diff options
Diffstat (limited to 'eigen/unsupported/Eigen/Polynomials')
-rw-r--r-- | eigen/unsupported/Eigen/Polynomials | 138 |
1 files changed, 138 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/Polynomials b/eigen/unsupported/Eigen/Polynomials new file mode 100644 index 0000000..cece563 --- /dev/null +++ b/eigen/unsupported/Eigen/Polynomials @@ -0,0 +1,138 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_POLYNOMIALS_MODULE_H +#define EIGEN_POLYNOMIALS_MODULE_H + +#include <Eigen/Core> + +#include <Eigen/src/Core/util/DisableStupidWarnings.h> + +#include <Eigen/Eigenvalues> + +// Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module +#if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS>=2) + #ifndef EIGEN_HIDE_HEAVY_CODE + #define EIGEN_HIDE_HEAVY_CODE + #endif +#elif defined EIGEN_HIDE_HEAVY_CODE + #undef EIGEN_HIDE_HEAVY_CODE +#endif + +/** + * \defgroup Polynomials_Module Polynomials module + * \brief This module provides a QR based polynomial solver. + * + * To use this module, add + * \code + * #include <unsupported/Eigen/Polynomials> + * \endcode + * at the start of your source file. + */ + +#include "src/Polynomials/PolynomialUtils.h" +#include "src/Polynomials/Companion.h" +#include "src/Polynomials/PolynomialSolver.h" + +/** + \page polynomials Polynomials defines functions for dealing with polynomials + and a QR based polynomial solver. + \ingroup Polynomials_Module + + The remainder of the page documents first the functions for evaluating, computing + polynomials, computing estimates about polynomials and next the QR based polynomial + solver. + + \section polynomialUtils convenient functions to deal with polynomials + \subsection roots_to_monicPolynomial + The function + \code + void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly ) + \endcode + computes the coefficients \f$ a_i \f$ of + + \f$ p(x) = a_0 + a_{1}x + ... + a_{n-1}x^{n-1} + x^n \f$ + + where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$. + + \subsection poly_eval + The function + \code + T poly_eval( const Polynomials& poly, const T& x ) + \endcode + evaluates a polynomial at a given point using stabilized Hörner method. + + The following code: first computes the coefficients in the monomial basis of the monic polynomial that has the provided roots; + then, it evaluates the computed polynomial, using a stabilized Hörner method. + + \include PolynomialUtils1.cpp + Output: \verbinclude PolynomialUtils1.out + + \subsection Cauchy bounds + The function + \code + Real cauchy_max_bound( const Polynomial& poly ) + \endcode + provides a maximum bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e. + \f$ \forall r_i \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$, + \f$ |r_i| \le C(p) = \sum_{k=0}^{d} \left | \frac{a_k}{a_d} \right | \f$ + The leading coefficient \f$ p \f$: should be non zero \f$a_d \neq 0\f$. + + + The function + \code + Real cauchy_min_bound( const Polynomial& poly ) + \endcode + provides a minimum bound (the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given polynomial i.e. + \f$ \forall r_i \neq 0 \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$, + \f$ |r_i| \ge c(p) = \left( \sum_{k=0}^{d} \left | \frac{a_k}{a_0} \right | \right)^{-1} \f$ + + + + + \section QR polynomial solver class + Computes the complex roots of a polynomial by computing the eigenvalues of the associated companion matrix with the QR algorithm. + + The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of + \f$ + \left [ + \begin{array}{cccc} + 0 & 0 & 0 & a_0 \\ + 1 & 0 & 0 & a_1 \\ + 0 & 1 & 0 & a_2 \\ + 0 & 0 & 1 & a_3 + \end{array} \right ] + \f$ + + However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with same modulus. + + Therefore the current polynomial solver is guaranteed to provide a correct result only when the complex roots \f$r_1,r_2,...,r_d\f$ have distinct moduli i.e. + + \f$ \forall i,j \in [1;d],~ \| r_i \| \neq \| r_j \| \f$. + + With 32bit (float) floating types this problem shows up frequently. + However, almost always, correct accuracy is reached even in these cases for 64bit + (double) floating types and small polynomial degree (<20). + + \include PolynomialSolver1.cpp + + In the above example: + + -# a simple use of the polynomial solver is shown; + -# the accuracy problem with the QR algorithm is presented: a polynomial with almost conjugate roots is provided to the solver. + Those roots have almost same module therefore the QR algorithm failed to converge: the accuracy + of the last root is bad; + -# a simple way to circumvent the problem is shown: use doubles instead of floats. + + Output: \verbinclude PolynomialSolver1.out +*/ + +#include <Eigen/src/Core/util/ReenableStupidWarnings.h> + +#endif // EIGEN_POLYNOMIALS_MODULE_H +/* vim: set filetype=cpp et sw=2 ts=2 ai: */ |