diff options
Diffstat (limited to 'eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h')
-rw-r--r-- | eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h | 591 |
1 files changed, 591 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h new file mode 100644 index 0000000..7d42664 --- /dev/null +++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h @@ -0,0 +1,591 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATRIX_FUNCTION +#define EIGEN_MATRIX_FUNCTION + +#include "StemFunction.h" +#include "MatrixFunctionAtomic.h" + + +namespace Eigen { + +/** \ingroup MatrixFunctions_Module + * \brief Class for computing matrix functions. + * \tparam MatrixType type of the argument of the matrix function, + * expected to be an instantiation of the Matrix class template. + * \tparam AtomicType type for computing matrix function of atomic blocks. + * \tparam IsComplex used internally to select correct specialization. + * + * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the + * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the + * computation of the matrix function on every block corresponding to these clusters to an object of type + * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class + * \p AtomicType should have a \p compute() member function for computing the matrix function of a block. + * + * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic + */ +template <typename MatrixType, + typename AtomicType, + int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> +class MatrixFunction +{ + public: + + /** \brief Constructor. + * + * \param[in] A argument of matrix function, should be a square matrix. + * \param[in] atomic class for computing matrix function of atomic blocks. + * + * The class stores references to \p A and \p atomic, so they should not be + * changed (or destroyed) before compute() is called. + */ + MatrixFunction(const MatrixType& A, AtomicType& atomic); + + /** \brief Compute the matrix function. + * + * \param[out] result the function \p f applied to \p A, as + * specified in the constructor. + * + * See MatrixBase::matrixFunction() for details on how this computation + * is implemented. + */ + template <typename ResultType> + void compute(ResultType &result); +}; + + +/** \internal \ingroup MatrixFunctions_Module + * \brief Partial specialization of MatrixFunction for real matrices + */ +template <typename MatrixType, typename AtomicType> +class MatrixFunction<MatrixType, AtomicType, 0> +{ + private: + + typedef internal::traits<MatrixType> Traits; + typedef typename Traits::Scalar Scalar; + static const int Rows = Traits::RowsAtCompileTime; + static const int Cols = Traits::ColsAtCompileTime; + static const int Options = MatrixType::Options; + static const int MaxRows = Traits::MaxRowsAtCompileTime; + static const int MaxCols = Traits::MaxColsAtCompileTime; + + typedef std::complex<Scalar> ComplexScalar; + typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix; + + public: + + /** \brief Constructor. + * + * \param[in] A argument of matrix function, should be a square matrix. + * \param[in] atomic class for computing matrix function of atomic blocks. + */ + MatrixFunction(const MatrixType& A, AtomicType& atomic) : m_A(A), m_atomic(atomic) { } + + /** \brief Compute the matrix function. + * + * \param[out] result the function \p f applied to \p A, as + * specified in the constructor. + * + * This function converts the real matrix \c A to a complex matrix, + * uses MatrixFunction<MatrixType,1> and then converts the result back to + * a real matrix. + */ + template <typename ResultType> + void compute(ResultType& result) + { + ComplexMatrix CA = m_A.template cast<ComplexScalar>(); + ComplexMatrix Cresult; + MatrixFunction<ComplexMatrix, AtomicType> mf(CA, m_atomic); + mf.compute(Cresult); + result = Cresult.real(); + } + + private: + typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */ + AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */ + + MatrixFunction& operator=(const MatrixFunction&); +}; + + +/** \internal \ingroup MatrixFunctions_Module + * \brief Partial specialization of MatrixFunction for complex matrices + */ +template <typename MatrixType, typename AtomicType> +class MatrixFunction<MatrixType, AtomicType, 1> +{ + private: + + typedef internal::traits<MatrixType> Traits; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::Index Index; + static const int RowsAtCompileTime = Traits::RowsAtCompileTime; + static const int ColsAtCompileTime = Traits::ColsAtCompileTime; + static const int Options = MatrixType::Options; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType; + typedef Matrix<Index, Traits::RowsAtCompileTime, 1> IntVectorType; + typedef Matrix<Index, Dynamic, 1> DynamicIntVectorType; + typedef std::list<Scalar> Cluster; + typedef std::list<Cluster> ListOfClusters; + typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; + + public: + + MatrixFunction(const MatrixType& A, AtomicType& atomic); + template <typename ResultType> void compute(ResultType& result); + + private: + + void computeSchurDecomposition(); + void partitionEigenvalues(); + typename