summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h')
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h591
1 files changed, 591 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
new file mode 100644
index 0000000..7d42664
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
@@ -0,0 +1,591 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIX_FUNCTION
+#define EIGEN_MATRIX_FUNCTION
+
+#include "StemFunction.h"
+#include "MatrixFunctionAtomic.h"
+
+
+namespace Eigen {
+
+/** \ingroup MatrixFunctions_Module
+ * \brief Class for computing matrix functions.
+ * \tparam MatrixType type of the argument of the matrix function,
+ * expected to be an instantiation of the Matrix class template.
+ * \tparam AtomicType type for computing matrix function of atomic blocks.
+ * \tparam IsComplex used internally to select correct specialization.
+ *
+ * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
+ * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
+ * computation of the matrix function on every block corresponding to these clusters to an object of type
+ * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
+ * \p AtomicType should have a \p compute() member function for computing the matrix function of a block.
+ *
+ * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic
+ */
+template <typename MatrixType,
+ typename AtomicType,
+ int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
+class MatrixFunction
+{
+ public:
+
+ /** \brief Constructor.
+ *
+ * \param[in] A argument of matrix function, should be a square matrix.
+ * \param[in] atomic class for computing matrix function of atomic blocks.
+ *
+ * The class stores references to \p A and \p atomic, so they should not be
+ * changed (or destroyed) before compute() is called.
+ */
+ MatrixFunction(const MatrixType& A, AtomicType& atomic);
+
+ /** \brief Compute the matrix function.
+ *
+ * \param[out] result the function \p f applied to \p A, as
+ * specified in the constructor.
+ *
+ * See MatrixBase::matrixFunction() for details on how this computation
+ * is implemented.
+ */
+ template <typename ResultType>
+ void compute(ResultType &result);
+};
+
+
+/** \internal \ingroup MatrixFunctions_Module
+ * \brief Partial specialization of MatrixFunction for real matrices
+ */
+template <typename MatrixType, typename AtomicType>
+class MatrixFunction<MatrixType, AtomicType, 0>
+{
+ private:
+
+ typedef internal::traits<MatrixType> Traits;
+ typedef typename Traits::Scalar Scalar;
+ static const int Rows = Traits::RowsAtCompileTime;
+ static const int Cols = Traits::ColsAtCompileTime;
+ static const int Options = MatrixType::Options;
+ static const int MaxRows = Traits::MaxRowsAtCompileTime;
+ static const int MaxCols = Traits::MaxColsAtCompileTime;
+
+ typedef std::complex<Scalar> ComplexScalar;
+ typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
+
+ public:
+
+ /** \brief Constructor.
+ *
+ * \param[in] A argument of matrix function, should be a square matrix.
+ * \param[in] atomic class for computing matrix function of atomic blocks.
+ */
+ MatrixFunction(const MatrixType& A, AtomicType& atomic) : m_A(A), m_atomic(atomic) { }
+
+ /** \brief Compute the matrix function.
+ *
+ * \param[out] result the function \p f applied to \p A, as
+ * specified in the constructor.
+ *
+ * This function converts the real matrix \c A to a complex matrix,
+ * uses MatrixFunction<MatrixType,1> and then converts the result back to
+ * a real matrix.
+ */
+ template <typename ResultType>
+ void compute(ResultType& result)
+ {
+ ComplexMatrix CA = m_A.template cast<ComplexScalar>();
+ ComplexMatrix Cresult;
+ MatrixFunction<ComplexMatrix, AtomicType> mf(CA, m_atomic);
+ mf.compute(Cresult);
+ result = Cresult.real();
+ }
+
+ private:
+ typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */
+ AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */
+
+ MatrixFunction& operator=(const MatrixFunction&);
+};
+
+
+/** \internal \ingroup MatrixFunctions_Module
+ * \brief Partial specialization of MatrixFunction for complex matrices
+ */
+template <typename MatrixType, typename AtomicType>
+class MatrixFunction<MatrixType, AtomicType, 1>
+{
+ private:
+
+ typedef internal::traits<MatrixType> Traits;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+ static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
+ static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
+ static const int Options = MatrixType::Options;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
+ typedef Matrix<Index, Traits::RowsAtCompileTime, 1> IntVectorType;
+ typedef Matrix<Index, Dynamic, 1> DynamicIntVectorType;
+ typedef std::list<Scalar> Cluster;
+ typedef std::list<Cluster> ListOfClusters;
+ typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
+
+ public:
+
+ MatrixFunction(const MatrixType& A, AtomicType& atomic);
+ template <typename ResultType> void compute(ResultType& result);
+
+ private:
+
+ void computeSchurDecomposition();
+ void partitionEigenvalues();
+ typename ListOfClusters::iterator findCluster(Scalar key);
+ void computeClusterSize();
+ void computeBlockStart();
+ void constructPermutation();
+ void permuteSchur();
+ void swapEntriesInSchur(Index index);
+ void computeBlockAtomic();
+ Block<MatrixType> block(MatrixType& A, Index i, Index j);
+ void computeOffDiagonal();
+ DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C);
+
+ typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */
+ AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */
+ MatrixType m_T; /**< \brief Triangular part of Schur decomposition */
+ MatrixType m_U; /**< \brief Unitary part of Schur decomposition */
+ MatrixType m_fT; /**< \brief %Matrix function applied to #m_T */
+ ListOfClusters m_clusters; /**< \brief Partition of eigenvalues into clusters of ei'vals "close" to each other */
+ DynamicIntVectorType m_eivalToCluster; /**< \brief m_eivalToCluster[i] = j means i-th ei'val is in j-th cluster */
+ DynamicIntVectorType m_clusterSize; /**< \brief Number of eigenvalues in each clusters */
+ DynamicIntVectorType m_blockStart; /**< \brief Row index at which block corresponding to i-th cluster starts */
+ IntVectorType m_permutation; /**< \brief Permutation which groups ei'vals in the same cluster together */
+
+ /** \brief Maximum distance allowed between eigenvalues to be considered "close".
