summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h')
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h601
1 files changed, 601 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
new file mode 100644
index 0000000..b8ba6dd
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
@@ -0,0 +1,601 @@
+// -*- coding: utf-8
+// vim: set fileencoding=utf-8
+
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_HYBRIDNONLINEARSOLVER_H
+#define EIGEN_HYBRIDNONLINEARSOLVER_H
+
+namespace Eigen {
+
+namespace HybridNonLinearSolverSpace {
+ enum Status {
+ Running = -1,
+ ImproperInputParameters = 0,
+ RelativeErrorTooSmall = 1,
+ TooManyFunctionEvaluation = 2,
+ TolTooSmall = 3,
+ NotMakingProgressJacobian = 4,
+ NotMakingProgressIterations = 5,
+ UserAsked = 6
+ };
+}
+
+/**
+ * \ingroup NonLinearOptimization_Module
+ * \brief Finds a zero of a system of n
+ * nonlinear functions in n variables by a modification of the Powell
+ * hybrid method ("dogleg").
+ *
+ * The user must provide a subroutine which calculates the
+ * functions. The Jacobian is either provided by the user, or approximated
+ * using a forward-difference method.
+ *
+ */
+template<typename FunctorType, typename Scalar=double>
+class HybridNonLinearSolver
+{
+public:
+ typedef DenseIndex Index;
+
+ HybridNonLinearSolver(FunctorType &_functor)
+ : functor(_functor) { nfev=njev=iter = 0; fnorm= 0.; useExternalScaling=false;}
+
+ struct Parameters {
+ Parameters()
+ : factor(Scalar(100.))
+ , maxfev(1000)
+ , xtol(std::sqrt(NumTraits<Scalar>::epsilon()))
+ , nb_of_subdiagonals(-1)
+ , nb_of_superdiagonals(-1)
+ , epsfcn(Scalar(0.)) {}
+ Scalar factor;
+ Index maxfev; // maximum number of function evaluation
+ Scalar xtol;
+ Index nb_of_subdiagonals;
+ Index nb_of_superdiagonals;
+ Scalar epsfcn;
+ };
+ typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
+ typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
+ /* TODO: if eigen provides a triangular storage, use it here */
+ typedef Matrix< Scalar, Dynamic, Dynamic > UpperTriangularType;
+
+ HybridNonLinearSolverSpace::Status hybrj1(
+ FVectorType &x,
+ const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ );
+
+ HybridNonLinearSolverSpace::Status solveInit(FVectorType &x);
+ HybridNonLinearSolverSpace::Status solveOneStep(FVectorType &x);
+ HybridNonLinearSolverSpace::Status solve(FVectorType &x);
+
+ HybridNonLinearSolverSpace::Status hybrd1(
+ FVectorType &x,
+ const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ );
+
+ HybridNonLinearSolverSpace::Status solveNumericalDiffInit(FVectorType &x);
+ HybridNonLinearSolverSpace::Status solveNumericalDiffOneStep(FVectorType &x);
+ HybridNonLinearSolverSpace::Status solveNumericalDiff(FVectorType &x);
+
+ void resetParameters(void) { parameters = Parameters(); }
+ Parameters parameters;
+ FVectorType fvec, qtf, diag;
+ JacobianType fjac;
+ UpperTriangularType R;
+ Index nfev;
+ Index njev;
+ Index iter;
+ Scalar fnorm;
+ bool useExternalScaling;
+private:
+ FunctorType &functor;
+ Index n;
+ Scalar sum;
+ bool sing;
+ Scalar temp;
+ Scalar delta;
+ bool jeval;
+ Index ncsuc;
+ Scalar ratio;
+ Scalar pnorm, xnorm, fnorm1;
+ Index nslow1, nslow2;
+ Index ncfail;
+ Scalar actred, prered;
+ FVectorType wa1, wa2, wa3, wa4;
+
+ HybridNonLinearSolver& operator=(const HybridNonLinearSolver&);
+};
+
+
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::hybrj1(
+ FVectorType &x,
+ const Scalar tol
+ )
+{
+ n = x.size();
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || tol < 0.)
+ return HybridNonLinearSolverSpace::ImproperInputParameters;
+
+ resetParameters();
+ parameters.maxfev = 100*(n+1);
+ parameters.xtol = tol;
+ diag.setConstant(n, 1.);
+ useExternalScaling = true;
+ return solve(x);
+}
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::solveInit(FVectorType &x)
+{
+ n = x.size();
+
+ wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
+ fvec.resize(n);
+ qtf.resize(n);
+ fjac.resize(n, n);
+ if (!useExternalScaling)
+ diag.resize(n);
+ eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
+
+ /* Function Body */
+ nfev = 0;
+ njev = 0;
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. )
+ return HybridNonLinearSolverSpace::ImproperInputParameters;
+ if (useExternalScaling)
+ for (Index j = 0; j < n; ++j)
+ if (diag[j] <= 0.)
