -template<typename T> T bounded_acos(T v) -{ - using std::acos; - using std::min; - using std::max; - return acos((max)(T(-1),(min)(v,T(1)))); -} - -template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1) -{ - using std::abs; - typedef typename QuatType::Scalar Scalar; - typedef AngleAxis<Scalar> AA; - - Scalar largeEps = test_precision<Scalar>(); - - Scalar theta_tot = AA(q1*q0.inverse()).angle(); - if(theta_tot>Scalar(EIGEN_PI)) - theta_tot = Scalar(2.)*Scalar(EIGEN_PI)-theta_tot; - for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1)) - { - QuatType q = q0.slerp(t,q1); - Scalar theta = AA(q*q0.inverse()).angle(); - VERIFY(abs(q.norm() - 1) < largeEps); - if(theta_tot==0) VERIFY(theta_tot==0); - else VERIFY(abs(theta - t * theta_tot) < largeEps); - } -} - -template<typename Scalar, int Options> void quaternion(void) -{ - /* this test covers the following files: - Quaternion.h - */ - using std::abs; - typedef Matrix<Scalar,3,1> Vector3; - typedef Matrix<Scalar,3,3> Matrix3; - typedef Quaternion<Scalar,Options> Quaternionx; - typedef AngleAxis<Scalar> AngleAxisx; - - Scalar largeEps = test_precision<Scalar>(); - if (internal::is_same<Scalar,float>::value) - largeEps = Scalar(1e-3); - - Scalar eps = internal::random<Scalar>() * Scalar(1e-2); - - Vector3 v0 = Vector3::Random(), - v1 = Vector3::Random(), - v2 = Vector3::Random(), - v3 = Vector3::Random(); - - Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)), - b = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); - - // Quaternion: Identity(), setIdentity(); - Quaternionx q1, q2; - q2.setIdentity(); - VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); - q1.coeffs().setRandom(); - VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); - - // concatenation - q1 *= q2; - - q1 = AngleAxisx(a, v0.normalized()); - q2 = AngleAxisx(a, v1.normalized()); - - // angular distance - Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle()); - if (refangle>Scalar(EIGEN_PI)) - refangle = Scalar(2)*Scalar(EIGEN_PI) - refangle; - - if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) - { - VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1)); - } - - // rotation matrix conversion - VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); - VERIFY_IS_APPROX(q1 * q2 * v2, - q1.toRotationMatrix() * q2.toRotationMatrix() * v2); - - VERIFY( (q2*q1).isApprox(q1*q2, largeEps) - || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); - - q2 = q1.toRotationMatrix(); - VERIFY_IS_APPROX(q1*v1,q2*v1); - - Matrix3 rot1(q1); - VERIFY_IS_APPROX(q1*v1,rot1*v1); - Quaternionx q3(rot1.transpose()*rot1); - VERIFY_IS_APPROX(q3*v1,v1); - - - // angle-axis conversion - AngleAxisx aa = AngleAxisx(q1); - VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); - - // Do not execute the test if the rotation angle is almost zero, or - // the rotation axis and v1 are almost parallel. - if (abs(aa.angle()) > 5*test_precision<Scalar>() - && (aa.axis() - v1.normalized()).norm() < Scalar(1.99) - && (aa.axis() + v1.normalized()).norm() < Scalar(1.99)) - { - VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); - } - - // from two vector creation - VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized()); - VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized()); - VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized()); - if (internal::is_same<Scalar,double>::value) - { - v3 = (v1.array()+eps).matrix(); - VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized()); - VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized()); - } - - // from two vector creation static function - VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized()); - VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized()); - VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized()); - if (internal::is_same<Scalar,double>::value) - { - v3 = (v1.array()+eps).matrix(); - VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized()); - VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized()); - } - - // inverse and conjugate - VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); - VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); - - // test casting - Quaternion<float> q1f = q1.template cast<float>(); - VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); - Quaternion<double> q1d = q1.template cast<double>(); - VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); - - // test bug 369 - improper alignment. - Quaternionx *q = new Quaternionx; - delete q; - - q1 = Quaternionx::UnitRandom(); - q2 = Quaternionx::UnitRandom(); - check_slerp(q1,q2); - - q1 = AngleAxisx(b, v1.normalized()); - q2 = AngleAxisx(b+Scalar(EIGEN_PI), v1.normalized()); - check_slerp(q1,q2); - - q1 = AngleAxisx(b, v1.normalized()); - q2 = AngleAxisx(-b, -v1.normalized()); - check_slerp(q1,q2); - - q1 = Quaternionx::UnitRandom(); - q2.coeffs() = -q1.coeffs(); - check_slerp(q1,q2); -} - -template<typename