ListOfClusters::iterator findCluster(Scalar key); + void computeClusterSize(); + void computeBlockStart(); + void constructPermutation(); + void permuteSchur(); + void swapEntriesInSchur(Index index); + void computeBlockAtomic(); + Block<MatrixType> block(MatrixType& A, Index i, Index j); + void computeOffDiagonal(); + DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C); + + typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */ + AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */ + MatrixType m_T; /**< \brief Triangular part of Schur decomposition */ + MatrixType m_U; /**< \brief Unitary part of Schur decomposition */ + MatrixType m_fT; /**< \brief %Matrix function applied to #m_T */ + ListOfClusters m_clusters; /**< \brief Partition of eigenvalues into clusters of ei'vals "close" to each other */ + DynamicIntVectorType m_eivalToCluster; /**< \brief m_eivalToCluster[i] = j means i-th ei'val is in j-th cluster */ + DynamicIntVectorType m_clusterSize; /**< \brief Number of eigenvalues in each clusters */ + DynamicIntVectorType m_blockStart; /**< \brief Row index at which block corresponding to i-th cluster starts */ + IntVectorType m_permutation; /**< \brief Permutation which groups ei'vals in the same cluster together */ + + /** \brief Maximum distance allowed between eigenvalues to be considered "close". + * + * This is morally a \c static \c const \c Scalar, but only + * integers can be static constant class members in C++. The + * separation constant is set to 0.1, a value taken from the + * paper by Davies and Higham. */ + static const RealScalar separation() { return static_cast<RealScalar>(0.1); } + + MatrixFunction& operator=(const MatrixFunction&); +}; + +/** \brief Constructor. + * + * \param[in] A argument of matrix function, should be a square matrix. + * \param[in] atomic class for computing matrix function of atomic blocks. + */ +template <typename MatrixType, typename AtomicType> +MatrixFunction<MatrixType,AtomicType,1>::MatrixFunction(const MatrixType& A, AtomicType& atomic) + : m_A(A), m_atomic(atomic) +{ + /* empty body */ +} + +/** \brief Compute the matrix function. + * + * \param[out] result the function \p f applied to \p A, as + * specified in the constructor. + */ +template <typename MatrixType, typename AtomicType> +template <typename ResultType> +void MatrixFunction<MatrixType,AtomicType,1>::compute(ResultType& result) +{ + computeSchurDecomposition(); + partitionEigenvalues(); + computeClusterSize(); + computeBlockStart(); + constructPermutation(); + permuteSchur(); + computeBlockAtomic(); + computeOffDiagonal(); + result = m_U * (m_fT.template triangularView<Upper>() * m_U.adjoint()); +} + +/** \brief Store the Schur decomposition of #m_A in #m_T and #m_U */ +template <typename MatrixType, typename AtomicType> +void MatrixFunction<MatrixType,AtomicType,1>::computeSchurDecomposition() +{ + const ComplexSchur<MatrixType> schurOfA(m_A); + m_T = schurOfA.matrixT(); + m_U = schurOfA.matrixU(); +} + +/** \brief Partition eigenvalues in clusters of ei'vals close to each other + * + * This function computes #m_clusters. This is a partition of the + * eigenvalues of #m_T in clusters, such that + * # Any eigenvalue in a certain cluster is at most separation() away + * from another eigenvalue in the same cluster. + * # The distance between two eigenvalues in different clusters is + * more than separation(). + * The implementation follows Algorithm 4.1 in the paper of Davies + * and Higham. + */ +template <typename MatrixType, typename AtomicType> +void MatrixFunction<MatrixType,AtomicType,1>::partitionEigenvalues() +{ + using std::abs; + const Index rows = m_T.rows(); + VectorType diag = m_T.diagonal(); // contains eigenvalues of A + + for (Index i=0; i<rows; ++i) { + // Find set containing diag(i), adding a new set if necessary + typename ListOfClusters::iterator qi = findCluster(diag(i)); + if (qi == m_clusters.end()) { + Cluster l; + l.push_back(diag(i)); + m_clusters.push_back(l); + qi = m_clusters.end(); + --qi; + } + + // Look for other element to add to the set + for (Index j=i+1; j<rows; ++j) { + if (abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) { + typename ListOfClusters::iterator qj = findCluster(diag(j)); + if (qj == m_clusters.end()) { + qi->push_back(diag(j)); + } else { + qi->insert(qi->end(), qj->begin(), qj->end()); + m_clusters.erase(qj); + } + } + } + } +} + +/** \brief Find cluster in #m_clusters containing some value + * \param[in] key Value to find + * \returns Iterator to cluster containing \c key, or + * \c m_clusters.end() if no cluster in m_clusters contains \c key. + */ +template <typename MatrixType, typename AtomicType> +typename MatrixFunction<MatrixType,AtomicType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,AtomicType,1>::findCluster(Scalar key) +{ + typename Cluster::iterator j; + for (typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) { + j = std::find(i->begin(), i->end(), key); + if (j != i->end()) + return i; + } + return m_clusters.end(); +} + +/** \brief Compute #m_clusterSize and #m_eivalToCluster using #m_clusters */ +template <typename MatrixType, typename