+ return HybridNonLinearSolverSpace::ImproperInputParameters;
+
+ /* evaluate the function at the starting point */
+ /* and calculate its norm. */
+ nfev = 1;
+ if ( functor(x, fvec) < 0)
+ return HybridNonLinearSolverSpace::UserAsked;
+ fnorm = fvec.stableNorm();
+
+ /* initialize iteration counter and monitors. */
+ iter = 1;
+ ncsuc = 0;
+ ncfail = 0;
+ nslow1 = 0;
+ nslow2 = 0;
+
+ return HybridNonLinearSolverSpace::Running;
+}
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(FVectorType &x)
+{
+ using std::abs;
+
+ eigen_assert(x.size()==n); // check the caller is not cheating us
+
+ Index j;
+ std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
+
+ jeval = true;
+
+ /* calculate the jacobian matrix. */
+ if ( functor.df(x, fjac) < 0)
+ return HybridNonLinearSolverSpace::UserAsked;
+ ++njev;
+
+ wa2 = fjac.colwise().blueNorm();
+
+ /* on the first iteration and if external scaling is not used, scale according */
+ /* to the norms of the columns of the initial jacobian. */
+ if (iter == 1) {
+ if (!useExternalScaling)
+ for (j = 0; j < n; ++j)
+ diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
+
+ /* on the first iteration, calculate the norm of the scaled x */
+ /* and initialize the step bound delta. */
+ xnorm = diag.cwiseProduct(x).stableNorm();
+ delta = parameters.factor * xnorm;
+ if (delta == 0.)
+ delta = parameters.factor;
+ }
+
+ /* compute the qr factorization of the jacobian. */
+ HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
+
+ /* copy the triangular factor of the qr factorization into r. */
+ R = qrfac.matrixQR();
+
+ /* accumulate the orthogonal factor in fjac. */
+ fjac = qrfac.householderQ();
+
+ /* form (q transpose)*fvec and store in qtf. */
+ qtf = fjac.transpose() * fvec;
+
+ /* rescale if necessary. */
+ if (!useExternalScaling)
+ diag = diag.cwiseMax(wa2);
+
+ while (true) {
+ /* determine the direction p. */
+ internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
+
+ /* store the direction p and x + p. calculate the norm of p. */
+ wa1 = -wa1;
+ wa2 = x + wa1;
+ pnorm = diag.cwiseProduct(wa1).stableNorm();
+
+ /* on the first iteration, adjust the initial step bound. */
+ if (iter == 1)
+ delta = (std::min)(delta,pnorm);
+
+ /* evaluate the function at x + p and calculate its norm. */
+ if ( functor(wa2, wa4) < 0)
+ return HybridNonLinearSolverSpace::UserAsked;
+ ++nfev;
+ fnorm1 = wa4.stableNorm();
+
+ /* compute the scaled actual reduction. */
+ actred = -1.;
+ if (fnorm1 < fnorm) /* Computing 2nd power */
+ actred = 1. - numext::abs2(fnorm1 / fnorm);
+
+ /* compute the scaled predicted reduction. */
+ wa3 = R.template triangularView<Upper>()*wa1 + qtf;
+ temp = wa3.stableNorm();
+ prered = 0.;
+ if (temp < fnorm) /* Computing 2nd power */
+ prered = 1. - numext::abs2(temp / fnorm);
+
+ /* compute the ratio of the actual to the predicted reduction. */
+ ratio = 0.;
+ if (prered > 0.)
+ ratio = actred / prered;
+
+ /* update the step bound. */
+ if (ratio < Scalar(.1)) {
+ ncsuc = 0;
+ ++ncfail;
+ delta = Scalar(.5) * delta;
+ } else {
+ ncfail = 0;
+ ++ncsuc;
+ if (ratio >= Scalar(.5) || ncsuc > 1)
+ delta = (std::max)(delta, pnorm / Scalar(.5));
+ if (abs(ratio - 1.) <= Scalar(.1)) {
+ delta = pnorm / Scalar(.5);
+ }
+ }
+
+ /* test for successful iteration. */
+ if (ratio >= Scalar(1e-4)) {
+ /* successful iteration. update x, fvec, and their norms. */
+ x = wa2;
+ wa2 = diag.cwiseProduct(x);
+ fvec = wa4;
+ xnorm = wa2.stableNorm();
+ fnorm = fnorm1;
+ ++iter;
+ }
+
+ /* determine the progress of the iteration. */
+ ++nslow1;
+ if (actred >= Scalar(.001))
+ nslow1 = 0;
+ if (jeval)
+ ++nslow2;
+ if (actred >= Scalar(.1))
+ nslow2 = 0;
+
+ /* test for convergence. */
+ if (delta <= parameters.xtol * xnorm || fnorm == 0.)