Scalar> void mapQuaternion(void){ - typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA; - typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA; - typedef Map<Quaternion<Scalar> > MQuaternionUA; - typedef Map<const Quaternion<Scalar> > MCQuaternionUA; - typedef Quaternion<Scalar> Quaternionx; - typedef Matrix<Scalar,3,1> Vector3; - typedef AngleAxis<Scalar> AngleAxisx; - - Vector3 v0 = Vector3::Random(), - v1 = Vector3::Random(); - Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); - - EIGEN_ALIGN_MAX Scalar array1[4]; - EIGEN_ALIGN_MAX Scalar array2[4]; - EIGEN_ALIGN_MAX Scalar array3[4+1]; - Scalar* array3unaligned = array3+1; - - MQuaternionA mq1(array1); - MCQuaternionA mcq1(array1); - MQuaternionA mq2(array2); - MQuaternionUA mq3(array3unaligned); - MCQuaternionUA mcq3(array3unaligned); - -// std::cerr << array1 << " " << array2 << " " << array3 << "\n"; - mq1 = AngleAxisx(a, v0.normalized()); - mq2 = mq1; - mq3 = mq1; - - Quaternionx q1 = mq1; - Quaternionx q2 = mq2; - Quaternionx q3 = mq3; - Quaternionx q4 = MCQuaternionUA(array3unaligned); - - VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); - VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); - VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs()); - #ifdef EIGEN_VECTORIZE - if(internal::packet_traits<Scalar>::Vectorizable) - VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned))); - #endif - - VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1); - VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1); - - VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1); - VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1); - - VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1); - VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1); - - VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1); - VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1); - - VERIFY_IS_APPROX(mq1*mq2, q1*q2); - VERIFY_IS_APPROX(mq3*mq2, q3*q2); - VERIFY_IS_APPROX(mcq1*mq2, q1*q2); - VERIFY_IS_APPROX(mcq3*mq2, q3*q2); - - // Bug 1461, compilation issue with Map<const Quat>::w(), and other reference/constness checks: - VERIFY_IS_APPROX(mcq3.coeffs().x() + mcq3.coeffs().y() + mcq3.coeffs().z() + mcq3.coeffs().w(), mcq3.coeffs().sum()); - VERIFY_IS_APPROX(mcq3.x() + mcq3.y() + mcq3.z() + mcq3.w(), mcq3.coeffs().sum()); - mq3.w() = 1; - const Quaternionx& cq3(q3); - VERIFY( &cq3.x() == &q3.x() ); - const MQuaternionUA& cmq3(mq3); - VERIFY( &cmq3.x() == &mq3.x() ); - // FIXME the following should be ok. The problem is that currently the LValueBit flag - // is used to determine wether we can return a coeff by reference or not, which is not enough for Map<const ...>. - //const MCQuaternionUA& cmcq3(mcq3); - //VERIFY( &cmcq3.x() == &mcq3.x() ); -} - -template<typename Scalar> void quaternionAlignment(void){ - typedef Quaternion<Scalar,AutoAlign> QuaternionA; - typedef Quaternion<Scalar,DontAlign> QuaternionUA; - - EIGEN_ALIGN_MAX Scalar array1[4]; - EIGEN_ALIGN_MAX Scalar array2[4]; - EIGEN_ALIGN_MAX Scalar array3[4+1]; - Scalar* arrayunaligned = array3+1; - - QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA; - QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA; - QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA; - - q1->coeffs().setRandom(); - *q2 = *q1; - *q3 = *q1; - - VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs()); - VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs()); - #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0 - if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4) - VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA)); - #endif -} - -template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) -{ - // there's a lot that we can't test here while still having this test compile! - // the only possible approach would be to run a script trying to compile stuff and checking that it fails. - // CMake can help with that. - - // verify that map-to-const don't have LvalueBit - typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; - VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) ); - VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) ); - VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) ); - VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) ); -} - -void test_geo_quaternion() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1(( quaternion<float,AutoAlign>() )); - CALL_SUBTEST_1( check_const_correctness(Quaternionf()) ); - CALL_SUBTEST_2(( quaternion<double,AutoAlign>() )); - CALL_SUBTEST_2( check_const_correctness(Quaterniond()) ); - CALL_SUBTEST_3(( quaternion<float,DontAlign>() )); - CALL_SUBTEST_4(( quaternion<double,DontAlign>() )); - CALL_SUBTEST_5(( quaternionAlignment<float>() )); - CALL_SUBTEST_6(( quaternionAlignment<double>() )); - CALL_SUBTEST_1( mapQuaternion<float>() ); - CALL_SUBTEST_2( mapQuaternion<double>() ); - } -} |