AtomicType> +void MatrixFunction<MatrixType,AtomicType,1>::computeClusterSize() +{ + const Index rows = m_T.rows(); + VectorType diag = m_T.diagonal(); + const Index numClusters = static_cast<Index>(m_clusters.size()); + + m_clusterSize.setZero(numClusters); + m_eivalToCluster.resize(rows); + Index clusterIndex = 0; + for (typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) { + for (Index i = 0; i < diag.rows(); ++i) { + if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) { + ++m_clusterSize[clusterIndex]; + m_eivalToCluster[i] = clusterIndex; + } + } + ++clusterIndex; + } +} + +/** \brief Compute #m_blockStart using #m_clusterSize */ +template <typename MatrixType, typename AtomicType> +void MatrixFunction<MatrixType,AtomicType,1>::computeBlockStart() +{ + m_blockStart.resize(m_clusterSize.rows()); + m_blockStart(0) = 0; + for (Index i = 1; i < m_clusterSize.rows(); i++) { + m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1); + } +} + +/** \brief Compute #m_permutation using #m_eivalToCluster and #m_blockStart */ +template <typename MatrixType, typename AtomicType> +void MatrixFunction<MatrixType,AtomicType,1>::constructPermutation() +{ + DynamicIntVectorType indexNextEntry = m_blockStart; + m_permutation.resize(m_T.rows()); + for (Index i = 0; i < m_T.rows(); i++) { + Index cluster = m_eivalToCluster[i]; + m_permutation[i] = indexNextEntry[cluster]; + ++indexNextEntry[cluster]; + } +} + +/** \brief Permute Schur decomposition in #m_U and #m_T according to #m_permutation */ +template <typename MatrixType, typename AtomicType> +void MatrixFunction<MatrixType,AtomicType,1>::permuteSchur() +{ + IntVectorType p = m_permutation; + for (Index i = 0; i < p.rows() - 1; i++) { + Index j; + for (j = i; j < p.rows(); j++) { + if (p(j) == i) break; + } + eigen_assert(p(j) == i); + for (Index k = j-1; k >= i; k--) { + swapEntriesInSchur(k); + std::swap(p.coeffRef(k), p.coeffRef(k+1)); + } + } +} + +/** \brief Swap rows \a index and \a index+1 in Schur decomposition in #m_U and #m_T */ +template <typename MatrixType, typename AtomicType> +void MatrixFunction<MatrixType,AtomicType,1>::swapEntriesInSchur(Index index) +{ + JacobiRotation<Scalar> rotation; + rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index)); + m_T.applyOnTheLeft(index, index+1, rotation.adjoint()); + m_T.applyOnTheRight(index, index+1, rotation); + m_U.applyOnTheRight(index, index+1, rotation); +} + +/** \brief Compute block diagonal part of #m_fT. + * + * This routine computes the matrix function applied to the block diagonal part of #m_T, with the blocking + * given by #m_blockStart. The matrix function of each diagonal block is computed by #m_atomic. The + * off-diagonal parts of #m_fT are set to zero. + */ +template <typename MatrixType, typename AtomicType> +void MatrixFunction<MatrixType,AtomicType,1>::computeBlockAtomic() +{ + m_fT.resize(m_T.rows(), m_T.cols()); + m_fT.setZero(); + for (Index i = 0; i < m_clusterSize.rows(); ++i) { + block(m_fT, i, i) = m_atomic.compute(block(m_T, i, i)); + } +} + +/** \brief Return block of matrix according to blocking given by #m_blockStart */ +template <typename MatrixType, typename AtomicType> +Block<MatrixType> MatrixFunction<MatrixType,AtomicType,1>::block(MatrixType& A, Index i, Index j) +{ + return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j)); +} + +/** \brief Compute part of #m_fT above block diagonal. + * + * This routine assumes that the block diagonal part of #m_fT (which + * equals the matrix function applied to #m_T) has already been computed and computes + * the part above the block diagonal. The part below the diagonal is + * zero, because #m_T is upper triangular. + */ +template <typename MatrixType, typename AtomicType> +void MatrixFunction<MatrixType,AtomicType,1>::computeOffDiagonal() +{ + for (Index diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) { + for (Index blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) { + // compute (blockIndex, blockIndex+diagIndex) block + DynMatrixType A = block(m_T, blockIndex, blockIndex); + DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex); + DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex); + C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex); + for (Index k = blockIndex + 1; k < blockIndex + diagIndex; k++) { + C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex); + C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex); + } + block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C); + } + } +} + +/** \brief Solve a triangular Sylvester equation AX + XB = C + * + * \param[in] A the matrix A; should be square and upper triangular + * \param[in] B the matrix B; should be square and upper triangular + * \param[in] C the matrix C; should have correct size. + * + * \returns the solution X. + * + * If A is m-by-m and B is n-by-n, then both C and X are m-by-n. + * The (i,j)-th component of the Sylvester equation is + * \f[ + * \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}. + * \f] + * This can be re-arranged to yield: + * \f[ + * X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij} + * - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr). + * \f] + * It