summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h')
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h202
1 files changed, 202 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
new file mode 100644
index 0000000..25b32ec
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
@@ -0,0 +1,202 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This code initially comes from MINPACK whose original authors are:
+// Copyright Jorge More - Argonne National Laboratory
+// Copyright Burt Garbow - Argonne National Laboratory
+// Copyright Ken Hillstrom - Argonne National Laboratory
+//
+// This Source Code Form is subject to the terms of the Minpack license
+// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
+
+#ifndef EIGEN_LMONESTEP_H
+#define EIGEN_LMONESTEP_H
+
+namespace Eigen {
+
+template<typename FunctorType>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
+{
+ using std::abs;
+ using std::sqrt;
+ RealScalar temp, temp1,temp2;
+ RealScalar ratio;
+ RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
+ eigen_assert(x.size()==n); // check the caller is not cheating us
+
+ temp = 0.0; xnorm = 0.0;
+ /* calculate the jacobian matrix. */
+ Index df_ret = m_functor.df(x, m_fjac);
+ if (df_ret<0)
+ return LevenbergMarquardtSpace::UserAsked;
+ if (df_ret>0)
+ // numerical diff, we evaluated the function df_ret times
+ m_nfev += df_ret;
+ else m_njev++;
+
+ /* compute the qr factorization of the jacobian. */
+ for (int j = 0; j < x.size(); ++j)
+ m_wa2(j) = m_fjac.col(j).blueNorm();
+ QRSolver qrfac(m_fjac);
+ if(qrfac.info() != Success) {
+ m_info = NumericalIssue;
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+ }
+ // Make a copy of the first factor with the associated permutation
+ m_rfactor = qrfac.matrixR();
+ m_permutation = (qrfac.colsPermutation());
+
+ /* on the first iteration and if external scaling is not used, scale according */
+ /* to the norms of the columns of the initial jacobian. */
+ if (m_iter == 1) {
+ if (!m_useExternalScaling)
+ for (Index j = 0; j < n; ++j)
+ m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j];
+
+ /* on the first iteration, calculate the norm of the scaled x */
+ /* and initialize the step bound m_delta. */
+ xnorm = m_diag.cwiseProduct(x).stableNorm();
+ m_delta = m_factor * xnorm;
+ if (m_delta == 0.)
+ m_delta = m_factor;
+ }
+
+ /* form (q transpose)*m_fvec and store the first n components in */
+ /* m_qtf. */
+ m_wa4 = m_fvec;
+ m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
+ m_qtf = m_wa4.head(n);
+
+ /* compute the norm of the scaled gradient. */
+ m_gnorm = 0.;
+ if (m_fnorm != 0.)
+ for (Index j = 0; j < n; ++j)
+ if (m_wa2[m_permutation.indices()[j]] != 0.)
+ m_gnorm = (std::max)(m_gnorm, abs( m_rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]]));
+
+ /* test for convergence of the gradient norm. */
+ if (m_gnorm <= m_gtol) {
+ m_info = Success;
+ return LevenbergMarquardtSpace::CosinusTooSmall;
+ }
+
+ /* rescale if necessary. */
+ if (!m_useExternalScaling)
+ m_diag = m_diag.cwiseMax(m_wa2);
+
+ do {
+ /* determine the levenberg-marquardt parameter. */
+ internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
+
+ /* store the direction p and x + p. calculate the norm of p. */
+ m_wa1 = -m_wa1;
+ m_wa2 = x + m_wa1;
+ pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
+
+ /* on the first iteration, adjust the initial step bound. */
+ if (m_iter == 1)
+ m_delta = (std::min)(m_delta,pnorm);
+
+ /* evaluate the function at x + p and calculate its norm. */
+ if ( m_functor(m_wa2, m_wa4) < 0)
+ return LevenbergMarquardtSpace::UserAsked;
+ ++m_nfev;
+ fnorm1 = m_wa4.stableNorm();
+
+ /* compute the scaled actual reduction. */
+ actred = -1.;
+ if (Scalar(.1) * fnorm1 < m_fnorm)
+ actred = 1. - numext::abs2(fnorm1 / m_fnorm);
+
+ /* compute the scaled predicted reduction and */
+ /* the scaled directional derivative. */
+ m_wa3 = m_rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1);
+ temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm);
+ temp2 = numext::abs2(sqrt(m_par) * pnorm / m_fnorm);
+ prered = temp1 + temp2 / Scalar(.5);
+ dirder = -(temp1 + temp2);
+
+ /* compute the ratio of the actual to the predicted */
+ /* reduction. */
+ ratio = 0.;
+ if (prered != 0.)
+ ratio = actred / prered;
+
+ /* update the step bound. */
+ if (ratio <= Scalar(.25)) {
+ if (actred >= 0.)
+ temp = RealScalar(.5);
+ if (actred < 0.)
+ temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
+ if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1))
+ temp = Scalar(.1);
+ /* Computing MIN */
+ m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
+ m_par /= temp;
+ } else if (!(m_par != 0. && ratio < RealScalar(.75))) {
+ m_delta = pnorm / RealScalar(.5);
+ m_par = RealScalar(.5) * m_par;
+ }
+
+ /* test for successful iteration. */
+ if (ratio >= RealScalar(1e-4)) {
+ /* successful iteration. update x, m_fvec, and their norms. */
+ x = m_wa2;
+ m_wa2 = m_diag.cwiseProduct(x);
+ m_fvec = m_wa4;
+ xnorm = m_wa2.stableNorm();
+ m_fnorm = fnorm1;
+ ++m_iter;
+ }
+
+ /* tests for convergence. */
+ if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm)
+ {
+ m_info = Success;
+ return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
+ }
+ if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.)
+ {
+ m_info = Success;
+ return LevenbergMarquardtSpace::RelativeReductionTooSmall;
+ }
+ if (m_delta <= m_xtol * xnorm)
+ {
+ m_info = Success;
+ return LevenbergMarquardtSpace::RelativeErrorTooSmall;
+ }
+
+ /* tests for termination and stringent tolerances. */
+ if (m_nfev >= m_maxfev)
+ {
+ m_info = NoConvergence;
+ return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
+ }
+ if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
+ {
+ m_info = Success;
+ return LevenbergMarquardtSpace::FtolTooSmall;
+ }
+ if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
+ {
+ m_info = Success;
+ return LevenbergMarquardtSpace::XtolTooSmall;
+ }
+ if (m_gnorm <= NumTraits<Scalar>::epsilon())
+ {
+ m_info = Success;
+ return LevenbergMarquardtSpace::GtolTooSmall;
+ }
+
+ } while (ratio < Scalar(1e-4));
+
+ return LevenbergMarquardtSpace::Running;
+}
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_LMONESTEP_H