+ return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
+
+ /* tests for termination and stringent tolerances. */
+ if (nfev >= parameters.maxfev)
+ return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
+ if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
+ return HybridNonLinearSolverSpace::TolTooSmall;
+ if (nslow2 == 5)
+ return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
+ if (nslow1 == 10)
+ return HybridNonLinearSolverSpace::NotMakingProgressIterations;
+
+ /* criterion for recalculating jacobian. */
+ if (ncfail == 2)
+ break; // leave inner loop and go for the next outer loop iteration
+
+ /* calculate the rank one modification to the jacobian */
+ /* and update qtf if necessary. */
+ wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
+ wa2 = fjac.transpose() * wa4;
+ if (ratio >= Scalar(1e-4))
+ qtf = wa2;
+ wa2 = (wa2-wa3)/pnorm;
+
+ /* compute the qr factorization of the updated jacobian. */
+ internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
+ internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
+ internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
+
+ jeval = false;
+ }
+ return HybridNonLinearSolverSpace::Running;
+}
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::solve(FVectorType &x)
+{
+ HybridNonLinearSolverSpace::Status status = solveInit(x);
+ if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
+ return status;
+ while (status==HybridNonLinearSolverSpace::Running)
+ status = solveOneStep(x);
+ return status;
+}
+
+
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::hybrd1(
+ FVectorType &x,
+ const Scalar tol
+ )
+{
+ n = x.size();
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || tol < 0.)
+ return HybridNonLinearSolverSpace::ImproperInputParameters;
+
+ resetParameters();
+ parameters.maxfev = 200*(n+1);
+ parameters.xtol = tol;
+
+ diag.setConstant(n, 1.);
+ useExternalScaling = true;
+ return solveNumericalDiff(x);
+}
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(FVectorType &x)
+{
+ n = x.size();
+
+ if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
+ if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
+
+ wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
+ qtf.resize(n);
+ fjac.resize(n, n);
+ fvec.resize(n);
+ if (!useExternalScaling)
+ diag.resize(n);
+ eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
+
+ /* Function Body */
+ nfev = 0;
+ njev = 0;
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. )
+ return HybridNonLinearSolverSpace::ImproperInputParameters;
+ if (useExternalScaling)
+ for (Index j = 0; j < n; ++j)
+ if (diag[j] <= 0.)
+ return HybridNonLinearSolverSpace::ImproperInputParameters;
+
+ /* evaluate the function at the starting point */
+ /* and calculate its norm. */
+ nfev = 1;
+ if ( functor(x, fvec) < 0)
+ return HybridNonLinearSolverSpace::UserAsked;
+ fnorm = fvec.stableNorm();
+
+ /* initialize iteration counter and monitors. */
+ iter = 1;
+ ncsuc = 0;
+ ncfail = 0;
+ nslow1 = 0;
+ nslow2 = 0;
+
+ return HybridNonLinearSolverSpace::Running;
+}
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(FVectorType &x)
+{
+ using std::sqrt;
+ using std::abs;
+
+ assert(x.size()==n); // check the caller is not cheating us
+
+ Index j;
+ std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
+
+ jeval = true;
+ if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
+ if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
+
+ /* calculate the jacobian matrix. */
+ if (internal::fdjac1(functor, x, fvec, fjac, parameters.nb_of_subdiagonals, parameters.nb_of_superdiagonals, parameters.epsfcn) <0)
+ return HybridNonLinearSolverSpace::UserAsked;
+ nfev += (std::min)(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n);
+
+ wa2 = fjac.colwise().blueNorm();
+
+ /* on the first iteration and if external scaling is not used, scale according */
+ /* to the norms of the columns of the initial jacobian. */
+ if (iter == 1) {
+ if (!useExternalScaling)
+ for (j = 0; j < n; ++j)
+ diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
+
+ /* on the first iteration, calculate the norm of the scaled x */
+ /* and initialize the step bound delta. */
+ xnorm = diag.cwiseProduct(x).stableNorm();
+ delta = parameters.factor * xnorm;
+ if (delta == 0.)
