summaryrefslogtreecommitdiffhomepage
path: root/eigen/test/sparseqr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/test/sparseqr.cpp')
-rw-r--r--eigen/test/sparseqr.cpp100
1 files changed, 100 insertions, 0 deletions
diff --git a/eigen/test/sparseqr.cpp b/eigen/test/sparseqr.cpp
new file mode 100644
index 0000000..451c0e7
--- /dev/null
+++ b/eigen/test/sparseqr.cpp
@@ -0,0 +1,100 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+#include "sparse.h"
+#include <Eigen/SparseQR>
+
+template<typename MatrixType,typename DenseMat>
+int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300)
+{
+ typedef typename MatrixType::Scalar Scalar;
+ int rows = internal::random<int>(1,maxRows);
+ int cols = internal::random<int>(1,rows);
+ double density = (std::max)(8./(rows*cols), 0.01);
+
+ A.resize(rows,cols);
+ dA.resize(rows,cols);
+ initSparse<Scalar>(density, dA, A,ForceNonZeroDiag);
+ A.makeCompressed();
+ int nop = internal::random<int>(0, internal::random<double>(0,1) > 0.5 ? cols/2 : 0);
+ for(int k=0; k<nop; ++k)
+ {
+ int j0 = internal::random<int>(0,cols-1);
+ int j1 = internal::random<int>(0,cols-1);
+ Scalar s = internal::random<Scalar>();
+ A.col(j0) = s * A.col(j1);
+ dA.col(j0) = s * dA.col(j1);
+ }
+
+// if(rows<cols) {
+// A.conservativeResize(cols,cols);
+// dA.conservativeResize(cols,cols);
+// dA.bottomRows(cols-rows).setZero();
+// }
+
+ return rows;
+}
+
+template<typename Scalar> void test_sparseqr_scalar()
+{
+ typedef SparseMatrix<Scalar,ColMajor> MatrixType;
+ typedef Matrix<Scalar,Dynamic,Dynamic> DenseMat;
+ typedef Matrix<Scalar,Dynamic,1> DenseVector;
+ MatrixType A;
+ DenseMat dA;
+ DenseVector refX,x,b;
+ SparseQR<MatrixType, COLAMDOrdering<int> > solver;
+ generate_sparse_rectangular_problem(A,dA);
+
+ b = dA * DenseVector::Random(A.cols());
+ solver.compute(A);
+ if(internal::random<float>(0,1)>0.5)
+ solver.factorize(A); // this checks that calling analyzePattern is not needed if the pattern do not change.
+ if (solver.info() != Success)
+ {
+ std::cerr << "sparse QR factorization failed\n";
+ exit(0);
+ return;
+ }
+ x = solver.solve(b);
+ if (solver.info() != Success)
+ {
+ std::cerr << "sparse QR factorization failed\n";
+ exit(0);
+ return;
+ }
+
+ VERIFY_IS_APPROX(A * x, b);
+
+ //Compare with a dense QR solver
+ ColPivHouseholderQR<DenseMat> dqr(dA);
+ refX = dqr.solve(b);
+
+ VERIFY_IS_EQUAL(dqr.rank(), solver.rank());
+ if(solver.rank()==A.cols()) // full rank
+ VERIFY_IS_APPROX(x, refX);
+// else
+// VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() );
+
+ // Compute explicitly the matrix Q
+ MatrixType Q, QtQ, idM;
+ Q = solver.matrixQ();
+ //Check ||Q' * Q - I ||
+ QtQ = Q * Q.adjoint();
+ idM.resize(Q.rows(), Q.rows()); idM.setIdentity();
+ VERIFY(idM.isApprox(QtQ));
+}
+void test_sparseqr()
+{
+ for(int i=0; i<g_repeat; ++i)
+ {
+ CALL_SUBTEST_1(test_sparseqr_scalar<double>());
+ CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >());
+ }
+}
+