+ *
+ * This is morally a \c static \c const \c Scalar, but only
+ * integers can be static constant class members in C++. The
+ * separation constant is set to 0.1, a value taken from the
+ * paper by Davies and Higham. */
+ static const RealScalar separation() { return static_cast<RealScalar>(0.1); }
+
+ MatrixFunction& operator=(const MatrixFunction&);
+};
+
+/** \brief Constructor.
+ *
+ * \param[in] A argument of matrix function, should be a square matrix.
+ * \param[in] atomic class for computing matrix function of atomic blocks.
+ */
+template <typename MatrixType, typename AtomicType>
+MatrixFunction<MatrixType,AtomicType,1>::MatrixFunction(const MatrixType& A, AtomicType& atomic)
+ : m_A(A), m_atomic(atomic)
+{
+ /* empty body */
+}
+
+/** \brief Compute the matrix function.
+ *
+ * \param[out] result the function \p f applied to \p A, as
+ * specified in the constructor.
+ */
+template <typename MatrixType, typename AtomicType>
+template <typename ResultType>
+void MatrixFunction<MatrixType,AtomicType,1>::compute(ResultType& result)
+{
+ computeSchurDecomposition();
+ partitionEigenvalues();
+ computeClusterSize();
+ computeBlockStart();
+ constructPermutation();
+ permuteSchur();
+ computeBlockAtomic();
+ computeOffDiagonal();
+ result = m_U * (m_fT.template triangularView<Upper>() * m_U.adjoint());
+}
+
+/** \brief Store the Schur decomposition of #m_A in #m_T and #m_U */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::computeSchurDecomposition()
+{
+ const ComplexSchur<MatrixType> schurOfA(m_A);
+ m_T = schurOfA.matrixT();
+ m_U = schurOfA.matrixU();
+}
+
+/** \brief Partition eigenvalues in clusters of ei'vals close to each other
+ *
+ * This function computes #m_clusters. This is a partition of the
+ * eigenvalues of #m_T in clusters, such that
+ * # Any eigenvalue in a certain cluster is at most separation() away
+ * from another eigenvalue in the same cluster.
+ * # The distance between two eigenvalues in different clusters is
+ * more than separation().
+ * The implementation follows Algorithm 4.1 in the paper of Davies
+ * and Higham.
+ */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::partitionEigenvalues()
+{
+ using std::abs;
+ const Index rows = m_T.rows();
+ VectorType diag = m_T.diagonal(); // contains eigenvalues of A
+
+ for (Index i=0; i<rows; ++i) {
+ // Find set containing diag(i), adding a new set if necessary
+ typename ListOfClusters::iterator qi = findCluster(diag(i));
+ if (qi == m_clusters.end()) {
+ Cluster l;
+ l.push_back(diag(i));
+ m_clusters.push_back(l);
+ qi = m_clusters.end();
+ --qi;
+ }
+
+ // Look for other element to add to the set
+ for (Index j=i+1; j<rows; ++j) {
+ if (abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) {
+ typename ListOfClusters::iterator qj = findCluster(diag(j));
+ if (qj == m_clusters.end()) {
+ qi->push_back(diag(j));
+ } else {
+ qi->insert(qi->end(), qj->begin(), qj->end());
+ m_clusters.erase(qj);
+ }
+ }
+ }
+ }
+}
+
+/** \brief Find cluster in #m_clusters containing some value
+ * \param[in] key Value to find
+ * \returns Iterator to cluster containing \c key, or
+ * \c m_clusters.end() if no cluster in m_clusters contains \c key.