+ delta = parameters.factor;
+ }
+
+ /* compute the qr factorization of the jacobian. */
+ HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
+
+ /* copy the triangular factor of the qr factorization into r. */
+ R = qrfac.matrixQR();
+
+ /* accumulate the orthogonal factor in fjac. */
+ fjac = qrfac.householderQ();
+
+ /* form (q transpose)*fvec and store in qtf. */
+ qtf = fjac.transpose() * fvec;
+
+ /* rescale if necessary. */
+ if (!useExternalScaling)
+ diag = diag.cwiseMax(wa2);
+
+ while (true) {
+ /* determine the direction p. */
+ internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
+
+ /* store the direction p and x + p. calculate the norm of p. */
+ wa1 = -wa1;
+ wa2 = x + wa1;
+ pnorm = diag.cwiseProduct(wa1).stableNorm();
+
+ /* on the first iteration, adjust the initial step bound. */
+ if (iter == 1)
+ delta = (std::min)(delta,pnorm);
+
+ /* evaluate the function at x + p and calculate its norm. */
+ if ( functor(wa2, wa4) < 0)
+ return HybridNonLinearSolverSpace::UserAsked;
+ ++nfev;
+ fnorm1 = wa4.stableNorm();
+
+ /* compute the scaled actual reduction. */
+ actred = -1.;
+ if (fnorm1 < fnorm) /* Computing 2nd power */
+ actred = 1. - numext::abs2(fnorm1 / fnorm);
+
+ /* compute the scaled predicted reduction. */
+ wa3 = R.template triangularView<Upper>()*wa1 + qtf;
+ temp = wa3.stableNorm();
+ prered = 0.;
+ if (temp < fnorm) /* Computing 2nd power */
+ prered = 1. - numext::abs2(temp / fnorm);
+
+ /* compute the ratio of the actual to the predicted reduction. */
+ ratio = 0.;
+ if (prered > 0.)
+ ratio = actred / prered;
+
+ /* update the step bound. */
+ if (ratio < Scalar(.1)) {
+ ncsuc = 0;
+ ++ncfail;
+ delta = Scalar(.5) * delta;
+ } else {
+ ncfail = 0;
+ ++ncsuc;
+ if (ratio >= Scalar(.5) || ncsuc > 1)
+ delta = (std::max)(delta, pnorm / Scalar(.5));
+ if (abs(ratio - 1.) <= Scalar(.1)) {
+ delta = pnorm / Scalar(.5);
+ }
+ }
+
+ /* test for successful iteration. */
+ if (ratio >= Scalar(1e-4)) {
+ /* successful iteration. update x, fvec, and their norms. */
+ x = wa2;
+ wa2 = diag.cwiseProduct(x);
+ fvec = wa4;
+ xnorm = wa2.stableNorm();
+ fnorm = fnorm1;
+ ++iter;
+ }
+
+ /* determine the progress of the iteration. */
+ ++nslow1;
+ if (actred >= Scalar(.001))
+ nslow1 = 0;
+ if (jeval)
+ ++nslow2;
+ if (actred >= Scalar(.1))
+ nslow2 = 0;
+
+ /* test for convergence. */
+ if (delta <= parameters.xtol * xnorm || fnorm == 0.)
+ return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
+
+ /* tests for termination and stringent tolerances. */
+ if (nfev >= parameters.maxfev)
+ return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
+ if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
+ return HybridNonLinearSolverSpace::TolTooSmall;
+ if (nslow2 == 5)
+ return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
+ if (nslow1 == 10)
+ return HybridNonLinearSolverSpace::NotMakingProgressIterations;
+
+ /* criterion for recalculating jacobian. */
+ if (ncfail == 2)
+ break; // leave inner loop and go for the next outer loop iteration
+
+ /* calculate the rank one modification to the jacobian */
+ /* and update qtf if necessary. */
+ wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
+ wa2 = fjac.transpose() * wa4;
+ if (ratio >= Scalar(1e-4))
+ qtf = wa2;
+ wa2 = (wa2-wa3)/pnorm;
+
+ /* compute the qr factorization of the updated jacobian. */
+ internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
+ internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
+ internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
+
+ jeval = false;
+ }
+ return HybridNonLinearSolverSpace::Running;
+}
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(FVectorType &x)
+{
+ HybridNonLinearSolverSpace::Status status = solveNumericalDiffInit(x);
+ if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
+ return status;
+ while (status==HybridNonLinearSolverSpace::Running)
+ status = solveNumericalDiffOneStep(x);
+ return status;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_HYBRIDNONLINEARSOLVER_H
+
+//vim: ai ts=4 sts=4 et sw=4