summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h')
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h202
1 files changed, 0 insertions, 202 deletions
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
deleted file mode 100644
index 25b32ec..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
+++ /dev/null
@@ -1,202 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-//
-// This code initially comes from MINPACK whose original authors are:
-// Copyright Jorge More - Argonne National Laboratory
-// Copyright Burt Garbow - Argonne National Laboratory
-// Copyright Ken Hillstrom - Argonne National Laboratory
-//
-// This Source Code Form is subject to the terms of the Minpack license
-// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
-
-#ifndef EIGEN_LMONESTEP_H
-#define EIGEN_LMONESTEP_H
-
-namespace Eigen {
-
-template<typename FunctorType>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
-{
- using std::abs;
- using std::sqrt;
- RealScalar temp, temp1,temp2;
- RealScalar ratio;
- RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
- eigen_assert(x.size()==n); // check the caller is not cheating us
-
- temp = 0.0; xnorm = 0.0;
- /* calculate the jacobian matrix. */
- Index df_ret = m_functor.df(x, m_fjac);
- if (df_ret<0)
- return LevenbergMarquardtSpace::UserAsked;
- if (df_ret>0)
- // numerical diff, we evaluated the function df_ret times
- m_nfev += df_ret;
- else m_njev++;
-
- /* compute the qr factorization of the jacobian. */
- for (int j = 0; j < x.size(); ++j)
- m_wa2(j) = m_fjac.col(j).blueNorm();
- QRSolver qrfac(m_fjac);
- if(qrfac.info() != Success) {
- m_info = NumericalIssue;
- return LevenbergMarquardtSpace::ImproperInputParameters;
- }
- // Make a copy of the first factor with the associated permutation
- m_rfactor = qrfac.matrixR();
- m_permutation = (qrfac.colsPermutation());
-
- /* on the first iteration and if external scaling is not used, scale according */
- /* to the norms of the columns of the initial jacobian. */
- if (m_iter == 1) {
- if (!m_useExternalScaling)
- for (Index j = 0; j < n; ++j)
- m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j];
-
- /* on the first iteration, calculate the norm of the scaled x */
- /* and initialize the step bound m_delta. */
- xnorm = m_diag.cwiseProduct(x).stableNorm();
- m_delta = m_factor * xnorm;
- if (m_delta == 0.)
- m_delta = m_factor;
- }
-
- /* form (q transpose)*m_fvec and store the first n components in */
- /* m_qtf. */
- m_wa4 = m_fvec;
- m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
- m_qtf = m_wa4.head(n);
-
- /* compute the norm of the scaled gradient. */
- m_gnorm = 0.;
- if (m_fnorm != 0.)
- for (Index j = 0; j < n; ++j)
- if (m_wa2[m_permutation.indices()[j]] != 0.)
- m_gnorm = (std::max)(m_gnorm, abs( m_rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]]));
-
- /* test for convergence of the gradient norm. */
- if (m_gnorm <= m_gtol) {
- m_info = Success;
- return LevenbergMarquardtSpace::CosinusTooSmall;
- }
-
- /* rescale if necessary. */
- if (!m_useExternalScaling)
- m_diag = m_diag.cwiseMax(m_wa2);
-
- do {
- /* determine the levenberg-marquardt parameter. */
- internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
-
- /* store the direction p and x + p. calculate the norm of p. */
- m_wa1 = -m_wa1;
- m_wa2 = x + m_wa1;
- pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
-
- /* on the first iteration, adjust the initial step bound. */
- if (m_iter == 1)
- m_delta = (std::min)(m_delta,pnorm);
-
- /* evaluate the function at x + p and calculate its norm. */
- if ( m_functor(m_wa2, m_wa4) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- ++m_nfev;
- fnorm1 = m_wa4.stableNorm();
-
- /* compute the scaled actual reduction. */
- actred = -1.;
- if (Scalar(.1) * fnorm1 < m_fnorm)
- actred = 1. - numext::abs2(fnorm1 / m_fnorm);
-
- /* compute the scaled predicted reduction and */
- /* the scaled directional derivative. */
- m_wa3 = m_rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1);
- temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm);
- temp2 = numext::abs2(sqrt(m_par) * pnorm / m_fnorm);
- prered = temp1 + temp2 / Scalar(.5);
- dirder = -(temp1 + temp2);
-
- /* compute the ratio of the actual to the predicted */
- /* reduction. */
- ratio = 0.;
- if (prered != 0.)
- ratio = actred / prered;
-
- /* update the step bound. */
- if (ratio <= Scalar(.25)) {
- if (actred >= 0.)
- temp = RealScalar(.5);
- if (actred < 0.)
- temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
- if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1))
- temp = Scalar(.1);
- /* Computing MIN */
- m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
- m_par /= temp;
- } else if (!(m_par != 0. && ratio < RealScalar(.75))) {
- m_delta = pnorm / RealScalar(.5);
- m_par = RealScalar(.5) * m_par;
- }
-
- /* test for successful iteration. */
- if (ratio >= RealScalar(1e-4)) {
- /* successful iteration. update x, m_fvec, and their norms. */
- x = m_wa2;
- m_wa2 = m_diag.cwiseProduct(x);
- m_fvec = m_wa4;
- xnorm = m_wa2.stableNorm();
- m_fnorm = fnorm1;
- ++m_iter;
- }
-
- /* tests for convergence. */
- if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
- }
- if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::RelativeReductionTooSmall;
- }
- if (m_delta <= m_xtol * xnorm)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::RelativeErrorTooSmall;
- }
-
- /* tests for termination and stringent tolerances. */
- if (m_nfev >= m_maxfev)
- {
- m_info = NoConvergence;
- return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
- }
- if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::FtolTooSmall;
- }
- if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::XtolTooSmall;
- }
- if (m_gnorm <= NumTraits<Scalar>::epsilon())
- {
- m_info = Success;
- return LevenbergMarquardtSpace::GtolTooSmall;
- }
-
- } while (ratio < Scalar(1e-4));
-
- return LevenbergMarquardtSpace::Running;
-}
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_LMONESTEP_H