summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h')
-rw-r--r--eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h130
1 files changed, 130 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h b/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h
new file mode 100644
index 0000000..ea5d8bc
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h
@@ -0,0 +1,130 @@
+// -*- coding: utf-8
+// vim: set fileencoding=utf-8
+
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_NUMERICAL_DIFF_H
+#define EIGEN_NUMERICAL_DIFF_H
+
+namespace Eigen {
+
+enum NumericalDiffMode {
+ Forward,
+ Central
+};
+
+
+/**
+ * This class allows you to add a method df() to your functor, which will
+ * use numerical differentiation to compute an approximate of the
+ * derivative for the functor. Of course, if you have an analytical form
+ * for the derivative, you should rather implement df() by yourself.
+ *
+ * More information on
+ * http://en.wikipedia.org/wiki/Numerical_differentiation
+ *
+ * Currently only "Forward" and "Central" scheme are implemented.
+ */
+template<typename _Functor, NumericalDiffMode mode=Forward>
+class NumericalDiff : public _Functor
+{
+public:
+ typedef _Functor Functor;
+ typedef typename Functor::Scalar Scalar;
+ typedef typename Functor::InputType InputType;
+ typedef typename Functor::ValueType ValueType;
+ typedef typename Functor::JacobianType JacobianType;
+
+ NumericalDiff(Scalar _epsfcn=0.) : Functor(), epsfcn(_epsfcn) {}
+ NumericalDiff(const Functor& f, Scalar _epsfcn=0.) : Functor(f), epsfcn(_epsfcn) {}
+
+ // forward constructors
+ template<typename T0>
+ NumericalDiff(const T0& a0) : Functor(a0), epsfcn(0) {}
+ template<typename T0, typename T1>
+ NumericalDiff(const T0& a0, const T1& a1) : Functor(a0, a1), epsfcn(0) {}
+ template<typename T0, typename T1, typename T2>
+ NumericalDiff(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2), epsfcn(0) {}
+
+ enum {
+ InputsAtCompileTime = Functor::InputsAtCompileTime,
+ ValuesAtCompileTime = Functor::ValuesAtCompileTime
+ };
+
+ /**
+ * return the number of evaluation of functor
+ */
+ int df(const InputType& _x, JacobianType &jac) const
+ {
+ using std::sqrt;
+ using std::abs;
+ /* Local variables */
+ Scalar h;
+ int nfev=0;
+ const typename InputType::Index n = _x.size();
+ const Scalar eps = sqrt(((std::max)(epsfcn,NumTraits<Scalar>::epsilon() )));
+ ValueType val1, val2;
+ InputType x = _x;
+ // TODO : we should do this only if the size is not already known
+ val1.resize(Functor::values());
+ val2.resize(Functor::values());
+
+ // initialization
+ switch(mode) {
+ case Forward:
+ // compute f(x)
+ Functor::operator()(x, val1); nfev++;
+ break;
+ case Central:
+ // do nothing
+ break;
+ default:
+ eigen_assert(false);
+ };
+
+ // Function Body
+ for (int j = 0; j < n; ++j) {
+ h = eps * abs(x[j]);
+ if (h == 0.) {
+ h = eps;
+ }
+ switch(mode) {
+ case Forward:
+ x[j] += h;
+ Functor::operator()(x, val2);
+ nfev++;
+ x[j] = _x[j];
+ jac.col(j) = (val2-val1)/h;
+ break;
+ case Central:
+ x[j] += h;
+ Functor::operator()(x, val2); nfev++;
+ x[j] -= 2*h;
+ Functor::operator()(x, val1); nfev++;
+ x[j] = _x[j];
+ jac.col(j) = (val2-val1)/(2*h);
+ break;
+ default:
+ eigen_assert(false);
+ };
+ }
+ return nfev;
+ }
+private:
+ Scalar epsfcn;
+
+ NumericalDiff& operator=(const NumericalDiff&);
+};
+
+} // end namespace Eigen
+
+//vim: ai ts=4 sts=4 et sw=4
+#endif // EIGEN_NUMERICAL_DIFF_H
+