+ */
+template <typename MatrixType, typename AtomicType>
+typename MatrixFunction<MatrixType,AtomicType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,AtomicType,1>::findCluster(Scalar key)
+{
+ typename Cluster::iterator j;
+ for (typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) {
+ j = std::find(i->begin(), i->end(), key);
+ if (j != i->end())
+ return i;
+ }
+ return m_clusters.end();
+}
+
+/** \brief Compute #m_clusterSize and #m_eivalToCluster using #m_clusters */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::computeClusterSize()
+{
+ const Index rows = m_T.rows();
+ VectorType diag = m_T.diagonal();
+ const Index numClusters = static_cast<Index>(m_clusters.size());
+
+ m_clusterSize.setZero(numClusters);
+ m_eivalToCluster.resize(rows);
+ Index clusterIndex = 0;
+ for (typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) {
+ for (Index i = 0; i < diag.rows(); ++i) {
+ if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) {
+ ++m_clusterSize[clusterIndex];
+ m_eivalToCluster[i] = clusterIndex;
+ }
+ }
+ ++clusterIndex;
+ }
+}
+
+/** \brief Compute #m_blockStart using #m_clusterSize */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::computeBlockStart()
+{
+ m_blockStart.resize(m_clusterSize.rows());
+ m_blockStart(0) = 0;
+ for (Index i = 1; i < m_clusterSize.rows(); i++) {
+ m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1);
+ }
+}
+
+/** \brief Compute #m_permutation using #m_eivalToCluster and #m_blockStart */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::constructPermutation()
+{
+ DynamicIntVectorType indexNextEntry = m_blockStart;
+ m_permutation.resize(m_T.rows());
+ for (Index i = 0; i < m_T.rows(); i++) {
+ Index cluster = m_eivalToCluster[i];
+ m_permutation[i] = indexNextEntry[cluster];
+ ++indexNextEntry[cluster];
+ }
+}
+
+/** \brief Permute Schur decomposition in #m_U and #m_T according to #m_permutation */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::permuteSchur()
+{
+ IntVectorType p = m_permutation;
+ for (Index i = 0; i < p.rows() - 1; i++) {
+ Index j;
+ for (j = i; j < p.rows(); j++) {
+ if (p(j) == i) break;
+ }
+ eigen_assert(p(j) == i);
+ for (Index k = j-1; k >= i; k--) {
+ swapEntriesInSchur(k);
+ std::swap(p.coeffRef(k), p.coeffRef(k+1));
+ }
+ }
+}
+
+/** \brief Swap rows \a index and \a index+1 in Schur decomposition in #m_U and #m_T */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::swapEntriesInSchur(Index index)
+{
+ JacobiRotation<Scalar> rotation;
+ rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index));
+ m_T.applyOnTheLeft(index, index+1, rotation.adjoint());
+ m_T.applyOnTheRight(index, index+1, rotation);
+ m_U.applyOnTheRight(index, index+1, rotation);
+}
+
+/** \brief Compute block diagonal part of #m_fT.
+ *
+ * This routine computes the matrix function applied to the block diagonal part of #m_T, with the blocking
+ * given by #m_blockStart. The matrix function of each diagonal block is computed by #m_atomic. The
+ * off-diagonal parts of #m_fT are set to zero.
+ */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::computeBlockAtomic()
+{
+ m_fT.resize(m_T.rows(), m_T.cols());
+ m_fT.setZero();
+ for (Index i = 0; i < m_clusterSize.rows(); ++i) {
+ block(m_fT, i, i) = m_atomic.compute(block(m_T, i, i));
+ }
+}
+
+/** \brief Return block of matrix according to blocking given by #m_blockStart */
+template <typename MatrixType, typename AtomicType>
+Block<MatrixType> MatrixFunction<MatrixType,AtomicType,1>::block(MatrixType& A, Index i, Index j)
+{
+ return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j));
+}
+
+/** \brief Compute part of #m_fT above block diagonal.
+ *
+ * This routine assumes that the block diagonal part of #m_fT (which
+ * equals the matrix function applied to #m_T) has already been computed and computes
+ * the part above the block diagonal. The part below the diagonal is
+ * zero, because #m_T is upper triangular.
+ */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::computeOffDiagonal()
+{
+ for (Index diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) {
+ for (Index blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) {
+ // compute (blockIndex, blockIndex+diagIndex) block
+ DynMatrixType A = block(m_T, blockIndex, blockIndex);
+ DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex);
+ DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex);
+ C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex);
+ for (Index k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
+ C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex);
+ C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex);
+ }
+ block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C);
+ }
+ }
+}
+
+/** \brief Solve a triangular Sylvester equation AX + XB = C
+ *
+ * \param[in] A the matrix A; should be square and upper triangular
+ * \param[in] B the matrix B; should be square and upper triangular
+ * \param[in] C the matrix C; should have correct size.
