diff options
Diffstat (limited to 'eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h')
-rw-r--r-- | eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h | 202 |
1 files changed, 0 insertions, 202 deletions
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h deleted file mode 100644 index 25b32ec..0000000 --- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +++ /dev/null @@ -1,202 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> -// -// This code initially comes from MINPACK whose original authors are: -// Copyright Jorge More - Argonne National Laboratory -// Copyright Burt Garbow - Argonne National Laboratory -// Copyright Ken Hillstrom - Argonne National Laboratory -// -// This Source Code Form is subject to the terms of the Minpack license -// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file. - -#ifndef EIGEN_LMONESTEP_H -#define EIGEN_LMONESTEP_H - -namespace Eigen { - -template<typename FunctorType> -LevenbergMarquardtSpace::Status -LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x) -{ - using std::abs; - using std::sqrt; - RealScalar temp, temp1,temp2; - RealScalar ratio; - RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered; - eigen_assert(x.size()==n); // check the caller is not cheating us - - temp = 0.0; xnorm = 0.0; - /* calculate the jacobian matrix. */ - Index df_ret = m_functor.df(x, m_fjac); - if (df_ret<0) - return LevenbergMarquardtSpace::UserAsked; - if (df_ret>0) - // numerical diff, we evaluated the function df_ret times - m_nfev += df_ret; - else m_njev++; - - /* compute the qr factorization of the jacobian. */ - for (int j = 0; j < x.size(); ++j) - m_wa2(j) = m_fjac.col(j).blueNorm(); - QRSolver qrfac(m_fjac); - if(qrfac.info() != Success) { - m_info = NumericalIssue; - return LevenbergMarquardtSpace::ImproperInputParameters; - } - // Make a copy of the first factor with the associated permutation - m_rfactor = qrfac.matrixR(); - m_permutation = (qrfac.colsPermutation()); - - /* on the first iteration and if external scaling is not used, scale according */ - /* to the norms of the columns of the initial jacobian. */ - if (m_iter == 1) { - if (!m_useExternalScaling) - for (Index j = 0; j < n; ++j) - m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j]; - - /* on the first iteration, calculate the norm of the scaled x */ - /* and initialize the step bound m_delta. */ - xnorm = m_diag.cwiseProduct(x).stableNorm(); - m_delta = m_factor * xnorm; - if (m_delta == 0.) - m_delta = m_factor; - } - - /* form (q transpose)*m_fvec and store the first n components in */ - /* m_qtf. */ - m_wa4 = m_fvec; - m_wa4 = qrfac.matrixQ().adjoint() * m_fvec; - m_qtf = m_wa4.head(n); - - /* compute the norm of the scaled gradient. */ - m_gnorm = 0.; - if (m_fnorm != 0.) - for (Index j = 0; j < n; ++j) - if (m_wa2[m_permutation.indices()[j]] != 0.) - m_gnorm = (std::max)(m_gnorm, abs( m_rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]])); - - /* test for convergence of the gradient norm. */ - if (m_gnorm <= m_gtol) { - m_info = Success; - return LevenbergMarquardtSpace::CosinusTooSmall; - } - - /* rescale if necessary. */ - if (!m_useExternalScaling) - m_diag = m_diag.cwiseMax(m_wa2); - - do { - /* determine the levenberg-marquardt parameter. */ - internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1); - - /* store the direction p and x + p. calculate the norm of p. */ - m_wa1 = -m_wa1; - m_wa2 = x + m_wa1; - pnorm = m_diag.cwiseProduct(m_wa1).stableNorm(); - - /* on the first iteration, adjust the initial step bound. */ - if (m_iter == 1) - m_delta = (std::min)(m_delta,pnorm); - - /* evaluate the function at x + p and calculate its norm. */ - if ( m_functor(m_wa2, m_wa4) < 0) - return LevenbergMarquardtSpace::UserAsked; - ++m_nfev; - fnorm1 = m_wa4.stableNorm(); - - /* compute the scaled actual reduction. */ - actred = -1.; - if (Scalar(.1) * fnorm1 < m_fnorm) - actred = 1. - numext::abs2(fnorm1 / m_fnorm); - - /* compute the scaled predicted reduction and */ - /* the scaled directional derivative. */ - m_wa3 = m_rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1); - temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm); - temp2 = numext::abs2(sqrt(m_par) * pnorm / m_fnorm); - prered = temp1 + temp2 / Scalar(.5); - dirder = -(temp1 + temp2); - - /* compute the ratio of the actual to the predicted */ - /* reduction. */ - ratio = 0.; - if (prered != 0.) - ratio = actred / prered; - - /* update the step bound. */ - if (ratio <= Scalar(.25)) { - if (actred >= 0.) - temp = RealScalar(.5); - if (actred < 0.) - temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred); - if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1)) - temp = Scalar(.1); - /* Computing MIN */ - m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1)); - m_par /= temp; - } else if (!(m_par != 0. && ratio < RealScalar(.75))) { - m_delta = pnorm / RealScalar(.5); - m_par = RealScalar(.5) * m_par; - } - - /* test for successful iteration. */ - if (ratio >= RealScalar(1e-4)) { - /* successful iteration. update x, m_fvec, and their norms. */ - x = m_wa2; - m_wa2 = m_diag.cwiseProduct(x); - m_fvec = m_wa4; - xnorm = m_wa2.stableNorm(); - m_fnorm = fnorm1; - ++m_iter; - } - - /* tests for convergence. */ - if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm) - { - m_info = Success; - return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall; - } - if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.) - { - m_info = Success; - return LevenbergMarquardtSpace::RelativeReductionTooSmall; - } - if (m_delta <= m_xtol * xnorm) - { - m_info = Success; - return LevenbergMarquardtSpace::RelativeErrorTooSmall; - } - - /* tests for termination and stringent tolerances. */ - if (m_nfev >= m_maxfev) - { - m_info = NoConvergence; - return LevenbergMarquardtSpace::TooManyFunctionEvaluation; - } - if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.) - { - m_info = Success; - return LevenbergMarquardtSpace::FtolTooSmall; - } - if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm) - { - m_info = Success; - return LevenbergMarquardtSpace::XtolTooSmall; - } - if (m_gnorm <= NumTraits<Scalar>::epsilon()) - { - m_info = Success; - return LevenbergMarquardtSpace::GtolTooSmall; - } - - } while (ratio < Scalar(1e-4)); - - return LevenbergMarquardtSpace::Running; -} - - -} // end namespace Eigen - -#endif // EIGEN_LMONESTEP_H |