is assumed that A and B are such that the numerator is never + * zero (otherwise the Sylvester equation does not have a unique + * solution). In that case, these equations can be evaluated in the + * order \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$. + */ +template <typename MatrixType, typename AtomicType> +typename MatrixFunction<MatrixType,AtomicType,1>::DynMatrixType MatrixFunction<MatrixType,AtomicType,1>::solveTriangularSylvester( + const DynMatrixType& A, + const DynMatrixType& B, + const DynMatrixType& C) +{ + eigen_assert(A.rows() == A.cols()); + eigen_assert(A.isUpperTriangular()); + eigen_assert(B.rows() == B.cols()); + eigen_assert(B.isUpperTriangular()); + eigen_assert(C.rows() == A.rows()); + eigen_assert(C.cols() == B.rows()); + + Index m = A.rows(); + Index n = B.rows(); + DynMatrixType X(m, n); + + for (Index i = m - 1; i >= 0; --i) { + for (Index j = 0; j < n; ++j) { + + // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj} + Scalar AX; + if (i == m - 1) { + AX = 0; + } else { + Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i); + AX = AXmatrix(0,0); + } + + // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj} + Scalar XB; + if (j == 0) { + XB = 0; + } else { + Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j); + XB = XBmatrix(0,0); + } + + X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j)); + } + } + return X; +} + +/** \ingroup MatrixFunctions_Module + * + * \brief Proxy for the matrix function of some matrix (expression). + * + * \tparam Derived Type of the argument to the matrix function. + * + * This class holds the argument to the matrix function until it is + * assigned or evaluated for some other reason (so the argument + * should not be changed in the meantime). It is the return type of + * matrixBase::matrixFunction() and related functions and most of the + * time this is the only way it is used. + */ +template<typename Derived> class MatrixFunctionReturnValue +: public ReturnByValue<MatrixFunctionReturnValue<Derived> > +{ + public: + + typedef typename Derived::Scalar Scalar; + typedef typename Derived::Index Index; + typedef typename internal::stem_function<Scalar>::type StemFunction; + + /** \brief Constructor. + * + * \param[in] A %Matrix (expression) forming the argument of the + * matrix function. + * \param[in] f Stem function for matrix function under consideration. + */ + MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { } + + /** \brief Compute the matrix function. + * + * \param[out] result \p f applied to \p A, where \p f and \p A + * are as in the constructor. + */ + template <typename ResultType> + inline void evalTo(ResultType& result) const + { + typedef typename Derived::PlainObject PlainObject; + typedef internal::traits<PlainObject> Traits; + static const int RowsAtCompileTime = Traits::RowsAtCompileTime; + static const int ColsAtCompileTime = Traits::ColsAtCompileTime; + static const int Options = PlainObject::Options; + typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; + typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; + typedef MatrixFunctionAtomic<DynMatrixType> AtomicType; + AtomicType atomic(m_f); + + const PlainObject Aevaluated = m_A.eval(); + MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic); + mf.compute(result); + } + + Index rows() const { return m_A.rows(); } + Index cols() const { return m_A.cols(); } + + private: + typename internal::nested<Derived>::type m_A; + StemFunction *m_f; + + MatrixFunctionReturnValue& operator=(const MatrixFunctionReturnValue&); +}; + +namespace internal { +template<typename Derived> +struct traits<MatrixFunctionReturnValue<Derived> > +{ + typedef typename Derived::PlainObject ReturnType; +}; +} + + +/********** MatrixBase methods **********/ + + +template <typename Derived> +const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const +{ + eigen_assert(rows() == cols()); + return MatrixFunctionReturnValue<Derived>(derived(), f); +} + +template <typename Derived> +const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const +{ + eigen_assert(rows() == cols()); + typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; + return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin); +} + +template <typename Derived> +const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const +{ + eigen_assert(rows() == cols()); + typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; + return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos); +} + +template <typename Derived> +const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const +{ + eigen_assert(rows() == cols()); + typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; + return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh); +} + +template <typename Derived> +const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const +{ + eigen_assert(rows() == cols()); + typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; + return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh); +} + +} // end namespace Eigen + +#endif // EIGEN_MATRIX_FUNCTION |