diff options
Diffstat (limited to 'eigen/test/sparseqr.cpp')
-rw-r--r-- | eigen/test/sparseqr.cpp | 100 |
1 files changed, 100 insertions, 0 deletions
diff --git a/eigen/test/sparseqr.cpp b/eigen/test/sparseqr.cpp new file mode 100644 index 0000000..451c0e7 --- /dev/null +++ b/eigen/test/sparseqr.cpp @@ -0,0 +1,100 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr> +// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +#include "sparse.h" +#include <Eigen/SparseQR> + +template<typename MatrixType,typename DenseMat> +int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300) +{ + typedef typename MatrixType::Scalar Scalar; + int rows = internal::random<int>(1,maxRows); + int cols = internal::random<int>(1,rows); + double density = (std::max)(8./(rows*cols), 0.01); + + A.resize(rows,cols); + dA.resize(rows,cols); + initSparse<Scalar>(density, dA, A,ForceNonZeroDiag); + A.makeCompressed(); + int nop = internal::random<int>(0, internal::random<double>(0,1) > 0.5 ? cols/2 : 0); + for(int k=0; k<nop; ++k) + { + int j0 = internal::random<int>(0,cols-1); + int j1 = internal::random<int>(0,cols-1); + Scalar s = internal::random<Scalar>(); + A.col(j0) = s * A.col(j1); + dA.col(j0) = s * dA.col(j1); + } + +// if(rows<cols) { +// A.conservativeResize(cols,cols); +// dA.conservativeResize(cols,cols); +// dA.bottomRows(cols-rows).setZero(); +// } + + return rows; +} + +template<typename Scalar> void test_sparseqr_scalar() +{ + typedef SparseMatrix<Scalar,ColMajor> MatrixType; + typedef Matrix<Scalar,Dynamic,Dynamic> DenseMat; + typedef Matrix<Scalar,Dynamic,1> DenseVector; + MatrixType A; + DenseMat dA; + DenseVector refX,x,b; + SparseQR<MatrixType, COLAMDOrdering<int> > solver; + generate_sparse_rectangular_problem(A,dA); + + b = dA * DenseVector::Random(A.cols()); + solver.compute(A); + if(internal::random<float>(0,1)>0.5) + solver.factorize(A); // this checks that calling analyzePattern is not needed if the pattern do not change. + if (solver.info() != Success) + { + std::cerr << "sparse QR factorization failed\n"; + exit(0); + return; + } + x = solver.solve(b); + if (solver.info() != Success) + { + std::cerr << "sparse QR factorization failed\n"; + exit(0); + return; + } + + VERIFY_IS_APPROX(A * x, b); + + //Compare with a dense QR solver + ColPivHouseholderQR<DenseMat> dqr(dA); + refX = dqr.solve(b); + + VERIFY_IS_EQUAL(dqr.rank(), solver.rank()); + if(solver.rank()==A.cols()) // full rank + VERIFY_IS_APPROX(x, refX); +// else +// VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() ); + + // Compute explicitly the matrix Q + MatrixType Q, QtQ, idM; + Q = solver.matrixQ(); + //Check ||Q' * Q - I || + QtQ = Q * Q.adjoint(); + idM.resize(Q.rows(), Q.rows()); idM.setIdentity(); + VERIFY(idM.isApprox(QtQ)); +} +void test_sparseqr() +{ + for(int i=0; i<g_repeat; ++i) + { + CALL_SUBTEST_1(test_sparseqr_scalar<double>()); + CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >()); + } +} + |