summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h')
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h188
1 files changed, 0 insertions, 188 deletions
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
deleted file mode 100644
index ae9d793..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
+++ /dev/null
@@ -1,188 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
-//
-// This code initially comes from MINPACK whose original authors are:
-// Copyright Jorge More - Argonne National Laboratory
-// Copyright Burt Garbow - Argonne National Laboratory
-// Copyright Ken Hillstrom - Argonne National Laboratory
-//
-// This Source Code Form is subject to the terms of the Minpack license
-// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
-
-#ifndef EIGEN_LMQRSOLV_H
-#define EIGEN_LMQRSOLV_H
-
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar,int Rows, int Cols, typename PermIndex>
-void lmqrsolv(
- Matrix<Scalar,Rows,Cols> &s,
- const PermutationMatrix<Dynamic,Dynamic,PermIndex> &iPerm,
- const Matrix<Scalar,Dynamic,1> &diag,
- const Matrix<Scalar,Dynamic,1> &qtb,
- Matrix<Scalar,Dynamic,1> &x,
- Matrix<Scalar,Dynamic,1> &sdiag)
-{
- /* Local variables */
- Index i, j, k;
- Scalar temp;
- Index n = s.cols();
- Matrix<Scalar,Dynamic,1> wa(n);
- JacobiRotation<Scalar> givens;
-
- /* Function Body */
- // the following will only change the lower triangular part of s, including
- // the diagonal, though the diagonal is restored afterward
-
- /* copy r and (q transpose)*b to preserve input and initialize s. */
- /* in particular, save the diagonal elements of r in x. */
- x = s.diagonal();
- wa = qtb;
-
-
- s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
- /* eliminate the diagonal matrix d using a givens rotation. */
- for (j = 0; j < n; ++j) {
-
- /* prepare the row of d to be eliminated, locating the */
- /* diagonal element using p from the qr factorization. */
- const PermIndex l = iPerm.indices()(j);
- if (diag[l] == 0.)
- break;
- sdiag.tail(n-j).setZero();
- sdiag[j] = diag[l];
-
- /* the transformations to eliminate the row of d */
- /* modify only a single element of (q transpose)*b */
- /* beyond the first n, which is initially zero. */
- Scalar qtbpj = 0.;
- for (k = j; k < n; ++k) {
- /* determine a givens rotation which eliminates the */
- /* appropriate element in the current row of d. */
- givens.makeGivens(-s(k,k), sdiag[k]);
-
- /* compute the modified diagonal element of r and */
- /* the modified element of ((q transpose)*b,0). */
- s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
- temp = givens.c() * wa[k] + givens.s() * qtbpj;
- qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
- wa[k] = temp;
-
- /* accumulate the tranformation in the row of s. */
- for (i = k+1; i<n; ++i) {
- temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
- sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
- s(i,k) = temp;
- }
- }
- }
-
- /* solve the triangular system for z. if the system is */
- /* singular, then obtain a least squares solution. */
- Index nsing;
- for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
-
- wa.tail(n-nsing).setZero();
- s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
-
- // restore
- sdiag = s.diagonal();
- s.diagonal() = x;
-
- /* permute the components of z back to components of x. */
- x = iPerm * wa;
-}
-
-template <typename Scalar, int _Options, typename Index>
-void lmqrsolv(
- SparseMatrix<Scalar,_Options,Index> &s,
- const PermutationMatrix<Dynamic,Dynamic> &iPerm,
- const Matrix<Scalar,Dynamic,1> &diag,
- const Matrix<Scalar,Dynamic,1> &qtb,
- Matrix<Scalar,Dynamic,1> &x,
- Matrix<Scalar,Dynamic,1> &sdiag)
-{
- /* Local variables */
- typedef SparseMatrix<Scalar,RowMajor,Index> FactorType;
- Index i, j, k, l;
- Scalar temp;
- Index n = s.cols();
- Matrix<Scalar,Dynamic,1> wa(n);
- JacobiRotation<Scalar> givens;
-
- /* Function Body */
- // the following will only change the lower triangular part of s, including
- // the diagonal, though the diagonal is restored afterward
-
- /* copy r and (q transpose)*b to preserve input and initialize R. */
- wa = qtb;
- FactorType R(s);
- // Eliminate the diagonal matrix d using a givens rotation
- for (j = 0; j < n; ++j)
- {
- // Prepare the row of d to be eliminated, locating the
- // diagonal element using p from the qr factorization
- l = iPerm.indices()(j);
- if (diag(l) == Scalar(0))
- break;
- sdiag.tail(n-j).setZero();
- sdiag[j] = diag[l];
- // the transformations to eliminate the row of d
- // modify only a single element of (q transpose)*b
- // beyond the first n, which is initially zero.
-
- Scalar qtbpj = 0;
- // Browse the nonzero elements of row j of the upper triangular s
- for (k = j; k < n; ++k)
- {
- typename FactorType::InnerIterator itk(R,k);
- for (; itk; ++itk){
- if (itk.index() < k) continue;
- else break;
- }
- //At this point, we have the diagonal element R(k,k)
- // Determine a givens rotation which eliminates
- // the appropriate element in the current row of d
- givens.makeGivens(-itk.value(), sdiag(k));
-
- // Compute the modified diagonal element of r and
- // the modified element of ((q transpose)*b,0).
- itk.valueRef() = givens.c() * itk.value() + givens.s() * sdiag(k);
- temp = givens.c() * wa(k) + givens.s() * qtbpj;
- qtbpj = -givens.s() * wa(k) + givens.c() * qtbpj;
- wa(k) = temp;
-
- // Accumulate the transformation in the remaining k row/column of R
- for (++itk; itk; ++itk)
- {
- i = itk.index();
- temp = givens.c() * itk.value() + givens.s() * sdiag(i);
- sdiag(i) = -givens.s() * itk.value() + givens.c() * sdiag(i);
- itk.valueRef() = temp;
- }
- }
- }
-
- // Solve the triangular system for z. If the system is
- // singular, then obtain a least squares solution
- Index nsing;
- for(nsing = 0; nsing<n && sdiag(nsing) !=0; nsing++) {}
-
- wa.tail(n-nsing).setZero();
-// x = wa;
- wa.head(nsing) = R.topLeftCorner(nsing,nsing).template triangularView<Upper>().solve/*InPlace*/(wa.head(nsing));
-
- sdiag = R.diagonal();
- // Permute the components of z back to components of x
- x = iPerm * wa;
-}
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_LMQRSOLV_H