+ *
+ * \returns the solution X.
+ *
+ * If A is m-by-m and B is n-by-n, then both C and X are m-by-n.
+ * The (i,j)-th component of the Sylvester equation is
+ * \f[
+ * \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}.
+ * \f]
+ * This can be re-arranged to yield:
+ * \f[
+ * X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
+ * - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
+ * \f]
+ * It is assumed that A and B are such that the numerator is never
+ * zero (otherwise the Sylvester equation does not have a unique
+ * solution). In that case, these equations can be evaluated in the
+ * order \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
+ */
+template <typename MatrixType, typename AtomicType>
+typename MatrixFunction<MatrixType,AtomicType,1>::DynMatrixType MatrixFunction<MatrixType,AtomicType,1>::solveTriangularSylvester(
+ const DynMatrixType& A,
+ const DynMatrixType& B,
+ const DynMatrixType& C)
+{
+ eigen_assert(A.rows() == A.cols());
+ eigen_assert(A.isUpperTriangular());
+ eigen_assert(B.rows() == B.cols());
+ eigen_assert(B.isUpperTriangular());
+ eigen_assert(C.rows() == A.rows());
+ eigen_assert(C.cols() == B.rows());
+
+ Index m = A.rows();
+ Index n = B.rows();
+ DynMatrixType X(m, n);
+
+ for (Index i = m - 1; i >= 0; --i) {
+ for (Index j = 0; j < n; ++j) {
+
+ // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
+ Scalar AX;
+ if (i == m - 1) {
+ AX = 0;
+ } else {
+ Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
+ AX = AXmatrix(0,0);
+ }
+
+ // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
+ Scalar XB;
+ if (j == 0) {
+ XB = 0;
+ } else {
+ Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
+ XB = XBmatrix(0,0);
+ }
+
+ X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
+ }
+ }
+ return X;
+}
+
+/** \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix function of some matrix (expression).
+ *
+ * \tparam Derived Type of the argument to the matrix function.
+ *
+ * This class holds the argument to the matrix function until it is
+ * assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * matrixBase::matrixFunction() and related functions and most of the
+ * time this is the only way it is used.
+ */
+template<typename Derived> class MatrixFunctionReturnValue
+: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
+{
+ public:
+
+ typedef typename Derived::Scalar Scalar;
+ typedef typename Derived::Index Index;
+ typedef typename internal::stem_function<Scalar>::type StemFunction;
+
+ /** \brief Constructor.
+ *
+ * \param[in] A %Matrix (expression) forming the argument of the
+ * matrix function.
+ * \param[in] f Stem function for matrix function under consideration.
+ */
+ MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
+
+ /** \brief Compute the matrix function.
+ *
+ * \param[out] result \p f applied to \p A, where \p f and \p A
+ * are as in the constructor.
+ */
+ template <typename ResultType>
+ inline void evalTo(ResultType& result) const
+ {
+ typedef typename Derived::PlainObject PlainObject;
+ typedef internal::traits<PlainObject> Traits;
+ static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
+ static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
+ static const int Options = PlainObject::Options;
+ typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
+ typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
+ typedef MatrixFunctionAtomic<DynMatrixType> AtomicType;
+ AtomicType atomic(m_f);
+
+ const PlainObject Aevaluated = m_A.eval();
+ MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
+ mf.compute(result);
+ }
+
+ Index rows() const { return m_A.rows(); }
+ Index cols() const { return m_A.cols(); }
+
+ private:
+ typename internal::nested<Derived>::type m_A;
+ StemFunction *m_f;
+
+ MatrixFunctionReturnValue& operator=(const MatrixFunctionReturnValue&);
+};
+
+namespace internal {
+template<typename Derived>
+struct traits<MatrixFunctionReturnValue<Derived> >
+{
+ typedef typename Derived::PlainObject ReturnType;
+};
+}
+
+
+/********** MatrixBase methods **********/
+
+
+template <typename Derived>
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
+{
+ eigen_assert(rows() == cols());
+ return MatrixFunctionReturnValue<Derived>(derived(), f);
+}
+
+template <typename Derived>
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
+{
+ eigen_assert(rows() == cols());
+ typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
+ return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin);
+}
+
+template <typename Derived>
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
+{
+ eigen_assert(rows() == cols());
+ typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
+ return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos);
+}
+
+template <typename Derived>
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
+{
+ eigen_assert(rows() == cols());
+ typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
+ return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh);
+}
+
+template <typename Derived>
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
+{
+ eigen_assert(rows() == cols());
+ typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
+ return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh);
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATRIX_FUNCTION