diff options
Diffstat (limited to 'eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h')
-rw-r--r-- | eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h | 202 |
1 files changed, 202 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h new file mode 100644 index 0000000..25b32ec --- /dev/null +++ b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h @@ -0,0 +1,202 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> +// +// This code initially comes from MINPACK whose original authors are: +// Copyright Jorge More - Argonne National Laboratory +// Copyright Burt Garbow - Argonne National Laboratory +// Copyright Ken Hillstrom - Argonne National Laboratory +// +// This Source Code Form is subject to the terms of the Minpack license +// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file. + +#ifndef EIGEN_LMONESTEP_H +#define EIGEN_LMONESTEP_H + +namespace Eigen { + +template<typename FunctorType> +LevenbergMarquardtSpace::Status +LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x) +{ + using std::abs; + using std::sqrt; + RealScalar temp, temp1,temp2; + RealScalar ratio; + RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered; + eigen_assert(x.size()==n); // check the caller is not cheating us + + temp = 0.0; xnorm = 0.0; + /* calculate the jacobian matrix. */ + Index df_ret = m_functor.df(x, m_fjac); + if (df_ret<0) + return LevenbergMarquardtSpace::UserAsked; + if (df_ret>0) + // numerical diff, we evaluated the function df_ret times + m_nfev += df_ret; + else m_njev++; + + /* compute the qr factorization of the jacobian. */ + for (int j = 0; j < x.size(); ++j) + m_wa2(j) = m_fjac.col(j).blueNorm(); + QRSolver qrfac(m_fjac); + if(qrfac.info() != Success) { + m_info = NumericalIssue; + return LevenbergMarquardtSpace::ImproperInputParameters; + } + // Make a copy of the first factor with the associated permutation + m_rfactor = qrfac.matrixR(); + m_permutation = (qrfac.colsPermutation()); + + /* on the first iteration and if external scaling is not used, scale according */ + /* to the norms of the columns of the initial jacobian. */ + if (m_iter == 1) { + if (!m_useExternalScaling) + for (Index j = 0; j < n; ++j) + m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j]; + + /* on the first iteration, calculate the norm of the scaled x */ + /* and initialize the step bound m_delta. */ + xnorm = m_diag.cwiseProduct(x).stableNorm(); + m_delta = m_factor * xnorm; + if (m_delta == 0.) + m_delta = m_factor; + } + + /* form (q transpose)*m_fvec and store the first n components in */ + /* m_qtf. */ + m_wa4 = m_fvec; + m_wa4 = qrfac.matrixQ().adjoint() * m_fvec; + m_qtf = m_wa4.head(n); + + /* compute the norm of the scaled gradient. */ + m_gnorm = 0.; + if (m_fnorm != 0.) + for (Index j = 0; j < n; ++j) + if (m_wa2[m_permutation.indices()[j]] != 0.) + m_gnorm = (std::max)(m_gnorm, abs( m_rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]])); + + /* test for convergence of the gradient norm. */ + if (m_gnorm <= m_gtol) { + m_info = Success; + return LevenbergMarquardtSpace::CosinusTooSmall; + } + + /* rescale if necessary. */ + if (!m_useExternalScaling) + m_diag = m_diag.cwiseMax(m_wa2); + + do { + /* determine the levenberg-marquardt parameter. */ + internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1); + + /* store the direction p and x + p. calculate the norm of p. */ + m_wa1 = -m_wa1; + m_wa2 = x + m_wa1; + pnorm = m_diag.cwiseProduct(m_wa1).stableNorm(); + + /* on the first iteration, adjust the initial step bound. */ + if (m_iter == 1) + m_delta = (std::min)(m_delta,pnorm); + + /* evaluate the function at x + p and calculate its norm. */ + if ( m_functor(m_wa2, m_wa4) < 0) + return LevenbergMarquardtSpace::UserAsked; + ++m_nfev; + fnorm1 = m_wa4.stableNorm(); + + /* compute the scaled actual reduction. */ + actred = -1.; + if (Scalar(.1) * fnorm1 < m_fnorm) + actred = 1. - numext::abs2(fnorm1 / m_fnorm); + + /* compute the scaled predicted reduction and */ + /* the scaled directional derivative. */ + m_wa3 = m_rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1); + temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm); + temp2 = numext::abs2(sqrt(m_par) * pnorm / m_fnorm); + prered = temp1 + temp2 / Scalar(.5); + dirder = -(temp1 + temp2); + + /* compute the ratio of the actual to the predicted */ + /* reduction. */ + ratio = 0.; + if (prered != 0.) + ratio = actred / prered; + + /* update the step bound. */ + if (ratio <= Scalar(.25)) { + if (actred >= 0.) + temp = RealScalar(.5); + if (actred < 0.) + temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred); + if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1)) + temp = Scalar(.1); + /* Computing MIN */ + m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1)); + m_par /= temp; + } else if (!(m_par != 0. && ratio < RealScalar(.75))) { + m_delta = pnorm / RealScalar(.5); + m_par = RealScalar(.5) * m_par; + } + + /* test for successful iteration. */ + if (ratio >= RealScalar(1e-4)) { + /* successful iteration. update x, m_fvec, and their norms. */ + x = m_wa2; + m_wa2 = m_diag.cwiseProduct(x); + m_fvec = m_wa4; + xnorm = m_wa2.stableNorm(); + m_fnorm = fnorm1; + ++m_iter; + } + + /* tests for convergence. */ + if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm) + { + m_info = Success; + return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall; + } + if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.) + { + m_info = Success; + return LevenbergMarquardtSpace::RelativeReductionTooSmall; + } + if (m_delta <= m_xtol * xnorm) + { + m_info = Success; + return LevenbergMarquardtSpace::RelativeErrorTooSmall; + } + + /* tests for termination and stringent tolerances. */ + if (m_nfev >= m_maxfev) + { + m_info = NoConvergence; + return LevenbergMarquardtSpace::TooManyFunctionEvaluation; + } + if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.) + { + m_info = Success; + return LevenbergMarquardtSpace::FtolTooSmall; + } + if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm) + { + m_info = Success; + return LevenbergMarquardtSpace::XtolTooSmall; + } + if (m_gnorm <= NumTraits<Scalar>::epsilon()) + { + m_info = Success; + return LevenbergMarquardtSpace::GtolTooSmall; + } + + } while (ratio < Scalar(1e-4)); + + return LevenbergMarquardtSpace::Running; +} + + +} // end namespace Eigen + +#endif // EIGEN_LMONESTEP_H |